File size: 26,704 Bytes
3d61a67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69696ad
 
3d61a67
 
69696ad
 
 
 
 
 
3d61a67
69696ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d61a67
 
69696ad
3d61a67
69696ad
 
3d61a67
69696ad
 
 
3d61a67
69696ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d61a67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54a3d6e
3d61a67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69696ad
3d61a67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69696ad
3d61a67
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
---
license: apache-2.0
library_name: transformers
tags:
- language
- granite-4.0
---

# Granite-4.0-Micro-Base

**Model Summary:** 
Granite-4.0-Micro-Base is a decoder-only, long-context language model designed for a wide range of text-to-text generation tasks. It also supports Fill-in-the-Middle (FIM) code completion through the use of specialized prefix and suffix tokens. The model is trained from scratch on approximately 15 trillion tokens following a four-stage training strategy: 10 trillion tokens in the first stage, 2 trillion in the second, another 2 trillion in the third, and 0.5 trillion in the final stage. 

- **Developers:** Granite Team, IBM
- **HF Collection:** [Granite 4.0 Language Models HF Collection](https://huggingface.co/collections/ibm-granite/granite-40-language-models-6811a18b820ef362d9e5a82c)
- **GitHub Repository:** [ibm-granite/granite-4.0-language-models](https://github.com/ibm-granite/granite-4.0-language-models)
- **Website**: [Granite Docs](https://www.ibm.com/granite/docs/) 
- **Release Date**: October 2nd, 2025
- **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)

**Supported Languages:** 
English, German, Spanish, French, Japanese, Portuguese, Arabic, Czech, Italian, Korean, Dutch, and Chinese. Users may finetune Granite 4.0 models for languages beyond these languages.

**Intended Use:**
Prominent use cases of LLMs in text-to-text generation include summarization, text classification, extraction, question-answering, code-completion (including FIM), and long-context generation tasks. All Granite Base models are able to handle these tasks as they were trained on a large amount of data from various domains. Moreover, they can serve as baseline to create specialized models for specific application scenarios.

**Generation:** 
This is a simple example of how to use Granite-4.0-Micro-Base model.

Install the following libraries:

```shell
pip install torch torchvision torchaudio
pip install accelerate
pip install transformers
```
Then, copy the code snippet below to run the example.

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda"

model_path = "ibm-granite/granite-4.0-h-micro-base"

tokenizer = AutoTokenizer.from_pretrained(model_path)
# drop device_map if running on CPU
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
model.eval()
# change input text as desired
input_text = "The capital of France is"
# tokenize the text
input_tokens = tokenizer(input_text, return_tensors="pt").to(device)
# generate output tokens
output = model.generate(**input_tokens, max_length=10)
# decode output tokens into text
output = tokenizer.batch_decode(output)
# print output
print(output[0])
```

Expected output:
```shell
The capital of France is Paris.
```

**Evaluation Results:** 

<table>
<!--   <caption><b> All Results</b></caption> -->
<thead>
  <tr>
    <th style="text-align:left; background-color: #001d6c; color: white;">Benchmarks</th>
    <th style="text-align:left; background-color: #001d6c; color: white;">Metric</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">Micro Dense</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">H Micro Dense</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">H Tiny MoE</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">H Small MoE</th>
  </tr>
</thead>
  <tbody>
<tr>
  <td colspan="6" style="text-align:center; background-color:  #FFFFFF; color: #2D2D2D; font-style:italic;">
    General Tasks
  </td>
</tr>
<tr>
    <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">MMLU</td>
    <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">5-shot</td>
    <td style="text-align:right; background-color: #DAE8FF; color: #2D2D2D;">66.47</td>
    <td style="text-align:right; background-color: #FFFFFF; color: #2D2D2D;">67.43</td>
    <td style="text-align:right; background-color: #FFFFFF; color: #2D2D2D;">68.90</td>
    <td style="text-align:right; background-color: #FFFFFF; color: #2D2D2D;">75.85</td>
</tr>
<tr>
    <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">MMLU-Pro</td>
    <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">5-shot,CoT</td>
    <td style="text-align:right; background-color: #DAE8FF; color: #2D2D2D;">37.16</td>
    <td style="text-align:right; background-color: #FFFFFF; color: #2D2D2D;">34.03</td>
    <td style="text-align:right; background-color: #FFFFFF; color: #2D2D2D;">35.47</td>
    <td style="text-align:right; background-color: #FFFFFF; color: #2D2D2D;">48.94</td>
</tr>
<tr>
    <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">BBH</td>
    <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">3-shot, CoT</td>
    <td style="text-align:right; background-color: #DAE8FF; color: #2D2D2D;">63.84</td>
    <td style="text-align:right; background-color: #FFFFFF; color: #2D2D2D;">57.65</td>
    <td style="text-align:right; background-color: #FFFFFF; color: #2D2D2D;">59.67</td>
    <td style="text-align:right; background-color: #FFFFFF; color: #2D2D2D;">75.84</td>
</tr>
<tr>
    <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">AGI EVAL</td>
    <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">3-shot</td>
    <td style="text-align:right; background-color: #DAE8FF; color: #2D2D2D;">54.32</td>
    <td style="text-align:right; background-color: #FFFFFF; color: #2D2D2D;">54.59</td>
    <td style="text-align:right; background-color: #FFFFFF; color: #2D2D2D;">53.69</td>
    <td style="text-align:right; background-color: #FFFFFF; color: #2D2D2D;">62.05</td>
</tr>
<tr>
    <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">DROP</td>
    <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">5-shot</td>
    <td style="text-align:right; background-color: #DAE8FF; color: #2D2D2D;">66.04</td>
    <td style="text-align:right; background-color: #FFFFFF; color: #2D2D2D;">67.44</td>
    <td style="text-align:right; background-color: #FFFFFF; color: #2D2D2D;">64.92</td>
    <td style="text-align:right; background-color: #FFFFFF; color: #2D2D2D;">74.69</td>
</tr>
<tr>
  <td colspan="6" style="text-align:center; background-color:  #FFFFFF; color: #2D2D2D; font-style:italic;">
    Math Tasks
  </td>
</tr>      
<tr>
    <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">GSM8K</td>
    <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">8-shot</td>
    <td style="text-align:right; background-color: #DAE8FF; color: #2D2D2D;">72.93</td>
    <td style="text-align:right; background-color: #FFFFFF; color: #2D2D2D;">63.76</td>
    <td style="text-align:right; background-color: #FFFFFF; color: #2D2D2D;">72.55</td>
    <td style="text-align:right; background-color: #FFFFFF; color: #2D2D2D;">82.11</td>
</tr>
<tr>
    <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Minerva Math</td>
    <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">4-shot</td>
    <td style="text-align:right; background-color: #DAE8FF; color: #2D2D2D;">38</td>
    <td style="text-align:right; background-color: #FFFFFF; color: #2D2D2D;">39.7</td>
    <td style="text-align:right; background-color: #FFFFFF; color: #2D2D2D;">40.34</td>
    <td style="text-align:right; background-color: #FFFFFF; color: #2D2D2D;">46.28</td>
</tr>
<tr>
  <td colspan="6" style="text-align:center; background-color:  #FFFFFF; color: #2D2D2D; font-style:italic;">
    Code Tasks
  </td>
</tr> 
<tr>
    <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">HumanEval </td>
    <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">pass@1 [StarCoder Prompt]</td>
    <td style="text-align:right; background-color: #DAE8FF; color: #2D2D2D;">76.19</td>
    <td style="text-align:right; background-color: #FFFFFF; color: #2D2D2D;">73.72</td>
    <td style="text-align:right; background-color: #FFFFFF; color: #2D2D2D;">77.59</td>
    <td style="text-align:right; background-color: #FFFFFF; color: #2D2D2D;">83.66</td>
</tr>
<tr>
    <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">HumanEval</td>
    <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">pass@1</td>
    <td style="text-align:right; background-color: #DAE8FF; color: #2D2D2D;">59.76</td>
    <td style="text-align:right; background-color: #FFFFFF; color: #2D2D2D;">70.73</td>
    <td style="text-align:right; background-color: #FFFFFF; color: #2D2D2D;">71.34</td>
    <td style="text-align:right; background-color: #FFFFFF; color: #2D2D2D;">76.22</td>
</tr>
<tr>
    <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">HumanEval+</td>
    <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">pass@1</td>
    <td style="text-align:right; background-color: #DAE8FF; color: #2D2D2D;">54.27</td>
    <td style="text-align:right; background-color: #FFFFFF; color: #2D2D2D;">67.07</td>
    <td style="text-align:right; background-color: #FFFFFF; color: #2D2D2D;">64.02</td>
    <td style="text-align:right; background-color: #FFFFFF; color: #2D2D2D;">69.51</td>
</tr>
<tr>
    <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">MBPP</td>
    <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">pass@1</td>
    <td style="text-align:right; background-color: #DAE8FF; color: #2D2D2D;">81.48</td>
    <td style="text-align:right; background-color: #FFFFFF; color: #2D2D2D;">74.87</td>
    <td style="text-align:right; background-color: #FFFFFF; color: #2D2D2D;">81.48</td>
    <td style="text-align:right; background-color: #FFFFFF; color: #2D2D2D;">83.07</td>
</tr>
<tr>
    <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">MBPP+</td>
    <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">pass@1</td>
    <td style="text-align:right; background-color: #DAE8FF; color: #2D2D2D;">68.25</td>
    <td style="text-align:right; background-color: #FFFFFF; color: #2D2D2D;">63.23</td>
    <td style="text-align:right; background-color: #FFFFFF; color: #2D2D2D;">68.78</td>
    <td style="text-align:right; background-color: #FFFFFF; color: #2D2D2D;">70.37</td>
</tr>
<tr>
  <td colspan="6" style="text-align:center; background-color:  #FFFFFF; color: #2D2D2D; font-style:italic;">
    Multilingual Tasks
  </td>
</tr> 
<tr>
    <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">MMMLU</td>
    <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">5-shot</td>
    <td style="text-align:right; background-color: #DAE8FF; color: #2D2D2D;">56.59</td>
    <td style="text-align:right; background-color: #FFFFFF; color: #2D2D2D;">58.5</td>
    <td style="text-align:right; background-color: #FFFFFF; color: #2D2D2D;">62.77</td>
    <td style="text-align:right; background-color: #FFFFFF; color: #2D2D2D;">71.18</td>
</tr> 
<tr>
    <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">INCLUDE</td>
    <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">5-shot</td>
    <td style="text-align:right; background-color: #DAE8FF; color: #2D2D2D;">51.77</td>
    <td style="text-align:right; background-color: #FFFFFF; color: #2D2D2D;">52.16</td>
    <td style="text-align:right; background-color: #FFFFFF; color: #2D2D2D;">53.78</td>
    <td style="text-align:right; background-color: #FFFFFF; color: #2D2D2D;">66.04</td>
</tr>
<tr>
    <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">MGSM</td>
    <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">8-shot</td>
    <td style="text-align:right; background-color: #DAE8FF; color: #2D2D2D;">58.48</td>
    <td style="text-align:right; background-color: #FFFFFF; color: #2D2D2D;">47.04</td>
    <td style="text-align:right; background-color: #FFFFFF; color: #2D2D2D;">54.64</td>
    <td style="text-align:right; background-color: #FFFFFF; color: #2D2D2D;">65.2</td>
</tr>
</tbody></table>


<table>
  <caption><b>Multilingual Benchmarks and thr included languages:</b></caption>
<thead>
  <tr>
    <th style="text-align:left; background-color: #001d6c; color: white;">Benchmarks</th>
    <th style="text-align:left; background-color: #001d6c; color: white;"># Langs</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">Languages</th>
  </tr>
</thead>
<tbody>
<tr>
    <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">MMMLU</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">11</td>
    <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">ar, de, en, es, fr, ja, ko, pt, zh, bn, hi</td>
</tr>
<tr>
    <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">INCLUDE</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">14</td>
<!--     <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">hindi, bengali, tamil, telugu, arabic, german, spanish, french, italian, japanese, korean, dutch, portuguese, chinese</td> -->
    <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">hi, bn, ta, te, ar, de, es, fr, it, ja, ko, nl, pt, zh</td>
    
</tr>
<tr>
    <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">MGSM</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">5</td>
    <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">en, es, fr, ja, zh</td>
</tr>
</tbody>
</table>


**Model Architecture:** 

Granite-4.0-Micro-Base is based on a decoder-only dense transformer architecture. Core components of this architecture are: GQA, RoPE, MLP with SwiGLU, RMSNorm, and shared input/output embeddings.

<table>
<thead>
  <tr>
    <th style="text-align:left; background-color: #001d6c; color: white;">Model</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">Micro Dense</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">H Micro Dense</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">H Tiny MoE</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">H Small MoE</th>
  </tr></thead>
<tbody>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;">Embedding size</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">2560</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">2048</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">1536</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">4096</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;">Number of layers</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">40 attention</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">4 attention / 36 Mamba2</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">4 attention / 36 Mamba2</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">4 attention / 36 Mamba2</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;">Attention head size</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">64</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">64</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">128</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">128</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;">Number of attention heads</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">40</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">32</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">12</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">32</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;">Number of KV heads</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">8</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">8</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">4</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">8</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;">Mamba2 state size</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">-</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">128</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">128</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">128</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;">Number of Mamba2 heads</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">-</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">64</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">48</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">128</td>
  </tr>

  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;">MLP / Shared expert hidden size</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">8192</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">8192</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">1024</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">1536</td>
  </tr>
    

  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;">Num. Experts</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">-</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">-</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">64</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">72</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;">Num. active Experts</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">-</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">-</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">6</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">10</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;">Expert hidden size</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">-</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">-</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">512</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">768</td>
  </tr>

  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;">MLP activation</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">SwiGLU</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">SwiGLU</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">SwiGLU</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">SwiGLU</td>
  </tr>

  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;">Sequence length</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">128K</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">128K</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">128K</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">128K</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;">Position embedding</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">RoPE</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">NoPE</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">NoPE</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">NoPE</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;"># Parameters</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">3B</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">3B</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">7B</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">32B</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;"># Active parameters</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">3B</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">3B</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">1B</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">9B</td>
  </tr>
</tbody></table>


**Training Data:** This model is trained on a mix of open source and proprietary data following a four-stage training strategy. 

<table>
<thead>
  <tr>
    <th style="text-align:left; background-color: #001d6c; color: white;">Stage</th>
    <th style="text-align:left; background-color: #001d6c; color: white;">Characteristics</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">Micro Dense</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">H Micro Dense</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">H Tiny MoE</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">H Small MoE</th>
  </tr></thead>
<tbody>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;">I</td>
      <td style="text-align:left; background-color: #FFFFFF; color: black;">General mixture of training data, warmup, and  power scheduler for learning rate.</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">10</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">10</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">15</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">15</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;">II</td>
      <td style="text-align:left; background-color: #FFFFFF; color: black;">General mixture of training data with higher percentages of code and math with power scheduler for learning rate.</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">2</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">5</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">5</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">5</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;">III</td>
      <td style="text-align:left; background-color: #FFFFFF; color: black;">High quality training data, exponential decay of learning rate.</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">2</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">2</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">2</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">2</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;">IV</td>
      <td style="text-align:left; background-color: #FFFFFF; color: black;">High quality training data, linear decay to zero for learning rate.</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">0.5</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">0.5</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">0.5</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">0.5</td>
  </tr>
</tbody></table>


**Infrastructure:**
We trained the Granite 4.0 Language Models utilizing an NVIDIA GB200 NVL72 cluster hosted in CoreWeave. Intra-rack communication occurs via the 72-GPU NVLink domain, and a non-blocking, full Fat-Tree NDR 400 Gb/s InfiniBand network provides inter-rack communication. This cluster provides a scalable and efficient infrastructure for training our models over thousands of GPUs.

**Ethical Considerations and Limitations:** 
The use of Large Language Models involves risks and ethical considerations people must be aware of, including but not limited to: bias and fairness, misinformation, and autonomous decision-making. Granite-4.0-Micro-Base model is not the exception in this regard. Even though this model is suited for multiple generative AI tasks, it has not undergone any safety alignment, there it may produce problematic outputs. Additionally, it remains uncertain whether smaller models might exhibit increased susceptibility to hallucination in generation scenarios by copying text verbatim from the training dataset due to their reduced sizes and memorization capacities. This aspect is currently an active area of research, and we anticipate more rigorous exploration, comprehension, and mitigations in this domain. Regarding ethics, a latent risk associated with all Large Language Models is their malicious utilization. We urge the community to use Granite-4.0-Micro-Base model with ethical intentions and in a responsible way. 

**Resources**
- ⭐️ Learn about the latest updates with Granite: https://www.ibm.com/granite
- 📄 Get started with tutorials, best practices, and prompt engineering advice: https://www.ibm.com/granite/docs/
- 💡 Learn about the latest Granite learning resources: https://github.com/ibm-granite-community/