Commit
·
cde002d
1
Parent(s):
ee3a7d7
Add answer relevance model cards
Browse files- .gitignore +1 -0
- answer_relevance_classifier/README.md +363 -0
- answer_relevance_rewriter/README.md +380 -0
.gitignore
CHANGED
|
@@ -2,3 +2,4 @@
|
|
| 2 |
# No MacOS image cache files, please.
|
| 3 |
**/.DS_Store
|
| 4 |
|
|
|
|
|
|
| 2 |
# No MacOS image cache files, please.
|
| 3 |
**/.DS_Store
|
| 4 |
|
| 5 |
+
.venv/
|
answer_relevance_classifier/README.md
ADDED
|
@@ -0,0 +1,363 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
pipeline_tag: text-generation
|
| 6 |
+
library_name: peft
|
| 7 |
+
library_name: transformers
|
| 8 |
+
---
|
| 9 |
+
|
| 10 |
+
# Intrinsics for Answer Relevance Classifier
|
| 11 |
+
|
| 12 |
+
## Model Summary
|
| 13 |
+
This is a RAG-specific intrinsic for answer relevance classification task.
|
| 14 |
+
The model takes as input a multi-turn conversation ending with assistant response,
|
| 15 |
+
and provides a classification of whether the assistant's response is relevant to the
|
| 16 |
+
user's final inquiry, as well as categorization of the relevance and reasoning for the conclusions.
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
We provide two intrinsics implemented as LoRA adapters (LoRA/aLoRA) trained over
|
| 20 |
+
Granite-3.3-2b-instruct, Granite-3.3-8b-instruct.
|
| 21 |
+
|
| 22 |
+
- **Developer:** IBM Research
|
| 23 |
+
- **Model type:** LoRA and aLoRA adapter for
|
| 24 |
+
[ibm-granite/granite-3.3-2b-instruct](https://huggingface.co/ibm-granite/granite-3.3-2b-instruct),
|
| 25 |
+
[ibm-granite/granite-3.3-8b-instruct](https://huggingface.co/ibm-granite/granite-3.3-8b-instruct)
|
| 26 |
+
- **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
|
| 27 |
+
|
| 28 |
+
## Intended use
|
| 29 |
+
This rag specific intrinsics is intended to be used to post-process the generated assistant response.
|
| 30 |
+
|
| 31 |
+
- The binary classification of relevance can be used to determine if the assistance response is suitable
|
| 32 |
+
to be given to the user, or a rewrite to a more relevant response is necessary.
|
| 33 |
+
- The category and the analysis providing reasoning for the conclusion can be used to
|
| 34 |
+
be incorporated into prompt for the answer relevance rewriter, indicating specific directions
|
| 35 |
+
the rewrite must take to overcome the perceived deficiency in relevance.
|
| 36 |
+
|
| 37 |
+
**Model input**: The input to the answer relevance classifier intrinsic is an
|
| 38 |
+
OpenAI-compatible chat completion request, containing a list of conversation
|
| 39 |
+
turns that can alternate between the `user` and `assistant` role and ending with
|
| 40 |
+
a `assistant` turn.
|
| 41 |
+
|
| 42 |
+
**Model output**: The output of the answer relevance classifier intrinsic is the result of the
|
| 43 |
+
original chat completion request formatted as a JSON object of the following schema
|
| 44 |
+
|
| 45 |
+
{
|
| 46 |
+
answer_relevance_analysis: <Free text analysis of whether and in which ways the assistant response is relevant or not>
|
| 47 |
+
answer_relevance_category: <One of a set of labels>
|
| 48 |
+
answer_relevance_likelihood: <float between 0.0 and 1.0>
|
| 49 |
+
}
|
| 50 |
+
|
| 51 |
+
The set of labels for `answer_relevance_category` are:
|
| 52 |
+
"Pertinent",
|
| 53 |
+
"Pertinent with relevant extra",
|
| 54 |
+
"Excessive unnecessary information",
|
| 55 |
+
"Unduly restrictive",
|
| 56 |
+
"Too vague or generic",
|
| 57 |
+
"Contextual misalignment",
|
| 58 |
+
"Misinterpreted inquiry",
|
| 59 |
+
"No attempt"
|
| 60 |
+
|
| 61 |
+
Please see the code snippets in the Quickstart Example section below for
|
| 62 |
+
examples that illustrate the intrinsic's input/output.
|
| 63 |
+
|
| 64 |
+
## Quickstart Example
|
| 65 |
+
|
| 66 |
+
To run the answer relevance classifier intrinsics through granite-common, you can either (a)
|
| 67 |
+
use an OpenAI-compatible inference backend, such as vLLM or (b) use the Hugging
|
| 68 |
+
Face transformers library. We provide below instructions for each of the two
|
| 69 |
+
approaches. Note that running inference using vLLM or another scalable
|
| 70 |
+
OpenAI-compatible inference backend should be significantly faster than using
|
| 71 |
+
the Hugging Face transformers library directly.
|
| 72 |
+
|
| 73 |
+
### Using an OpenAI-Compatible Inference Backend
|
| 74 |
+
|
| 75 |
+
To run the intrinsic using an OpenAI-compatible inference backend, such as vLLM,
|
| 76 |
+
follow the steps below.
|
| 77 |
+
|
| 78 |
+
1. Install the granite-common library:
|
| 79 |
+
|
| 80 |
+
pip install git+https://github.com/ibm-granite/granite-common.git
|
| 81 |
+
pip install granite_common[nltk]
|
| 82 |
+
|
| 83 |
+
2. Install the Hugging Face CLI:
|
| 84 |
+
|
| 85 |
+
pip install -U "huggingface_hub[cli]"
|
| 86 |
+
|
| 87 |
+
3. Install vLLM:
|
| 88 |
+
|
| 89 |
+
pip install vllm
|
| 90 |
+
|
| 91 |
+
4. Download the intrinsics library:
|
| 92 |
+
|
| 93 |
+
hf download ibm-granite/rag-intrinsics-lib --local-dir ./rag-intrinsics-lib
|
| 94 |
+
|
| 95 |
+
5. Edit the vLLM startup script found in `./rag-intrinsics-lib/run_vllm.sh`
|
| 96 |
+
using your favorite editor:
|
| 97 |
+
|
| 98 |
+
Edit the constants `BASE_MODEL_NAME` and `BASE_MODEL_ORG` depending on the
|
| 99 |
+
base model on which the desired LoRA adapter has been trained. Optionally,
|
| 100 |
+
edit the constant `PORT` to change the port on which vLLM will run. Save the
|
| 101 |
+
modified file and exit the editor.
|
| 102 |
+
|
| 103 |
+
6. Start vLLM through the startup script. The first time you run the script,
|
| 104 |
+
you may have to change the permissions to allow execution:
|
| 105 |
+
|
| 106 |
+
cd rag-intrinsics-lib
|
| 107 |
+
chmod u+x ./run_vllm.sh
|
| 108 |
+
./run_vllm.sh &
|
| 109 |
+
|
| 110 |
+
7. Run the following code snippet:
|
| 111 |
+
|
| 112 |
+
import json
|
| 113 |
+
import openai
|
| 114 |
+
import granite_common
|
| 115 |
+
|
| 116 |
+
intrinsic_name = "answer_relevance_classifier"
|
| 117 |
+
|
| 118 |
+
# Change the following constant to select a different base model
|
| 119 |
+
base_model_name = "granite-3.3-8b-instruct"
|
| 120 |
+
|
| 121 |
+
# Change the following constants as needed to reflect the location of the vLLM server
|
| 122 |
+
# The selected port should be identical to the one you specified in the vLLM startup script
|
| 123 |
+
openai_base_url = "http://localhost:55555/v1"
|
| 124 |
+
openai_api_key = "rag_intrinsics_1234"
|
| 125 |
+
|
| 126 |
+
# Fetch IO configuration file from Hugging Face Hub
|
| 127 |
+
io_yaml_file = granite_common.intrinsics.util.obtain_io_yaml(
|
| 128 |
+
intrinsic_name, base_model_name
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
# Instantiate input/output processors
|
| 132 |
+
rewriter = granite_common.IntrinsicsRewriter(config_file=io_yaml_file)
|
| 133 |
+
result_processor = granite_common.IntrinsicsResultProcessor(config_file=io_yaml_file)
|
| 134 |
+
|
| 135 |
+
# Sample request
|
| 136 |
+
request_json = {
|
| 137 |
+
"messages": [
|
| 138 |
+
{
|
| 139 |
+
"role": "user",
|
| 140 |
+
"content": "Who attended the meeting?"
|
| 141 |
+
},
|
| 142 |
+
{
|
| 143 |
+
"role": "assistant",
|
| 144 |
+
"content": "Many people attended the meeting."
|
| 145 |
+
}
|
| 146 |
+
],
|
| 147 |
+
"extra_body": {
|
| 148 |
+
"documents": [
|
| 149 |
+
{
|
| 150 |
+
"doc_id": "1",
|
| 151 |
+
"text": "Meeting attendees: Alice, Bob, Carol."
|
| 152 |
+
},
|
| 153 |
+
{
|
| 154 |
+
"doc_id": "2",
|
| 155 |
+
"text": "Meeting time: 9:00 am to 11:00 am."
|
| 156 |
+
}
|
| 157 |
+
]
|
| 158 |
+
}
|
| 159 |
+
}
|
| 160 |
+
|
| 161 |
+
# Add other parameters
|
| 162 |
+
request_json["model"] = intrinsic_name
|
| 163 |
+
request_json["temperature"] = 0.0
|
| 164 |
+
|
| 165 |
+
# Apply input processor
|
| 166 |
+
intrinsic_kwargs = {}
|
| 167 |
+
rewritten_request = rewriter.transform(request_json, **intrinsic_kwargs)
|
| 168 |
+
|
| 169 |
+
# Run inference
|
| 170 |
+
client = openai.OpenAI(base_url=openai_base_url, api_key=openai_api_key)
|
| 171 |
+
chat_completion = client.chat.completions.create(**rewritten_request.model_dump())
|
| 172 |
+
|
| 173 |
+
# Apply output processor
|
| 174 |
+
processed_chat_completion = result_processor.transform(
|
| 175 |
+
chat_completion, rewritten_request
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
# Verify that the contents of the completion is valid JSON and pretty-print the JSON.
|
| 179 |
+
parsed_contents = json.loads(processed_chat_completion.choices[0].message.content)
|
| 180 |
+
print("JSON output:")
|
| 181 |
+
print(json.dumps(parsed_contents, indent=2))
|
| 182 |
+
|
| 183 |
+
### Using the Hugging Face Transformers Library
|
| 184 |
+
|
| 185 |
+
To run the intrinsic using the Hugging Face transformers library directly,
|
| 186 |
+
follow the steps below.
|
| 187 |
+
|
| 188 |
+
1. Install the granite-common library:
|
| 189 |
+
|
| 190 |
+
pip install git+https://github.com/ibm-granite/granite-common.git
|
| 191 |
+
pip install granite_common[nltk]
|
| 192 |
+
|
| 193 |
+
2. Install the Hugging Face CLI:
|
| 194 |
+
|
| 195 |
+
pip install -U "huggingface_hub[cli]"
|
| 196 |
+
|
| 197 |
+
3. Install PEFT:
|
| 198 |
+
|
| 199 |
+
pip install peft
|
| 200 |
+
|
| 201 |
+
4. Install xgrammar:
|
| 202 |
+
|
| 203 |
+
pip install xgrammar
|
| 204 |
+
|
| 205 |
+
5. Run the following code snippet:
|
| 206 |
+
|
| 207 |
+
import json
|
| 208 |
+
import granite_common.util
|
| 209 |
+
import peft
|
| 210 |
+
|
| 211 |
+
intrinsic_name = "answer_relevance_classifier"
|
| 212 |
+
|
| 213 |
+
# Change the following constant to select a different base model
|
| 214 |
+
base_model_name = "granite-3.3-8b-instruct"
|
| 215 |
+
|
| 216 |
+
use_cuda = True # Set to False to use default PyTorch device for this machine + model
|
| 217 |
+
|
| 218 |
+
# Fetch IO configuration file from Hugging Face Hub
|
| 219 |
+
io_yaml_file = granite_common.intrinsics.util.obtain_io_yaml(
|
| 220 |
+
intrinsic_name, base_model_name
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
# Fetch LoRA directory from Hugging Face Hub
|
| 224 |
+
lora_dir = granite_common.intrinsics.util.obtain_lora(
|
| 225 |
+
intrinsic_name, base_model_name
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
+
# Instantiate input/output processors
|
| 229 |
+
rewriter = granite_common.IntrinsicsRewriter(config_file=io_yaml_file)
|
| 230 |
+
result_processor = granite_common.IntrinsicsResultProcessor(config_file=io_yaml_file)
|
| 231 |
+
|
| 232 |
+
# Sample request
|
| 233 |
+
request_json = {
|
| 234 |
+
"messages": [
|
| 235 |
+
{
|
| 236 |
+
"role": "user",
|
| 237 |
+
"content": "Who attended the meeting?"
|
| 238 |
+
},
|
| 239 |
+
{
|
| 240 |
+
"role": "assistant",
|
| 241 |
+
"content": "Many people attended the meeting."
|
| 242 |
+
}
|
| 243 |
+
],
|
| 244 |
+
"extra_body": {
|
| 245 |
+
"documents": [
|
| 246 |
+
{
|
| 247 |
+
"doc_id": "1",
|
| 248 |
+
"text": "Meeting attendees: Alice, Bob, Carol."
|
| 249 |
+
},
|
| 250 |
+
{
|
| 251 |
+
"doc_id": "2",
|
| 252 |
+
"text": "Meeting time: 9:00 am to 11:00 am."
|
| 253 |
+
}
|
| 254 |
+
]
|
| 255 |
+
}
|
| 256 |
+
}
|
| 257 |
+
|
| 258 |
+
# Add additional parameters
|
| 259 |
+
request_json["model"] = intrinsic_name
|
| 260 |
+
request_json["temperature"] = 0.0
|
| 261 |
+
|
| 262 |
+
# Apply input processor
|
| 263 |
+
intrinsic_kwargs = {}
|
| 264 |
+
rewritten_request = rewriter.transform(request_json, **intrinsic_kwargs)
|
| 265 |
+
|
| 266 |
+
# Load the base model and merge LoRA weights
|
| 267 |
+
model, tokenizer = granite_common.util.load_transformers_lora(lora_dir)
|
| 268 |
+
if use_cuda:
|
| 269 |
+
model = model.cuda()
|
| 270 |
+
|
| 271 |
+
# Convert the chat completion request into a the Transformers library's proprietary
|
| 272 |
+
# format.
|
| 273 |
+
generate_input, other_input = (
|
| 274 |
+
granite_common.util.chat_completion_request_to_transformers_inputs(
|
| 275 |
+
rewritten_request,
|
| 276 |
+
tokenizer,
|
| 277 |
+
model,
|
| 278 |
+
)
|
| 279 |
+
)
|
| 280 |
+
|
| 281 |
+
# Use the Transformers library's APIs to generate one or more completions,
|
| 282 |
+
# then convert those completions into OpenAI-compatible chat completion
|
| 283 |
+
responses = granite_common.util.generate_with_transformers(
|
| 284 |
+
tokenizer, model, generate_input, other_input
|
| 285 |
+
)
|
| 286 |
+
|
| 287 |
+
# Apply output processor
|
| 288 |
+
transformed_responses = result_processor.transform(responses, rewritten_request)
|
| 289 |
+
|
| 290 |
+
# Verify that the contents of the completion is valid JSON and pretty-print the JSON.
|
| 291 |
+
parsed_contents = json.loads(transformed_responses.choices[0].message.content)
|
| 292 |
+
print("JSON output:")
|
| 293 |
+
print(json.dumps(parsed_contents, indent=2))
|
| 294 |
+
|
| 295 |
+
## Training Details
|
| 296 |
+
|
| 297 |
+
### Training Data
|
| 298 |
+
|
| 299 |
+
The training data is created in the following process
|
| 300 |
+
1. Take the synthetic rag-data-granite dataset, consisting of conversations between user and assistant.
|
| 301 |
+
2. Replace the assistant response by running granite-3.2-intrinsics at temperature 1.0.
|
| 302 |
+
3. Produce answer_relevance_classifier target output using mixtral-large with prompts with in-context examples.
|
| 303 |
+
The conversation created in steps 1 and 2 are taken as training input. The json string from step 3
|
| 304 |
+
is taken as train target output.
|
| 305 |
+
|
| 306 |
+
#### Training Hyperparameters
|
| 307 |
+
|
| 308 |
+
The LoRA adapter was fine-tuned using PEFT under the following regime: rank =
|
| 309 |
+
32, learning rate = 3.0e-06, number of epochs = 50.
|
| 310 |
+
|
| 311 |
+
## Evaluation
|
| 312 |
+
|
| 313 |
+
### Answer Relevance Classifier
|
| 314 |
+
|
| 315 |
+
We evaluated the model on test data set generated by the same procedure as the training process,
|
| 316 |
+
using GPT-4o as judge.
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
The following table presents results comparing baselines and frontier models
|
| 320 |
+
on the answer relevance classification task. The LoRAs perform on par with frontier models
|
| 321 |
+
of much larger size and outperforms frontier models of comparable size.
|
| 322 |
+
|
| 323 |
+
| | Not relevant | | | Relevant | | |
|
| 324 |
+
|:------------------------|:----------|:-------|:------|:----------|:-------|:------|
|
| 325 |
+
| | precision | recall | f1 | precision | recall | f1 |
|
| 326 |
+
| mixtral-8x22b-v0.1 | 0.934 | 0.592 | 0.725 | 0.886 | 0.880 | 0.883 |
|
| 327 |
+
| llama-3.3-70b | 0.895 | 0.829 | 0.861 | 0.898 | 0.939 | 0.918 |
|
| 328 |
+
| gpt-oss-20b | 0.747 | 0.745 | 0.746 | 0.969 | 0.782 | 0.865 |
|
| 329 |
+
| gpt-4o | 0.775 | 0.945 | 0.852 | 0.974 | 0.690 | 0.808 |
|
| 330 |
+
| gpt-4o-mini | 0.818 | 0.921 | 0.866 | 0.948 | 0.872 | 0.908 |
|
| 331 |
+
| | | | | | | |
|
| 332 |
+
| granite-3.3-2b/lora | 0.743 | 0.861 | 0.798 | 0.909 | 0.806 | 0.855 |
|
| 333 |
+
| granite-3.3-2b/alora | 0.761 | 0.821 | 0.790 | 0.894 | 0.833 | 0.862 |
|
| 334 |
+
| granite-3.3-8b/lora | 0.783 | 0.900 | 0.837 | 0.931 | 0.842 | 0.884 |
|
| 335 |
+
| granite-3.3-8b/alora | 0.793 | 0.879 | 0.834 | 0.919 | 0.856 | 0.886 |
|
| 336 |
+
|
| 337 |
+
|
| 338 |
+
### Comparing the Answer Relevance Classifier Intrinsics vs. Vanilla Granite Models
|
| 339 |
+
|
| 340 |
+
We compare the performance of Granite 3.3-2b, Granite 3.3-8b Instruct
|
| 341 |
+
vs. answer relevance classifier intrinsics implemented as LoRA adapters.
|
| 342 |
+
It is seen that the LoRAs significantly out perform the base models.
|
| 343 |
+
|
| 344 |
+
| | Not relevant | | | Relevant | | |
|
| 345 |
+
|:------------------------|:----------|:-------|:------|:----------|:-------|:------|
|
| 346 |
+
| | precision | recall | f1 | precision | recall | f1 |
|
| 347 |
+
| granite-3.3-2b | | | | | | |
|
| 348 |
+
| granite-3.3-2b/lora | 0.743 | 0.861 | 0.798 | 0.909 | 0.806 | 0.855 |
|
| 349 |
+
| granite-3.3-2b/alora | 0.761 | 0.821 | 0.790 | 0.894 | 0.833 | 0.862 |
|
| 350 |
+
| | | | | | | |
|
| 351 |
+
| granite-3.3-8b | 0.798 | 0.542 | 0.646 | 0.813 | 0.770 | 0.791 |
|
| 352 |
+
| granite-3.3-8b/lora | 0.783 | 0.900 | 0.837 | 0.931 | 0.842 | 0.884 |
|
| 353 |
+
| granite-3.3-8b/alora | 0.793 | 0.879 | 0.834 | 0.919 | 0.856 | 0.886 |
|
| 354 |
+
|
| 355 |
+
|
| 356 |
+
|
| 357 |
+
## Model Card Authors
|
| 358 |
+
|
| 359 |
+
[Huaiyu Zhu](mailto:[email protected])
|
| 360 |
+
|
| 361 |
+
### Framework versions
|
| 362 |
+
|
| 363 |
+
- PEFT 0.14.0
|
answer_relevance_rewriter/README.md
ADDED
|
@@ -0,0 +1,380 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
pipeline_tag: text-generation
|
| 6 |
+
library_name: peft
|
| 7 |
+
library_name: transformers
|
| 8 |
+
---
|
| 9 |
+
|
| 10 |
+
# Intrinsics for Answer Relevance Rewriter
|
| 11 |
+
|
| 12 |
+
## Model Summary
|
| 13 |
+
This is a RAG-specific intrinsic for answer relevance rewrite task.
|
| 14 |
+
The model takes as input the chat completion from answer relevance classifier output
|
| 15 |
+
consisting of conversation as well as answer_relevance_classification, together with grounding documents,
|
| 16 |
+
and provides a rewritten assistant response that is more relevant to the user's final inquiry.
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
We provide two intrinsics implemented as LoRA adapters (LoRA/aLoRA) trained over
|
| 20 |
+
Granite-3.3-2b-instruct, Granite-3.3-8b-instruct.
|
| 21 |
+
|
| 22 |
+
- **Developer:** IBM Research
|
| 23 |
+
- **Model type:** LoRA and aLoRA adapter for
|
| 24 |
+
[ibm-granite/granite-3.3-2b-instruct](https://huggingface.co/ibm-granite/granite-3.3-2b-instruct),
|
| 25 |
+
[ibm-granite/granite-3.3-8b-instruct](https://huggingface.co/ibm-granite/granite-3.3-8b-instruct)
|
| 26 |
+
- **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
|
| 27 |
+
|
| 28 |
+
## Intended use
|
| 29 |
+
This rag specific intrinsics is intended to be used to post-process the generated assistant response.
|
| 30 |
+
It should be used following the answer relevance classifier intrinsic, and should be applied to
|
| 31 |
+
the cases where the `answer_relevance_likelihood` is below a certain threshold according to application criteria.
|
| 32 |
+
|
| 33 |
+
For cases where the assistant answer is deemed not relevant (where `answer_relevance_likelihood` is below a
|
| 34 |
+
given threshold), the answer relevance rewriter intrinsic can be used to rewrite the assistant response
|
| 35 |
+
into a more relevant response. It takes as input the chat completion
|
| 36 |
+
from answer relevance classifier output and the grounding documents. Its output is of the form
|
| 37 |
+
|
| 38 |
+
{
|
| 39 |
+
answer_relevance_rewrite: <Rewritten response>
|
| 40 |
+
}
|
| 41 |
+
|
| 42 |
+
The rewriter is instructed to only correct deficiencies in relevance as identified by the classifier,
|
| 43 |
+
and ensure the rewritten response is grounded in the conversation and given documents.
|
| 44 |
+
|
| 45 |
+
**Model input**: The input to the answer relevance rewriter intrinsic is an
|
| 46 |
+
OpenAI-compatible chat completion request, containing a list of conversation
|
| 47 |
+
turns that can alternate between the `user` and `assistant` role and ending with
|
| 48 |
+
a `assistant` turn, plus two additional turns:
|
| 49 |
+
- A conversation between user and assistant ending with assistant response
|
| 50 |
+
- An additional user turn with content "answer_relevance"
|
| 51 |
+
|
| 52 |
+
**Model output**: The output of the answer relevance rewriter intrinsic is the result of the
|
| 53 |
+
original chat completion request formatted as a JSON object of the following schema
|
| 54 |
+
|
| 55 |
+
{
|
| 56 |
+
answer_relevance_rewrite: <Rewritten response>
|
| 57 |
+
}
|
| 58 |
+
|
| 59 |
+
Please see the code snippets in the Quickstart Example section below for
|
| 60 |
+
examples that illustrate the intrinsic's input/output.
|
| 61 |
+
|
| 62 |
+
## Quickstart Example
|
| 63 |
+
|
| 64 |
+
To run the answer relevance rewriter intrinsics through granite-common, you can either (a)
|
| 65 |
+
use an OpenAI-compatible inference backend, such as vLLM or (b) use the Hugging
|
| 66 |
+
Face transformers library. We provide below instructions for each of the two
|
| 67 |
+
approaches. Note that running inference using vLLM or another scalable
|
| 68 |
+
OpenAI-compatible inference backend should be significantly faster than using
|
| 69 |
+
the Hugging Face transformers library directly.
|
| 70 |
+
|
| 71 |
+
### Using an OpenAI-Compatible Inference Backend
|
| 72 |
+
|
| 73 |
+
To run the intrinsic using an OpenAI-compatible inference backend, such as vLLM,
|
| 74 |
+
follow the steps below.
|
| 75 |
+
|
| 76 |
+
1. Install the granite-common library:
|
| 77 |
+
|
| 78 |
+
pip install git+https://github.com/ibm-granite/granite-common.git
|
| 79 |
+
pip install granite_common[nltk]
|
| 80 |
+
|
| 81 |
+
2. Install the Hugging Face CLI:
|
| 82 |
+
|
| 83 |
+
pip install -U "huggingface_hub[cli]"
|
| 84 |
+
|
| 85 |
+
3. Install vLLM:
|
| 86 |
+
|
| 87 |
+
pip install vllm
|
| 88 |
+
|
| 89 |
+
4. Download the intrinsics library:
|
| 90 |
+
|
| 91 |
+
hf download ibm-granite/rag-intrinsics-lib --local-dir ./rag-intrinsics-lib
|
| 92 |
+
|
| 93 |
+
5. Edit the vLLM startup script found in `./rag-intrinsics-lib/run_vllm.sh`
|
| 94 |
+
using your favorite editor:
|
| 95 |
+
|
| 96 |
+
Edit the constants `BASE_MODEL_NAME` and `BASE_MODEL_ORG` depending on the
|
| 97 |
+
base model on which the desired LoRA adapter has been trained. Optionally,
|
| 98 |
+
edit the constant `PORT` to change the port on which vLLM will run. Save the
|
| 99 |
+
modified file and exit the editor.
|
| 100 |
+
|
| 101 |
+
6. Start vLLM through the startup script. The first time you run the script,
|
| 102 |
+
you may have to change the permissions to allow execution:
|
| 103 |
+
|
| 104 |
+
cd rag-intrinsics-lib
|
| 105 |
+
chmod u+x ./run_vllm.sh
|
| 106 |
+
./run_vllm.sh &
|
| 107 |
+
|
| 108 |
+
7. Run the following code snippet:
|
| 109 |
+
|
| 110 |
+
import json
|
| 111 |
+
import openai
|
| 112 |
+
import granite_common
|
| 113 |
+
|
| 114 |
+
intrinsic_name = "answer_relevance_classifier"
|
| 115 |
+
|
| 116 |
+
# Change the following constant to select a different base model
|
| 117 |
+
base_model_name = "granite-3.3-8b-instruct"
|
| 118 |
+
|
| 119 |
+
# Change the following constants as needed to reflect the location of the vLLM server
|
| 120 |
+
# The selected port should be identical to the one you specified in the vLLM startup script
|
| 121 |
+
openai_base_url = "http://localhost:55555/v1"
|
| 122 |
+
openai_api_key = "rag_intrinsics_1234"
|
| 123 |
+
|
| 124 |
+
# Fetch IO configuration file from Hugging Face Hub
|
| 125 |
+
io_yaml_file = granite_common.intrinsics.util.obtain_io_yaml(
|
| 126 |
+
intrinsic_name, base_model_name
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
# Instantiate input/output processors
|
| 130 |
+
rewriter = granite_common.IntrinsicsRewriter(config_file=io_yaml_file)
|
| 131 |
+
result_processor = granite_common.IntrinsicsResultProcessor(config_file=io_yaml_file)
|
| 132 |
+
|
| 133 |
+
# Sample request
|
| 134 |
+
request_json = {
|
| 135 |
+
"messages": [
|
| 136 |
+
{
|
| 137 |
+
"role": "user",
|
| 138 |
+
"content": "Who attended the meeting?"
|
| 139 |
+
},
|
| 140 |
+
{
|
| 141 |
+
"role": "assistant",
|
| 142 |
+
"content": "Many people attended the meeting."
|
| 143 |
+
},
|
| 144 |
+
{
|
| 145 |
+
"role": "user",
|
| 146 |
+
"content": "answer_relevance"
|
| 147 |
+
},
|
| 148 |
+
{
|
| 149 |
+
"role": "assistant",
|
| 150 |
+
"content": "{\"answer_relevance_analysis\": \"The inquiry asks for the attendees of the meeting. The response provides a vague and non-specific answer that does not address the inquiry.\", \"answer_relevance_category\": \"No attempt\", \"answer_relevance_likelihood\": 0.0}"
|
| 151 |
+
}
|
| 152 |
+
],
|
| 153 |
+
"extra_body": {
|
| 154 |
+
"documents": [
|
| 155 |
+
{
|
| 156 |
+
"doc_id": "1",
|
| 157 |
+
"text": "Meeting attendees: Alice, Bob, Carol."
|
| 158 |
+
},
|
| 159 |
+
{
|
| 160 |
+
"doc_id": "2",
|
| 161 |
+
"text": "Meeting time: 9:00 am to 11:00 am."
|
| 162 |
+
}
|
| 163 |
+
]
|
| 164 |
+
}
|
| 165 |
+
}
|
| 166 |
+
|
| 167 |
+
# Add other parameters
|
| 168 |
+
request_json["model"] = intrinsic_name
|
| 169 |
+
request_json["temperature"] = 0.0
|
| 170 |
+
|
| 171 |
+
# Apply input processor
|
| 172 |
+
intrinsic_kwargs = {}
|
| 173 |
+
rewritten_request = rewriter.transform(request_json, **intrinsic_kwargs)
|
| 174 |
+
|
| 175 |
+
# Run inference
|
| 176 |
+
client = openai.OpenAI(base_url=openai_base_url, api_key=openai_api_key)
|
| 177 |
+
chat_completion = client.chat.completions.create(**rewritten_request.model_dump())
|
| 178 |
+
|
| 179 |
+
# Apply output processor
|
| 180 |
+
processed_chat_completion = result_processor.transform(
|
| 181 |
+
chat_completion, rewritten_request
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
# Verify that the contents of the completion is valid JSON and pretty-print the JSON.
|
| 185 |
+
parsed_contents = json.loads(processed_chat_completion.choices[0].message.content)
|
| 186 |
+
print("JSON output:")
|
| 187 |
+
print(json.dumps(parsed_contents, indent=2))
|
| 188 |
+
|
| 189 |
+
### Using the Hugging Face Transformers Library
|
| 190 |
+
|
| 191 |
+
To run the intrinsic using the Hugging Face transformers library directly,
|
| 192 |
+
follow the steps below.
|
| 193 |
+
|
| 194 |
+
1. Install the granite-common library:
|
| 195 |
+
|
| 196 |
+
pip install git+https://github.com/ibm-granite/granite-common.git
|
| 197 |
+
pip install granite_common[nltk]
|
| 198 |
+
|
| 199 |
+
2. Install the Hugging Face CLI:
|
| 200 |
+
|
| 201 |
+
pip install -U "huggingface_hub[cli]"
|
| 202 |
+
|
| 203 |
+
3. Install PEFT:
|
| 204 |
+
|
| 205 |
+
pip install peft
|
| 206 |
+
|
| 207 |
+
4. Install xgrammar:
|
| 208 |
+
|
| 209 |
+
pip install xgrammar
|
| 210 |
+
|
| 211 |
+
5. Run the following code snippet:
|
| 212 |
+
|
| 213 |
+
import json
|
| 214 |
+
import granite_common.util
|
| 215 |
+
import peft
|
| 216 |
+
|
| 217 |
+
intrinsic_name = "answer_relevance_classifier"
|
| 218 |
+
|
| 219 |
+
# Change the following constant to select a different base model
|
| 220 |
+
base_model_name = "granite-3.3-8b-instruct"
|
| 221 |
+
|
| 222 |
+
use_cuda = True # Set to False to use default PyTorch device for this machine + model
|
| 223 |
+
|
| 224 |
+
# Fetch IO configuration file from Hugging Face Hub
|
| 225 |
+
io_yaml_file = granite_common.intrinsics.util.obtain_io_yaml(
|
| 226 |
+
intrinsic_name, base_model_name
|
| 227 |
+
)
|
| 228 |
+
|
| 229 |
+
# Fetch LoRA directory from Hugging Face Hub
|
| 230 |
+
lora_dir = granite_common.intrinsics.util.obtain_lora(
|
| 231 |
+
intrinsic_name, base_model_name
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
# Instantiate input/output processors
|
| 235 |
+
rewriter = granite_common.IntrinsicsRewriter(config_file=io_yaml_file)
|
| 236 |
+
result_processor = granite_common.IntrinsicsResultProcessor(config_file=io_yaml_file)
|
| 237 |
+
|
| 238 |
+
# Sample request
|
| 239 |
+
request_json = {
|
| 240 |
+
"messages": [
|
| 241 |
+
{
|
| 242 |
+
"role": "user",
|
| 243 |
+
"content": "Who attended the meeting?"
|
| 244 |
+
},
|
| 245 |
+
{
|
| 246 |
+
"role": "assistant",
|
| 247 |
+
"content": "Many people attended the meeting."
|
| 248 |
+
},
|
| 249 |
+
{
|
| 250 |
+
"role": "user",
|
| 251 |
+
"content": "answer_relevance"
|
| 252 |
+
},
|
| 253 |
+
{
|
| 254 |
+
"role": "assistant",
|
| 255 |
+
"content": "{\"answer_relevance_analysis\": \"The inquiry asks for the attendees of the meeting. The response provides a vague and non-specific answer that does not address the inquiry.\", \"answer_relevance_category\": \"No attempt\", \"answer_relevance_likelihood\": 0.0}"
|
| 256 |
+
}
|
| 257 |
+
],
|
| 258 |
+
"extra_body": {
|
| 259 |
+
"documents": [
|
| 260 |
+
{
|
| 261 |
+
"doc_id": "1",
|
| 262 |
+
"text": "Meeting attendees: Alice, Bob, Carol."
|
| 263 |
+
},
|
| 264 |
+
{
|
| 265 |
+
"doc_id": "2",
|
| 266 |
+
"text": "Meeting time: 9:00 am to 11:00 am."
|
| 267 |
+
}
|
| 268 |
+
]
|
| 269 |
+
}
|
| 270 |
+
}
|
| 271 |
+
|
| 272 |
+
# Add additional parameters
|
| 273 |
+
request_json["model"] = intrinsic_name
|
| 274 |
+
request_json["temperature"] = 0.0
|
| 275 |
+
|
| 276 |
+
# Apply input processor
|
| 277 |
+
intrinsic_kwargs = {}
|
| 278 |
+
rewritten_request = rewriter.transform(request_json, **intrinsic_kwargs)
|
| 279 |
+
|
| 280 |
+
# Load the base model and merge LoRA weights
|
| 281 |
+
model, tokenizer = granite_common.util.load_transformers_lora(lora_dir)
|
| 282 |
+
if use_cuda:
|
| 283 |
+
model = model.cuda()
|
| 284 |
+
|
| 285 |
+
# Convert the chat completion request into a the Transformers library's proprietary
|
| 286 |
+
# format.
|
| 287 |
+
generate_input, other_input = (
|
| 288 |
+
granite_common.util.chat_completion_request_to_transformers_inputs(
|
| 289 |
+
rewritten_request,
|
| 290 |
+
tokenizer,
|
| 291 |
+
model,
|
| 292 |
+
)
|
| 293 |
+
)
|
| 294 |
+
|
| 295 |
+
# Use the Transformers library's APIs to generate one or more completions,
|
| 296 |
+
# then convert those completions into OpenAI-compatible chat completion
|
| 297 |
+
responses = granite_common.util.generate_with_transformers(
|
| 298 |
+
tokenizer, model, generate_input, other_input
|
| 299 |
+
)
|
| 300 |
+
|
| 301 |
+
# Apply output processor
|
| 302 |
+
transformed_responses = result_processor.transform(responses, rewritten_request)
|
| 303 |
+
|
| 304 |
+
# Verify that the contents of the completion is valid JSON and pretty-print the JSON.
|
| 305 |
+
parsed_contents = json.loads(transformed_responses.choices[0].message.content)
|
| 306 |
+
print("JSON output:")
|
| 307 |
+
print(json.dumps(parsed_contents, indent=2))
|
| 308 |
+
|
| 309 |
+
## Training Details
|
| 310 |
+
|
| 311 |
+
### Training Data
|
| 312 |
+
|
| 313 |
+
The training data is created in the following process
|
| 314 |
+
1. Take the synthetic rag-data-granite dataset, consisting of conversations between user and assistant.
|
| 315 |
+
2. Replace the assistant response by running granite-3.2-intrinsics at temperature 1.0.
|
| 316 |
+
3. Produce answer_relevance_rewriter target output using mixtral-large with prompts with in-context examples.
|
| 317 |
+
The conversation created in steps 1 and 2 are taken as training input. The json string from step 3
|
| 318 |
+
is taken as train target output.
|
| 319 |
+
|
| 320 |
+
#### Training Hyperparameters
|
| 321 |
+
|
| 322 |
+
The LoRA adapter was fine-tuned using PEFT under the following regime: rank =
|
| 323 |
+
32, learning rate = 1.0e-04, number of epochs = 5.
|
| 324 |
+
|
| 325 |
+
## Evaluation
|
| 326 |
+
|
| 327 |
+
### Answer Relevance Rewriter
|
| 328 |
+
|
| 329 |
+
We evaluated the model on test data set generated by the same procedure as the training process,
|
| 330 |
+
using GPT-4o as judge.
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
The following table presents results comparing baselines and frontier models
|
| 334 |
+
on the answer relevance rewrite task. The data sets consists of those classified as irrelevant by
|
| 335 |
+
mixtral-large. The evaluations are first divided into two parts, those that are truly irrelevant,
|
| 336 |
+
for which we measure the rate of rewrite becoming relevant, and those that are false irrelevant,
|
| 337 |
+
for which we measure the rate of rewrite becoming irrelevant. Then the overall rate flipping
|
| 338 |
+
irrelevant to relevant and flipping relevant to irrelevant are calculated, and well as the net gain
|
| 339 |
+
of relevance and resulting final relevance.
|
| 340 |
+
|
| 341 |
+
The LoRAs out perform the best of frontier models
|
| 342 |
+
|
| 343 |
+
| | True irrelevant <br> flip to relevant | False irrelevant <br> flip to irrelevant| Overall <br> flip irrelevant <br> to relevant | Overall <br> flip relevant <br> to irrelevant| net gain | Result <br>relevance |
|
| 344 |
+
|:---------------------|:--------------|:---------|:------------------------------|:---------|:---------|:--------------|
|
| 345 |
+
| mixtral-8x22b-v0.1 | 0.416 | 0.101 | 0.286 | 0.032 | 0.254 | 0.566 |
|
| 346 |
+
| llama-3.3-70b | 0.804 | 0.041 | 0.554 | 0.013 | 0.541 | 0.853 |
|
| 347 |
+
| gpt-oss-20b | 0.902 | 0.034 | 0.621 | 0.011 | 0.610 | 0.922 |
|
| 348 |
+
| gpt-4o | 0.960 | 0.014 | 0.661 | 0.004 | 0.657 | 0.968 |
|
| 349 |
+
| gpt-4o-mini | 0.758 | 0.027 | 0.522 | 0.008 | 0.514 | 0.825 |
|
| 350 |
+
| | | | | | | |
|
| 351 |
+
| granite-3.3-2b/lora | 0.972 | 0.027 | 0.669 | 0.008 | 0.661 | 0.973 |
|
| 352 |
+
| granite-3.3-2b/alora | 0.972 | 0.007 | 0.669 | 0.002 | 0.667 | 0.979 |
|
| 353 |
+
| granite-3.3-8b/lora | 0.969 | 0.014 | 0.667 | 0.004 | 0.663 | 0.975 |
|
| 354 |
+
| granite-3.3-8b/alora | 0.966 | 0.027 | 0.665 | 0.008 | 0.657 | 0.968 |
|
| 355 |
+
| | | | | | | |
|
| 356 |
+
|
| 357 |
+
### Comparing the Answer Relevance Rewriter Intrinsics vs. Vanilla Granite Models
|
| 358 |
+
|
| 359 |
+
We compare the performance of Granite 3.3-2b, Granite 3.3-8b Instruct
|
| 360 |
+
vs. answer relevance rewriter intrinsics implemented as LoRA adapters.
|
| 361 |
+
It is seen that the LoRAs significantly out perform the base models.
|
| 362 |
+
| | True irrelevant <br> flip to relevant | False irrelevant <br> flip to irrelevant| Overall <br> flip irrelevant <br> to relevant | Overall <br> flip relevant <br> to irrelevant| net gain | Result relevance |
|
| 363 |
+
|:---------------------|:--------------|:---------|:------------------------------|:---------|:---------|:--------------|
|
| 364 |
+
| granite-3.3-2b | 0.346 | 0.169 | 0.238 | 0.053 | 0.185 | 0.497 |
|
| 365 |
+
| granite-3.3-2b/lora | 0.972 | 0.027 | 0.669 | 0.008 | 0.661 | 0.973 |
|
| 366 |
+
| granite-3.3-2b/alora | 0.972 | 0.007 | 0.669 | 0.002 | 0.667 | 0.979 |
|
| 367 |
+
| | | | | | | |
|
| 368 |
+
| granite-3.3-8b | 0.266 | 0.277 | 0.183 | 0.086 | 0.097 | 0.408 |
|
| 369 |
+
| granite-3.3-8b/lora | 0.969 | 0.014 | 0.667 | 0.004 | 0.663 | 0.975 |
|
| 370 |
+
| granite-3.3-8b/alora | 0.966 | 0.027 | 0.665 | 0.008 | 0.657 | 0.968 |
|
| 371 |
+
| | | | | | | |
|
| 372 |
+
|
| 373 |
+
|
| 374 |
+
## Model Card Authors
|
| 375 |
+
|
| 376 |
+
[Huaiyu Zhu](mailto:[email protected])
|
| 377 |
+
|
| 378 |
+
### Framework versions
|
| 379 |
+
|
| 380 |
+
- PEFT 0.14.0
|