blumenstiel commited on
Commit
f491c9c
·
1 Parent(s): 60bda88

Added inference code

Browse files
Files changed (4) hide show
  1. .gitattributes +1 -0
  2. README.md +85 -0
  3. inference.py +344 -0
  4. requirements.txt +6 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.tif filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,3 +1,88 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ language:
4
+ - en
5
+ tags:
6
+ - Pytorch
7
+ - segmentation
8
+ - Flood mapping
9
+ - Sentinel-2
10
+ - Geospatial
11
+ - Foundation model
12
  ---
13
+ ### Model and Inputs
14
+ The pretrained [Prithvi-EO-1.0-100m](https://huggingface.co/ibm-nasa-geospatial/Prithvi-100M/blob/main/README.md) model is finetuned to segment the extent of floods on Sentinel-2 images from the [Sen1Floods11 dataset](https://github.com/cloudtostreet/Sen1Floods11).
15
+
16
+ The dataset consists of 446 labeled 512x512 chips that span all 14 biomes, 357 ecoregions, and 6 continents of the world across 11 flood events. The benchmark associated to Sen1Floods11 provides results for fully convolutional neural networks trained in various input/labeled data setups, considering Sentinel-1 and Sentinel-2 imagery.
17
+
18
+ We extract the following bands for flood mapping:
19
+
20
+ 1. Blue
21
+ 2. Green
22
+ 3. Red
23
+ 4. Narrow NIR
24
+ 5. SWIR 1
25
+ 6. SWIR 2
26
+
27
+ Labels represent no water (class 0), water/flood (class 1), and no data/clouds (class -1).
28
+
29
+ The Prithvi-100m model was initially pretrained using a sequence length of 3 timesteps. Based on the characteristics of this benchmark dataset, we focus on single-timestamp segmentation. This demonstrates that our model can be utilized with an arbitrary number of timestamps during finetuning.
30
+
31
+ ![](sen1floods11-finetuning.png)
32
+
33
+ ### Code
34
+
35
+ The code for this finetuning is available through [github](https://github.com/NASA-IMPACT/hls-foundation-os/).
36
+
37
+ The configuration used for finetuning is available through this [config](https://github.com/NASA-IMPACT/hls-foundation-os/blob/main/fine-tuning-examples/configs/sen1floods11.py).
38
+
39
+ ### Results
40
+
41
+ Finetuning the geospatial foundation model for 100 epochs leads to the following performance on the test dataset:
42
+
43
+ | **Classes** | **IoU**| **Acc**|
44
+ |:------------------:|:------:|:------:|
45
+ | No water | 96.90% | 98.11% |
46
+ | Water/Flood | 80.46% | 90.54% |
47
+
48
+ | **aAcc** |**mIoU**|**mAcc**|
49
+ |:------------------:|:------:|:------:|
50
+ | 97.25% | 88.68% | 94.37% |
51
+
52
+
53
+ The performance of the model has been further validated on an unseen, holdout flood event in Bolivia. The results are consistent with the performance on the test set:
54
+
55
+
56
+ | **Classes** | **IoU**| **Acc**|
57
+ |:------------------:|:------:|:------:|
58
+ | No water | 95.37% | 97.39% |
59
+ | Water/Flood | 77.95% | 88.74% |
60
+
61
+ | **aAcc** |**mIoU**|**mAcc**|
62
+ |:------------------:|:------:|:------:|
63
+ | 96.02% | 86.66% | 93.07% |
64
+
65
+ Finetuning took ~1 hour on an NVIDIA V100.
66
+
67
+
68
+ ### Inference
69
+ The github repo includes an inference script that allows running the flood mapping model for inference on Sentinel-2 images. These inputs have to be geotiff format, including 6 bands for a single time-step described above (Blue, Green, Red, Narrow NIR, SWIR, SWIR 2) in order. There is also a **demo** that leverages the same code **[here](https://huggingface.co/spaces/ibm-nasa-geospatial/Prithvi-100M-sen1floods11-demo)**.
70
+
71
+ ### Feedback
72
+
73
+ Your feedback is invaluable to us. If you have any feedback about the model, please feel free to share it with us. You can do this by submitting issues on our open-source repository, [hls-foundation-os](https://github.com/NASA-IMPACT/hls-foundation-os/issues), on GitHub.
74
+
75
+ ### Citation
76
+
77
+ If this model helped your research, please cite our model in your publications. Here is an example BibTeX entry:
78
+
79
+ ```
80
+ @misc{Prithvi-100M-flood-mapping,
81
+ author = {Jakubik, Johannes and Fraccaro, Paolo and Oliveira Borges, Dario and Muszynski, Michal and Weldemariam, Kommy and Zadrozny, Bianca and Ganti, Raghu and Mukkavilli, Karthik},
82
+ month = aug,
83
+ doi = { 10.57967/hf/0973 },
84
+ title = {{Prithvi 100M flood mapping}},
85
+ repository-code = {https://huggingface.co/ibm-nasa-geospatial/Prithvi-100M-sen1floods11},
86
+ year = {2023}
87
+ }
88
+ ```
inference.py ADDED
@@ -0,0 +1,344 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import argparse
3
+ import os
4
+ from typing import List, Union
5
+ import re
6
+ import datetime
7
+ import numpy as np
8
+ import rasterio
9
+ import torch
10
+ import yaml
11
+ from einops import rearrange
12
+ from terratorch.cli_tools import LightningInferenceModel
13
+
14
+ NO_DATA = -9999
15
+ NO_DATA_FLOAT = 0.0001
16
+ OFFSET = 0
17
+ PERCENTILE = 99
18
+
19
+
20
+ def process_channel_group(orig_img, channels):
21
+ """
22
+ Args:
23
+ orig_img: torch.Tensor representing original image (reference) with shape = (bands, H, W).
24
+ channels: list of indices representing RGB channels.
25
+
26
+ Returns:
27
+ torch.Tensor with shape (num_channels, height, width) for original image
28
+ """
29
+
30
+ orig_img = orig_img[channels, ...]
31
+ valid_mask = torch.ones_like(orig_img, dtype=torch.bool)
32
+ valid_mask[orig_img == NO_DATA_FLOAT] = False
33
+
34
+
35
+ # Rescale (enhancing contrast)
36
+ max_value = max(3000, np.percentile(orig_img[valid_mask], PERCENTILE))
37
+ min_value = OFFSET
38
+
39
+ orig_img = torch.clamp((orig_img - min_value) / (max_value - min_value), 0, 1)
40
+
41
+ # No data as zeros
42
+ orig_img[~valid_mask] = 0
43
+
44
+ return orig_img
45
+
46
+
47
+ def read_geotiff(file_path: str):
48
+ """Read all bands from *file_path* and return image + meta info.
49
+
50
+ Args:
51
+ file_path: path to image file.
52
+
53
+ Returns:
54
+ np.ndarray with shape (bands, height, width)
55
+ meta info dict
56
+ """
57
+
58
+ with rasterio.open(file_path) as src:
59
+ img = src.read()
60
+ meta = src.meta
61
+ try:
62
+ coords = src.lnglat()
63
+ except:
64
+ # Cannot read coords
65
+ coords = None
66
+
67
+ return img, meta, coords
68
+
69
+
70
+ def save_geotiff(image, output_path: str, meta: dict):
71
+ """Save multi-band image in Geotiff file.
72
+
73
+ Args:
74
+ image: np.ndarray with shape (bands, height, width)
75
+ output_path: path where to save the image
76
+ meta: dict with meta info.
77
+ """
78
+
79
+ with rasterio.open(output_path, "w", **meta) as dest:
80
+ for i in range(image.shape[0]):
81
+ dest.write(image[i, :, :], i + 1)
82
+
83
+ return
84
+
85
+
86
+ def _convert_np_uint8(float_image: torch.Tensor):
87
+ image = float_image.numpy() * 255.0
88
+ image = image.astype(dtype=np.uint8)
89
+
90
+ return image
91
+
92
+
93
+ def load_example(
94
+ file_paths: List[str],
95
+ mean: List[float] = None,
96
+ std: List[float] = None,
97
+ indices: Union[list[int], None] = None,
98
+ ):
99
+ """Build an input example by loading images in *file_paths*.
100
+
101
+ Args:
102
+ file_paths: list of file paths .
103
+ mean: list containing mean values for each band in the images in *file_paths*.
104
+ std: list containing std values for each band in the images in *file_paths*.
105
+
106
+ Returns:
107
+ np.array containing created example
108
+ list of meta info for each image in *file_paths*
109
+ """
110
+
111
+ imgs = []
112
+ metas = []
113
+ temporal_coords = []
114
+ location_coords = []
115
+
116
+ for file in file_paths:
117
+ img, meta, coords = read_geotiff(file)
118
+
119
+ # Rescaling (don't normalize on nodata)
120
+ img = np.moveaxis(img, 0, -1) # channels last for rescaling
121
+ if indices is not None:
122
+ img = img[..., indices]
123
+ if mean is not None and std is not None:
124
+ img = np.where(img == NO_DATA, NO_DATA_FLOAT, (img - mean) / std)
125
+
126
+ imgs.append(img)
127
+ metas.append(meta)
128
+ if coords is not None:
129
+ location_coords.append(coords)
130
+
131
+ try:
132
+ match = re.search(r'(\d{7,8}T\d{6})', file)
133
+ if match:
134
+ year = int(match.group(1)[:4])
135
+ julian_day = match.group(1).split('T')[0][4:]
136
+ if len(julian_day) == 3:
137
+ julian_day = int(julian_day)
138
+ else:
139
+ julian_day = datetime.datetime.strptime(julian_day, '%m%d').timetuple().tm_yday
140
+ temporal_coords.append([year, julian_day])
141
+ except Exception as e:
142
+ print(f'Could not extract timestamp for {file} ({e})')
143
+
144
+ imgs = np.stack(imgs, axis=0) # num_frames, H, W, C
145
+ imgs = np.moveaxis(imgs, -1, 0).astype("float32") # C, num_frames, H, W
146
+ imgs = np.expand_dims(imgs, axis=0) # add batch di
147
+
148
+ return imgs, temporal_coords, location_coords, metas
149
+
150
+
151
+ def run_model(input_data, temporal_coords, location_coords, model, datamodule, img_size):
152
+ # Reflect pad if not divisible by img_size
153
+ original_h, original_w = input_data.shape[-2:]
154
+ pad_h = (img_size - (original_h % img_size)) % img_size
155
+ pad_w = (img_size - (original_w % img_size)) % img_size
156
+ input_data = np.pad(
157
+ input_data, ((0, 0), (0, 0), (0, 0), (0, pad_h), (0, pad_w)), mode="reflect"
158
+ )
159
+
160
+ # Build sliding window
161
+
162
+ batch_size = 1
163
+ batch = torch.tensor(input_data, device="cpu")
164
+ windows = batch.unfold(3, img_size, img_size).unfold(4, img_size, img_size)
165
+ h1, w1 = windows.shape[3:5]
166
+ windows = rearrange(
167
+ windows, "b c t h1 w1 h w -> (b h1 w1) c t h w", h=img_size, w=img_size
168
+ )
169
+
170
+ # Split into batches if number of windows > batch_size
171
+ num_batches = windows.shape[0] // batch_size if windows.shape[0] > batch_size else 1
172
+ windows = torch.tensor_split(windows, num_batches, dim=0)
173
+
174
+ if temporal_coords:
175
+ temporal_coords = torch.Tensor(temporal_coords, device=model.device).unsqueeze(0)
176
+ else:
177
+ temporal_coords = None
178
+ if location_coords:
179
+ location_coords = torch.Tensor(location_coords[0], device=model.device).unsqueeze(0)
180
+ else:
181
+ location_coords = None
182
+
183
+ # Run model
184
+ pred_imgs = []
185
+ for x in windows:
186
+ # Apply standardization
187
+ x = datamodule.test_transform(image=x.squeeze().numpy().transpose(1,2,0))
188
+ x = datamodule.aug(x)['image']
189
+
190
+ with torch.no_grad():
191
+ x = x.to(model.device)
192
+ pred = model(x, temporal_coords=temporal_coords, location_coords=location_coords)
193
+ pred = pred.output.detach().cpu()
194
+
195
+ y_hat = pred.argmax(dim=1)
196
+
197
+ y_hat = torch.nn.functional.interpolate(y_hat.unsqueeze(1).float(), size=img_size, mode="nearest")
198
+
199
+ pred_imgs.append(y_hat)
200
+
201
+ pred_imgs = torch.concat(pred_imgs, dim=0)
202
+
203
+ # Build images from patches
204
+ pred_imgs = rearrange(
205
+ pred_imgs,
206
+ "(b h1 w1) c h w -> b c (h1 h) (w1 w)",
207
+ h=img_size,
208
+ w=img_size,
209
+ b=1,
210
+ c=1,
211
+ h1=h1,
212
+ w1=w1,
213
+ )
214
+
215
+ # Cut padded area back to original size
216
+ pred_imgs = pred_imgs[..., :original_h, :original_w]
217
+
218
+ # Squeeze (batch size 1)
219
+ pred_imgs = pred_imgs[0]
220
+
221
+ return pred_imgs
222
+
223
+
224
+ def main(
225
+ data_file: str,
226
+ config: str,
227
+ checkpoint: str,
228
+ output_dir: str,
229
+ rgb_outputs: bool,
230
+ input_indices: list[int] = None,
231
+ ):
232
+ os.makedirs(output_dir, exist_ok=True)
233
+
234
+ with open(config, "r") as f:
235
+ config_dict = yaml.safe_load(f)
236
+
237
+ # Load model ---------------------------------------------------------------------------------
238
+
239
+ lightning_model = LightningInferenceModel.from_config(config, checkpoint)
240
+ img_size = 512 # Size of Sen1Floods11
241
+
242
+ # Loading data ---------------------------------------------------------------------------------
243
+
244
+ input_data, temporal_coords, location_coords, meta_data = load_example(
245
+ file_paths=[data_file], indices=input_indices,
246
+ )
247
+
248
+ meta_data = meta_data[0] # only one image
249
+
250
+ if input_data.mean() > 1:
251
+ input_data = input_data / 10000 # Convert to range 0-1
252
+
253
+ # Running model --------------------------------------------------------------------------------
254
+
255
+ lightning_model.model.eval()
256
+
257
+ channels = [config_dict['data']['init_args']['bands'].index(b) for b in ["RED", "GREEN", "BLUE"]] # BGR -> RGB
258
+
259
+ pred = run_model(input_data, temporal_coords, location_coords,
260
+ lightning_model.model, lightning_model.datamodule, img_size)
261
+
262
+ # Save pred
263
+ meta_data.update(count=1, dtype="uint8", compress="lzw", nodata=0)
264
+ pred_file = os.path.join(output_dir, f"pred_{os.path.splitext(os.path.basename(data_file))[0]}.tiff")
265
+ save_geotiff(_convert_np_uint8(pred), pred_file, meta_data)
266
+
267
+ # Save image + pred
268
+ meta_data.update(count=3, dtype="uint8", compress="lzw", nodata=0)
269
+
270
+ if input_data.mean() < 1:
271
+ input_data = input_data * 10000 # Scale to 0-10000
272
+
273
+ rgb_orig = process_channel_group(
274
+ orig_img=torch.Tensor(input_data[0, :, 0, ...]),
275
+ channels=channels,
276
+ )
277
+
278
+ pred[pred == 0.] = np.nan
279
+ img_pred = rgb_orig * 0.7 + pred * 0.3
280
+ img_pred[img_pred.isnan()] = rgb_orig[img_pred.isnan()]
281
+
282
+ img_pred_file = os.path.join(output_dir, f"rgb_pred_{os.path.splitext(os.path.basename(data_file))[0]}.tiff")
283
+ save_geotiff(
284
+ image=_convert_np_uint8(img_pred),
285
+ output_path=img_pred_file,
286
+ meta=meta_data,
287
+ )
288
+
289
+ # Save image rgb
290
+ if rgb_outputs:
291
+ rgb_file = os.path.join(output_dir, f"original_rgb_{os.path.splitext(os.path.basename(data_file))[0]}.tiff")
292
+ save_geotiff(
293
+ image=_convert_np_uint8(rgb_orig),
294
+ output_path=rgb_file,
295
+ meta=meta_data,
296
+ )
297
+
298
+ print("Done!")
299
+
300
+
301
+ if __name__ == "__main__":
302
+ parser = argparse.ArgumentParser("MAE run inference", add_help=False)
303
+
304
+ parser.add_argument(
305
+ "--data_file",
306
+ type=str,
307
+ default="examples/India_900498_S2Hand.tif",
308
+ help="Path to the file.",
309
+ )
310
+ parser.add_argument(
311
+ "--config",
312
+ "-c",
313
+ type=str,
314
+ default="config.yaml",
315
+ help="Path to yaml file containing model parameters.",
316
+ )
317
+ parser.add_argument(
318
+ "--checkpoint",
319
+ type=str,
320
+ default="Prithvi-EO-V2-300M-TL-Sen1Floods11.ckpt",
321
+ help="Path to a checkpoint file to load from.",
322
+ )
323
+ parser.add_argument(
324
+ "--output_dir",
325
+ type=str,
326
+ default="output",
327
+ help="Path to the directory where to save outputs.",
328
+ )
329
+ parser.add_argument(
330
+ "--input_indices",
331
+ default=[1,2,3,8,11,12],
332
+ type=int,
333
+ nargs="+",
334
+ help="0-based indices of the six Prithvi channels to be selected from the input. By default selects [1,2,3,8,11,12] for S2L1C data.",
335
+ )
336
+ parser.add_argument(
337
+ "--rgb_outputs",
338
+ action="store_true",
339
+ help="If present, output files will only contain RGB channels. "
340
+ "Otherwise, all bands will be saved.",
341
+ )
342
+ args = parser.parse_args()
343
+
344
+ main(**vars(args))
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ torch
2
+ torchvision
3
+ timm
4
+ einops
5
+ rasterio
6
+ git+https://github.com/IBM/terratorch.git