--- library_name: transformers tags: [] --- # Model Card for Model ID ## Model Details ### Model Description ```python from peft import PeftConfig, PeftModel from transformers import AutoModelForCausalLM, AutoTokenizer import torch base_model = "ikedachin/llm-jp-3-13b-october-news-250128-1-merged" peft_id_1 = "ikedachin/llm-jp-3-13b-october-news-250128-1-merged-sft-1-peft" # magpie ozaki peft_id_2 = "ikedachin/llm-jp-3-13b-october-news-250128-1-merged-sft-1-logical-math-coding-lora" # logical_math_coding model = AutoModelForCausalLM.from_pretrained(base_model, load_in_4bit=True, device_map="auto", token=HF_TOKEN).eval() tokenizer = AutoTokenizer.from_pretrained(base_model, token=HF_TOKEN) model = PeftModel.from_pretrained(model, peft_id_1, adapter_name="magpie_ozaki") _ = model.load_adapter(peft_id_2, adapter_name="logical_math_coding") adapters = ["magpie_ozaki", "logical_math_coding"] weights = [1.0, 1.0] adapter_name = "mergeed_2" density = 0.1 model.add_weighted_adapter(adapters, weights, adapter_name, combination_type="ties", density=density) ``` This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses ### Direct Use [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]