File size: 6,202 Bytes
debc4ef 1b11449 debc4ef 1b11449 debc4ef 1b11449 debc4ef 1b11449 debc4ef 1b11449 debc4ef 1b11449 debc4ef 24af366 7c1adc2 24af366 e36effa 7c1adc2 24af366 1b11449 24af366 1b11449 a76cf3f debc4ef 1b11449 debc4ef 5b2d2fe 1b11449 5b2d2fe 964213b 1b11449 964213b 1b11449 964213b beedfc5 1b11449 beedfc5 1b11449 beedfc5 1b11449 beedfc5 1b11449 debc4ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
---
library_name: transformers
language:
- multilingual
- af
- am
- ar
- as
- az
- be
- bg
- bm
- bn
- br
- bs
- ca
- cs
- cy
- da
- de
- el
- en
- eo
- es
- et
- eu
- fa
- ff
- fi
- fr
- fy
- ga
- gd
- gl
- gn
- gu
- ha
- he
- hi
- hr
- ht
- hu
- hy
- id
- ig
- is
- it
- ja
- jv
- ka
- kg
- kk
- km
- kn
- ko
- ku
- ky
- la
- lg
- ln
- lo
- lt
- lv
- mg
- mk
- ml
- mn
- mr
- ms
- my
- ne
- nl
- no
- om
- or
- pa
- pl
- ps
- pt
- qu
- ro
- ru
- sa
- sd
- si
- sk
- sl
- so
- sq
- sr
- ss
- su
- sv
- sw
- ta
- te
- th
- ti
- tl
- tn
- tr
- uk
- ur
- uz
- vi
- wo
- xh
- yo
- zh
license: agpl-3.0
tags:
- retrieval
- entity-retrieval
- named-entity-disambiguation
- entity-disambiguation
- named-entity-linking
- entity-linking
- text2text-generation
---
# Model Card for `impresso-project/nel-mgenre-multilingual`
The **Impresso multilingual named entity linking (NEL)** model is based on **mGENRE** (multilingual Generative ENtity REtrieval) proposed by [De Cao et al](https://arxiv.org/abs/2103.12528), a sequence-to-sequence architecture for entity disambiguation based on [mBART](https://arxiv.org/abs/2001.08210). It uses **constrained generation** to output entity names mapped to Wikidata/QIDs.
This model was adapted for historical texts and fine-tuned on the [HIPE-2022 dataset](https://github.com/hipe-eval/HIPE-2022-data), which includes a variety of historical document types and languages.
## Model Details
### Model Description
### Model Description
- **Developed by:** EPFL from the [Impresso team](https://impresso-project.ch). The project is an interdisciplinary project focused on historical media analysis across languages, time, and modalities. Funded by the Swiss National Science Foundation ([CRSII5_173719](http://p3.snf.ch/project-173719), [CRSII5_213585](https://data.snf.ch/grants/grant/213585)) and the Luxembourg National Research Fund (grant No. 17498891).
- **Model type:** mBART-based sequence-to-sequence model with constrained beam search for named entity linking
- **Languages:** Multilingual (100+ languages, optimized for French, German, and English)
- **License:** [AGPL v3+](https://github.com/impresso/impresso-pyindexation/blob/master/LICENSE)
- **Finetuned from:** [`facebook/mgenre-wiki`](https://huggingface.co/facebook/mgenre-wiki)
-
### Model Architecture
- **Architecture:** mBART-based seq2seq with constrained beam search
## Training Details
### Training Data
The model was trained on the following datasets:
| Dataset alias | README | Document type | Languages | Suitable for | Project | License |
|---------|---------|---------------|-----------| ---------------|---------------| ---------------|
| ajmc | [link](documentation/README-ajmc.md) | classical commentaries | de, fr, en | NERC-Coarse, NERC-Fine, EL | [AjMC](https://mromanello.github.io/ajax-multi-commentary/) | [](https://creativecommons.org/licenses/by/4.0/) |
| hipe2020 | [link](documentation/README-hipe2020.md)| historical newspapers | de, fr, en | NERC-Coarse, NERC-Fine, EL | [CLEF-HIPE-2020](https://impresso.github.io/CLEF-HIPE-2020)| [](https://creativecommons.org/licenses/by-nc-sa/4.0/)|
| topres19th | [link](documentation/README-topres19th.md) | historical newspapers | en | NERC-Coarse, EL |[Living with Machines](https://livingwithmachines.ac.uk/) | [](https://creativecommons.org/licenses/by-nc-sa/4.0/)|
| newseye | [link](documentation/README-newseye.md)| historical newspapers | de, fi, fr, sv | NERC-Coarse, NERC-Fine, EL | [NewsEye](https://www.newseye.eu/) | [](https://creativecommons.org/licenses/by/4.0/)|
| sonar | [link](documentation/README-sonar.md) | historical newspapers | de | NERC-Coarse, EL | [SoNAR](https://sonar.fh-potsdam.de/) | [](https://creativecommons.org/licenses/by/4.0/)|
## How to Use
```python
from transformers import AutoTokenizer, pipeline
NEL_MODEL_NAME = "impresso-project/nel-mgenre-multilingual"
nel_tokenizer = AutoTokenizer.from_pretrained(NEL_MODEL_NAME)
nel_pipeline = pipeline("generic-nel", model=NEL_MODEL_NAME,
tokenizer=nel_tokenizer,
trust_remote_code=True,
device='cpu')
sentence = "Le 0ctobre 1894, [START] Dreyfvs [END] est arrêté à Paris, accusé d'espionnage pour l'Allemagne — un événement qui déch1ra la société fr4nçaise pendant des années."
print(nel_pipeline(sentence))
```
### Output Format
```python
[
{
'surface': 'Dreyfvs',
'wkd_id': 'Q171826',
'wkpedia_pagename': 'Alfred Dreyfus',
'wkpedia_url': 'https://fr.wikipedia.org/wiki/Alfred_Dreyfus',
'type': 'UNK',
'confidence_nel': 99.98,
'lOffset': 24,
'rOffset': 33}]
```
The type of the entity is `UNK` because the model was not trained on the entity type. The `confidence_nel` score indicates the model's confidence in the prediction.
## Use Cases
- Entity disambiguation in noisy OCR settings
- Linking historical names to modern Wikidata entities
- Assisting downstream event extraction and biography generation from historical archives
## Limitations
- Sensitive to tokenisation and malformed spans
- Accuracy degrades on non-Wikidata entities or in highly ambiguous contexts
- Focused on historical entity mentions — performance may vary on modern texts
## Environmental Impact
- **Hardware:** 1x A100 (80GB) for finetuning
- **Training time:** ~12 hours
- **Estimated CO₂ Emissions:** ~2.3 kg CO₂eq
## Contact
- Website: [https://impresso-project.ch](https://impresso-project.ch)
<p align="center">
<img src="https://github.com/impresso/impresso.github.io/blob/master/assets/images/3x1--Yellow-Impresso-Black-on-White--transparent.png?raw=true" width="300" alt="Impresso Logo"/>
</p>
|