|
""" |
|
LLaDA MoE configuration |
|
""" |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.modeling_rope_utils import rope_config_validation |
|
|
|
|
|
class LLaDAConfig(PretrainedConfig): |
|
model_type = "llada" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
def __init__( |
|
self, |
|
vocab_size=-1, |
|
hidden_size=-1, |
|
dense_intermediate_size=-1, |
|
expert_intermediate_size=-1, |
|
shared_expert_intermediate_size=-1, |
|
num_hidden_layers=-1, |
|
num_attention_heads=-1, |
|
num_key_value_heads=None, |
|
hidden_act="silu", |
|
max_position_embeddings=4096, |
|
initializer_range=0.02, |
|
rms_norm_eps=1e-05, |
|
use_cache=False, |
|
pad_token_id=1, |
|
bos_token_id=None, |
|
eos_token_id=50279, |
|
tie_word_embeddings=False, |
|
rope_theta=-1, |
|
partial_rotary_factor=-1, |
|
rope_scaling=None, |
|
attention_bias=False, |
|
attention_dropout=0.0, |
|
clip_qkv=None, |
|
num_experts_per_tok=-1, |
|
num_experts=-1, |
|
output_router_logits=False, |
|
router_aux_loss_coef=0.01, |
|
norm_topk_prob=None, |
|
qk_layernorm=None, |
|
moe_layer_freq=[], |
|
moe_router_enable_expert_bias=None, |
|
moe_router_score_function=None, |
|
routed_scaling_factor=1, |
|
router_num_group=-2, |
|
router_topk_group=-2, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.hidden_size = hidden_size |
|
self.expert_intermediate_size = expert_intermediate_size |
|
self.dense_intermediate_size = dense_intermediate_size |
|
self.shared_expert_intermediate_size = shared_expert_intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
if num_key_value_heads is None: |
|
num_key_value_heads = num_attention_heads |
|
self.num_key_value_heads = num_key_value_heads |
|
|
|
self.hidden_act = hidden_act |
|
self.initializer_range = initializer_range |
|
self.rms_norm_eps = rms_norm_eps |
|
self.use_cache = use_cache |
|
self.rope_theta = rope_theta |
|
self.rope_scaling = rope_scaling |
|
self.attention_bias = attention_bias |
|
self.attention_dropout = attention_dropout |
|
self.clip_qkv = clip_qkv |
|
self.num_experts_per_tok = num_experts_per_tok |
|
self.num_experts = num_experts |
|
self.output_router_logits = output_router_logits |
|
self.router_aux_loss_coef = router_aux_loss_coef |
|
self.norm_topk_prob = norm_topk_prob |
|
self.qk_layernorm = qk_layernorm |
|
self.moe_layer_freq = moe_layer_freq |
|
self.moe_router_enable_expert_bias = moe_router_enable_expert_bias |
|
self.moe_router_score_function = moe_router_score_function |
|
self.partial_rotary_factor = partial_rotary_factor |
|
self.routed_scaling_factor = routed_scaling_factor |
|
self.router_num_group = router_num_group |
|
self.router_topk_group = router_topk_group |
|
|
|
if self.rope_scaling is not None and "type" in self.rope_scaling: |
|
self.rope_scaling["rope_type"] = self.rope_scaling["type"] |
|
rope_config_validation(self) |
|
|
|
super().__init__( |
|
pad_token_id=pad_token_id, |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
tie_word_embeddings=tie_word_embeddings, |
|
**kwargs, |
|
) |
|
|