""" LLaDA MoE configuration """ from transformers.configuration_utils import PretrainedConfig from transformers.modeling_rope_utils import rope_config_validation class LLaDAConfig(PretrainedConfig): model_type = "llada" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=-1, hidden_size=-1, dense_intermediate_size=-1, expert_intermediate_size=-1, shared_expert_intermediate_size=-1, num_hidden_layers=-1, num_attention_heads=-1, num_key_value_heads=None, hidden_act="silu", max_position_embeddings=4096, initializer_range=0.02, rms_norm_eps=1e-05, use_cache=False, pad_token_id=1, bos_token_id=None, eos_token_id=50279, tie_word_embeddings=False, rope_theta=-1, partial_rotary_factor=-1, rope_scaling=None, attention_bias=False, attention_dropout=0.0, clip_qkv=None, num_experts_per_tok=-1, num_experts=-1, output_router_logits=False, router_aux_loss_coef=0.01, norm_topk_prob=None, qk_layernorm=None, moe_layer_freq=[], moe_router_enable_expert_bias=None, moe_router_score_function=None, routed_scaling_factor=1, router_num_group=-2, router_topk_group=-2, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.expert_intermediate_size = expert_intermediate_size self.dense_intermediate_size = dense_intermediate_size self.shared_expert_intermediate_size = shared_expert_intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.rope_scaling = rope_scaling self.attention_bias = attention_bias self.attention_dropout = attention_dropout self.clip_qkv = clip_qkv self.num_experts_per_tok = num_experts_per_tok self.num_experts = num_experts self.output_router_logits = output_router_logits self.router_aux_loss_coef = router_aux_loss_coef self.norm_topk_prob = norm_topk_prob self.qk_layernorm = qk_layernorm self.moe_layer_freq = moe_layer_freq self.moe_router_enable_expert_bias = moe_router_enable_expert_bias self.moe_router_score_function = moe_router_score_function self.partial_rotary_factor = partial_rotary_factor self.routed_scaling_factor = routed_scaling_factor self.router_num_group = router_num_group self.router_topk_group = router_topk_group if self.rope_scaling is not None and "type" in self.rope_scaling: self.rope_scaling["rope_type"] = self.rope_scaling["type"] rope_config_validation(self) super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, )