|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" GLM model configuration """ |
|
|
|
from typing import Dict |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
GLM_PRETRAINED_CONFIG_ARCHIVE_MAP = { |
|
"shunxing1234/GLM": "https://huggingface.co/shunxing1234/GLM/resolve/main/config.json", |
|
|
|
} |
|
|
|
|
|
class GLMConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`~GLMModel`]. |
|
It is used to instantiate an GLM model according to the specified arguments, defining the model |
|
architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of |
|
the GLM [shunxing1234/GLM-base-cased](https://huggingface.co/shunxing1234/GLM-base-cased) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used |
|
to control the model outputs. Read the documentation from [`PretrainedConfig`] |
|
for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 30522): |
|
Vocabulary size of the GLM model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`~GLMModel`] or |
|
[`~TFGLMModel`]. |
|
hidden_size (`int`, *optional*, defaults to 768): |
|
Dimension of the encoder layers and the pooler layer. |
|
num_hidden_layers (`int`, *optional*, defaults to 12): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 12): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
intermediate_size (`int`, *optional*, defaults to 3072): |
|
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. |
|
If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. |
|
hidden_dropout_prob (`float`, *optional*, defaults to 0.1): |
|
The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. |
|
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): |
|
The dropout ratio for the attention probabilities. |
|
max_position_embeddings (`int`, *optional*, defaults to 512): |
|
The maximum sequence length that this model might ever be used with. |
|
Typically set this to something large just in case (e.g., 512 or 1024 or 2048). |
|
type_vocab_size (`int`, *optional*, defaults to 2): |
|
The vocabulary size of the `token_type_ids` passed when calling [`~GLMModel`] or |
|
[`~TFGLMModel`]. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-12): |
|
The epsilon used by the layer normalization layers. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). Only |
|
relevant if `config.is_decoder=True`. |
|
last_logits_l2_alpha ('float', *optional*, defaults to -1.0): |
|
Whether use l2 norm for last output logits. |
|
If < 0, will not compute last logits l2 norm, |
|
elif == 0, will compute l2 norm but not plus in the loss, |
|
while > 0, will plus this loss in the total loss. |
|
rotary_type (`str` or `function`, *optional*, defaults to `"none"`): |
|
The Rotary Embedding type to used in SelfAttention. |
|
If string, `"none"`, `"1d"`, `"2d"` are supported. |
|
unidirectional ('bool', *optional*, defaults to `False`): |
|
Whether or not the model is train with prefix LM or causal LM. |
|
Example: |
|
|
|
```python |
|
>>> from transformers import GLMModel, GLMConfig |
|
|
|
>>> # Initializing a GLM shunxing1234/GLM-base-cased style configuration |
|
>>> configuration = GLMConfig() |
|
|
|
>>> # Initializing a model from the shunxing1234/GLM-base-cased style configuration |
|
>>> model = GLMModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
``` |
|
""" |
|
|
|
model_type = "glm" |
|
attribute_map = {"num_hidden_layers": "num_layers"} |
|
|
|
def __init__( |
|
self, |
|
num_layers=24, |
|
vocab_size=30592, |
|
hidden_size=1024, |
|
num_experts=1, |
|
expert_capacity=None, |
|
moe_config: Dict = {}, |
|
num_attention_heads=16, |
|
num_key_value_heads=0, |
|
embedding_dropout_prob=0.1, |
|
attention_dropout_prob=0.1, |
|
output_dropout_prob=0.1, |
|
max_sequence_length=512, |
|
checkpoint_activations=False, |
|
checkpoint_num_layers=1, |
|
parallel_output=True, |
|
relative_encoding=False, |
|
block_position_encoding=True, |
|
output_predict=False, |
|
spell_length=None, |
|
spell_func="lstm", |
|
attention_scale=1.0, |
|
initializer_range=0.02, |
|
pool_token="cls", |
|
max_memory_length=0, |
|
bf16=True, |
|
intermediate_size=None, |
|
last_logits_l2_alpha=-1.0, |
|
rotary_type='none', |
|
use_rmsnorm=False, |
|
use_atorch_rmsnorm=False, |
|
use_swiglu=False, |
|
rope_scaling=1.0, |
|
use_cache=True, |
|
focused_attention=False, |
|
cache_in_memory=False, |
|
attention_grouping=None, |
|
output_hidden_states=False, |
|
tie_word_embeddings=True, |
|
unidirectional=False, |
|
use_bias=True, |
|
use_qkv_bias=False, |
|
mlp_version='v1', |
|
norm_softmax=False, |
|
norm_head=False, |
|
num_decoder_image_token=1024, |
|
num_decoder_audio_token=512, |
|
**kwargs, |
|
): |
|
self.num_layers = num_layers |
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.num_experts = num_experts |
|
self.expert_capacity = expert_capacity |
|
self.moe_config = moe_config |
|
self.num_attention_heads = num_attention_heads |
|
self.num_key_value_heads = num_key_value_heads |
|
self.embedding_dropout_prob = embedding_dropout_prob |
|
self.attention_dropout_prob = attention_dropout_prob |
|
self.output_dropout_prob = output_dropout_prob |
|
self.max_sequence_length = max_sequence_length |
|
self.checkpoint_activations = checkpoint_activations |
|
self.checkpoint_num_layers = checkpoint_num_layers |
|
self.parallel_output = parallel_output |
|
self.relative_encoding = relative_encoding |
|
self.block_position_encoding = block_position_encoding |
|
self.output_predict = output_predict |
|
self.spell_length = spell_length |
|
self.spell_func = spell_func |
|
self.attention_scale = attention_scale |
|
self.initializer_range = initializer_range |
|
self.pool_token = pool_token |
|
self.max_memory_length = max_memory_length |
|
self.bf16 = bf16 |
|
self.intermediate_size = intermediate_size |
|
self.last_logits_l2_alpha = last_logits_l2_alpha |
|
self.rotary_type = rotary_type |
|
self.use_rmsnorm = use_rmsnorm |
|
self.use_atorch_rmsnorm = use_atorch_rmsnorm |
|
self.use_swiglu = use_swiglu |
|
self.rope_scaling = rope_scaling |
|
self.use_cache = use_cache |
|
self.focused_attention = focused_attention |
|
self.cache_in_memory = cache_in_memory |
|
self.attention_grouping = attention_grouping |
|
self.unidirectional = unidirectional |
|
self.use_bias = use_bias |
|
self.use_qkv_bias = use_qkv_bias |
|
self.mlp_version = mlp_version |
|
self.norm_softmax = norm_softmax |
|
self.norm_head = norm_head |
|
self.num_decoder_image_token = num_decoder_image_token |
|
self.num_decoder_audio_token = num_decoder_audio_token |
|
|
|
super().__init__(output_hidden_states=output_hidden_states, tie_word_embeddings=tie_word_embeddings, **kwargs) |
|
|
|
|