Ming-Lite-Omni / modeling_bailing_talker.py
LandyGuo
update v20250516 ckpts
dd5f831
from dataclasses import dataclass
from typing import Optional, Tuple, List
import os
import yaml
import re
import torch
import torch.nn as nn
import torchaudio
from hyperpyyaml import load_hyperpyyaml
from transformers import Qwen2Config, PreTrainedModel
from transformers import Qwen2ForCausalLM, AutoTokenizer
from audio_detokenizer.cli.model import AudioDetokenizerModel
from s3bpe_tokenizer import S3BpeTokenizer
from configuration_bailing_talker import BailingTalkerConfig
from transformers.utils import ModelOutput
from sentence_manager.sentence_manager import SentenceNormalizer
@dataclass
class BailingTalkerOutputWithPast(ModelOutput):
loss: Optional[torch.FloatTensor] = None
past_key_values: Optional[List[torch.FloatTensor]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
logits: Optional[torch.FloatTensor] = None
class BailingTalkerForConditionalGeneration(PreTrainedModel):
config_class = BailingTalkerConfig
base_model_prefix = 'model'
def __init__(self, config:BailingTalkerConfig):
super().__init__(config)
self.config = config
self.vocab_size = self.config.vocab_size
self.tokenizer = AutoTokenizer.from_pretrained(self.config._name_or_path)
self.model_config = Qwen2Config.from_pretrained(self.config._name_or_path)
self.model = Qwen2ForCausalLM(self.model_config)
self.model.resize_token_embeddings(self.vocab_size)
self.thinker_to_talker_proj = nn.Linear(self.config.qa_model_hidden_size, self.model_config.hidden_size)
self.vp_head = nn.Conv1d(
self.config.vp_feature_size,
self.model_config.hidden_size,
kernel_size=self.config.vp_kernel_size,
stride=self.config.vp_stride,
padding=self.config.vp_kernel_size // 2,
)
self.s3bpe_tokenizer = S3BpeTokenizer(bpe_model=f"{self.config._name_or_path}/s3_bpe/tokenizer.json", mapping_file=f"{self.config._name_or_path}/s3_bpe/char_mapping.txt")
self.loss_function = nn.CrossEntropyLoss()
default_config_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sentence_manager/default_config.yaml")
self.sentence_manager_config = yaml.safe_load(open(default_config_path))
if "split_token" not in self.sentence_manager_config:
self.sentence_manager_config["split_token"] = []
assert isinstance(self.sentence_manager_config["split_token"], list)
self.sentence_manager_config["split_token"].append(re.escape(self.tokenizer.eos_token))
self.normalizer = SentenceNormalizer(self.sentence_manager_config.get("text_norm", {}))
def get_input_embeddings(self):
return self.model.get_input_embeddings()
def encode_audio_segments(
self,
inputs_embeds: torch.FloatTensor,
vp_emb: torch.FloatTensor,
vp_insert_loc: torch.LongTensor,
thinker_reply_part: Optional[torch.FloatTensor] = None,
thinker_reply_length: Optional[List] = None,
thinker_prefix_insert_loc: Optional[torch.LongTensor] = None
):
vp_emb_encoded = self.vp_head(vp_emb.transpose(-1, -2)).transpose(-1, -2)
for idx in range(vp_insert_loc.shape[0]):
inputs_embeds[idx, vp_insert_loc[idx].item():vp_insert_loc[idx].item() + 1, :] = vp_emb_encoded[idx, :, :]
if thinker_prefix_insert_loc is not None:
thinker_reply_part = self.thinker_to_talker_proj(thinker_reply_part)
for idx in range(thinker_prefix_insert_loc.shape[0]):
real_length = thinker_reply_length[idx]
inputs_embeds[idx, thinker_prefix_insert_loc[idx].item():thinker_prefix_insert_loc[idx].item() + real_length, :] = thinker_reply_part[idx, :real_length, :]
return inputs_embeds
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[dict] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
text_input_ids: Optional[torch.LongTensor] = None,
vp_emb: Optional[torch.FloatTensor] = None,
vp_insert_loc: Optional[torch.LongTensor] = None,
thinker_reply_part: Optional[torch.FloatTensor] = None,
thinker_reply_length: Optional[torch.FloatTensor] = None,
thinker_prefix_insert_loc: Optional[torch.LongTensor] = None,
):
if inputs_embeds is None:
audio_input_embeds = self.model.get_input_embeddings()(input_ids)
text_input_embeds = self.model.get_input_embeddings()(text_input_ids)
inputs_embeds = audio_input_embeds + text_input_embeds
if past_key_values is None:
inputs_embeds = self.encode_audio_segments(
inputs_embeds, vp_emb, vp_insert_loc, thinker_reply_part=thinker_reply_part,
thinker_reply_length=thinker_reply_length, thinker_prefix_insert_loc=thinker_prefix_insert_loc
)
if position_ids is None:
position_ids = (attention_mask.cumsum(-1) - 1).masked_fill_((attention_mask == 0), 1)
outputs = self.model(
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = outputs.logits
loss = None
if labels is not None:
loss = self.loss_function(logits.reshape(-1, logits.size(-1)), labels.reshape(-1))
return BailingTalkerOutputWithPast(
loss=loss,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
logits=logits,
)
def sample(self, logits, topk=20, filter_value=-float("Inf"), stopping_criteria=False, eos_id=151666):
logits = logits.reshape(1, -1) # [1, V]
indices_to_remove = logits < torch.topk(logits, topk)[0][..., -1, None]
indices_to_remove[0][eos_id] = True if stopping_criteria is True else indices_to_remove[0][eos_id]
logits[indices_to_remove] = filter_value
token_id = torch.multinomial(torch.softmax(logits, dim=-1), num_samples=1).to(torch.long)
return token_id
def omni_audio_generation_func(
self,
tts_text,
prompt,
prefix_from_thinker,
vp,
position_ids,
talker_audio_prefix,
vp_insert_loc,
thinker_length,
vp_emb=None,
thinker_reply_part=None,
prompt_text=None,
prompt_speech_token=None,
):
text_input_part = self.tokenizer.encode(tts_text)
prompt_text_input_part = self.tokenizer.encode(prompt_text)
prompt_speech_token = prompt_speech_token[0].tolist()
prompt_speech_token_bpe = self.s3bpe_tokenizer.encode(prompt_speech_token)[0]
prompt_speech_token_bpe = (torch.tensor(prompt_speech_token_bpe) + len(self.tokenizer) ).tolist()
# audio_prefix and text_prefix for first step generation
talker_text_prefix = (
prompt +
prefix_from_thinker +
vp +
prompt_text_input_part[:1]
)
# the rest of input_text
talker_text_input_part = (
prompt_text_input_part[1:] +
text_input_part +
self.tokenizer.encode("<text_eos>") +
self.tokenizer.encode("<text_pad>")
)
talker_text_prefix = torch.tensor(talker_text_prefix).reshape(1, -1).to(self.device)
audio_token = self.generate(
talker_audio_prefix=talker_audio_prefix,
talker_text_prefix=talker_text_prefix,
talker_text_input_part=talker_text_input_part,
position_ids=position_ids,
vp_emb=vp_emb,
vp_insert_loc=vp_insert_loc,
thinker_reply_part=thinker_reply_part,
thinker_reply_length=torch.tensor([thinker_length]).to(self.device),
thinker_prefix_insert_loc=torch.tensor([len(prompt) + 1]).to(self.device) if thinker_reply_part is not None else None,
prompt_wav_token=prompt_speech_token_bpe,
)
audio_token = [ele - len(self.tokenizer) for ele in audio_token]
audio_token = self.s3bpe_tokenizer.decode(audio_token)
audio_token = torch.tensor([audio_token], dtype=torch.int32)
return audio_token
def text_length(self, text):
return len(re.findall("[\u4e00-\u4E27\u4E29-\u4E3E\u4E42-\u9fa4]", text))
def cut_text(self, text, max_length, tail_min_length=5):
def text_append(text_list, text, max_length):
if len(text_list) == 0:
text_list.append(text)
else:
if len(text_list[-1]) + self.text_length(text) <= max_length:
if text_list[-1].endswith("。") and self.text_length(text) < tail_min_length:
text_list.append(text.lstrip(","))
else:
text_list[-1] += text
else:
text_list.append(text.lstrip(","))
return text_list
text = text.replace("\n", " ")
text = self.normalizer.normalize(text)
text = text.replace("。,", "。")
if len(text) <= max_length:
return [text]
text_list = []
text = text.replace(".", "。").replace(",", ",")
sps1 = []
for t in text.split("。"):
t = t.strip()
if len(t) > 0:
if t[-1] not in "!?,。!?,.":
t += "。"
sps1.append(t)
for text_piece1 in sps1:
sps2 = []
for t in text_piece1.split(","):
t = t.strip()
if len(t) > 0:
if t[-1] not in "!?,。!?,.":
t += ","
sps2.append(t)
for text_piece2 in sps2:
text_piece2 = text_piece2.replace("。,", "。")
if self.text_length(text_piece2) > max_length:
for i in range(0, len(text_piece2), max_length):
text_list = text_append(text_list, text_piece2[i:i+max_length], max_length)
else:
text_list = text_append(text_list, text_piece2, max_length)
return text_list
def omni_audio_generation(
self,
tts_text,
vp_emb=None,
thinker_reply_part=None,
max_length=50,
prompt_text=None,
prompt_speech_token=None,
**kwargs,
):
# thinker_reply_part: [B, T, d]
# get text_emb and hidden_states from thinker
thinker_length = thinker_reply_part.size(1) if thinker_reply_part is not None else 0
prefix_from_thinker = (
self.tokenizer.encode("<thinker_prefix>") +
self.tokenizer.encode("<audio_pad>") * thinker_length + # placeholder for prefix emb from thinker
self.tokenizer.encode("</thinker_prefix>")
)
prompt = self.tokenizer.encode("<prompt>") + self.tokenizer.encode("</prompt>")
vp = (
self.tokenizer.encode("<vp>") +
self.tokenizer.encode("<audio_pad>") +
self.tokenizer.encode("</vp>")
)
talker_audio_prefix = (
prompt +
prefix_from_thinker +
vp +
self.tokenizer.encode("<audio_bos>")
)
attention_mask = torch.ones(len(talker_audio_prefix)).reshape(1, -1).to(self.device)
position_ids = (attention_mask.cumsum(-1) - 1).masked_fill_((attention_mask == 0), 1)[:, -1].view(1, -1)
talker_audio_prefix = torch.tensor(talker_audio_prefix).reshape(1, -1).to(self.device)
vp_insert_loc = torch.tensor(len(prompt) + len(prefix_from_thinker) + 1, dtype=torch.long).reshape(1, -1)
vp_emb = vp_emb.unsqueeze(0).to(torch.bfloat16).to(self.device)
assert max_length > 0, f"max_length must be greater than 0, but here is {max_length}"
text_list = self.cut_text(tts_text, max_length)
audio_tokens = []
for text in text_list:
audio_tokens_piece = self.omni_audio_generation_func(
tts_text=text,
prompt=prompt,
prefix_from_thinker=prefix_from_thinker,
vp=vp,
position_ids=position_ids,
talker_audio_prefix=talker_audio_prefix,
vp_insert_loc=vp_insert_loc,
thinker_length=thinker_length,
vp_emb=vp_emb,
thinker_reply_part=thinker_reply_part,
prompt_text=prompt_text,
prompt_speech_token=prompt_speech_token,
)
audio_tokens.append(audio_tokens_piece)
return audio_tokens
@torch.no_grad()
def generate(
self,
talker_audio_prefix: torch.LongTensor,
talker_text_prefix: torch.LongTensor,
talker_text_input_part: List,
position_ids: Optional[torch.LongTensor] = None,
vp_emb: Optional[torch.FloatTensor] = None,
vp_insert_loc: Optional[torch.LongTensor] = None,
thinker_reply_part: Optional[torch.FloatTensor] = None,
thinker_reply_length: Optional[torch.FloatTensor] = None,
thinker_prefix_insert_loc: Optional[torch.LongTensor] = None,
prompt_wav_token: List = [],
min_new_token = 10,
):
result = []
step = 0
eos_id = self.tokenizer.encode("<audio_eos>")[0]
prompt_wav_token_len = len(prompt_wav_token)
while step < 1000:
if step == 0:
talker_audio_input_ids = talker_audio_prefix
talker_text_input_ids = talker_text_prefix
attention_mask = torch.ones(talker_audio_input_ids.shape).to(talker_audio_prefix.device)
else:
talker_audio_input_ids = next_token
talker_text_input_ids = torch.tensor(talker_text_input_part[0], dtype=torch.long).reshape(1, -1).to(
talker_audio_prefix.device)
attention_mask = torch.ones(next_token.shape[0], 1).to(talker_audio_prefix.device)
position_ids += 1
thinker_prefix_insert_loc = None
if len(talker_text_input_part) > 1:
talker_text_input_part = talker_text_input_part[1:]
# print(talker_audio_input_ids, self.tokenizer.decode(talker_text_input_ids.tolist()[0]), attention_mask, position_ids)
outputs = self(
input_ids=talker_audio_input_ids,
text_input_ids=talker_text_input_ids,
thinker_reply_part=thinker_reply_part,
thinker_reply_length=thinker_reply_length,
thinker_prefix_insert_loc=thinker_prefix_insert_loc,
vp_emb=vp_emb,
vp_insert_loc=vp_insert_loc,
attention_mask=attention_mask,
position_ids=position_ids,
use_cache=True,
past_key_values=outputs.past_key_values if step > 0 else None
)
# 采样
logits = outputs.logits[:, -1, :]
stopping_criteria = position_ids.item() < prompt_wav_token_len + min_new_token
next_token = self.sample(logits, stopping_criteria=stopping_criteria )
if next_token.item() == eos_id:
break
if len(prompt_wav_token) > 0:
next_token = torch.tensor([[prompt_wav_token[0]]]).to(logits.device)
prompt_wav_token = prompt_wav_token[1:]
else:
result.append(next_token.item())
step += 1
return result
class AudioDetokenizer:
def __init__(self, config_path, flow_model_path, hifigan_model_path):
with open(config_path, 'r') as f:
configs = load_hyperpyyaml(f)
self.model = AudioDetokenizerModel(configs['flow'], configs['hift'])
self.model.load(flow_model_path, hifigan_model_path)
self.sr = 22050
def token2wav(self, audio_tokens, save_path=None, **kwargs):
assert isinstance(audio_tokens, list), f"audio_tokens should be list"
speech_list = []
for audio_token in audio_tokens:
model_input = {"tts_speech_token": audio_token}
kwargs.update(**model_input)
model_output = self.model.inference(**kwargs)
silent_dur = 0.02
silent_tensor = torch.Tensor([0.0] * int(self.sr * silent_dur))
model_output['tts_speech'][0][:int(self.sr * silent_dur)] = silent_tensor
speech_list.append(model_output['tts_speech'])
if len(speech_list) == 1:
speech = speech_list[0]
else:
speech = torch.cat(speech_list, dim=1)
if save_path is not None:
torchaudio.save(save_path, speech, sample_rate=self.sr)
return speech