LandyGuo
commited on
Commit
·
81a8221
1
Parent(s):
9a10e16
update 20250516 version
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -1
- .gitignore +3 -0
- audio_detokenizer/__pycache__/__init__.cpython-38.pyc +0 -0
- audio_detokenizer/cli/__pycache__/__init__.cpython-38.pyc +0 -0
- audio_detokenizer/cli/__pycache__/model.cpython-38.pyc +0 -0
- audio_detokenizer/flow/__pycache__/__init__.cpython-38.pyc +0 -0
- audio_detokenizer/flow/__pycache__/decoder.cpython-38.pyc +0 -0
- audio_detokenizer/flow/__pycache__/flow.cpython-38.pyc +0 -0
- audio_detokenizer/flow/__pycache__/flow_matching.cpython-38.pyc +0 -0
- audio_detokenizer/flow/__pycache__/length_regulator.cpython-38.pyc +0 -0
- audio_detokenizer/hifigan/__pycache__/__init__.cpython-38.pyc +0 -0
- audio_detokenizer/hifigan/__pycache__/f0_predictor.cpython-38.pyc +0 -0
- audio_detokenizer/hifigan/__pycache__/generator.cpython-38.pyc +0 -0
- audio_detokenizer/transformer/__pycache__/__init__.cpython-38.pyc +0 -0
- audio_detokenizer/transformer/__pycache__/activation.cpython-38.pyc +0 -0
- audio_detokenizer/transformer/__pycache__/attention.cpython-38.pyc +0 -0
- audio_detokenizer/transformer/__pycache__/convolution.cpython-38.pyc +0 -0
- audio_detokenizer/transformer/__pycache__/embedding.cpython-38.pyc +0 -0
- audio_detokenizer/transformer/__pycache__/encoder.cpython-38.pyc +0 -0
- audio_detokenizer/transformer/__pycache__/encoder_layer.cpython-38.pyc +0 -0
- audio_detokenizer/transformer/__pycache__/positionwise_feed_forward.cpython-38.pyc +0 -0
- audio_detokenizer/transformer/__pycache__/subsampling.cpython-38.pyc +0 -0
- audio_detokenizer/utils/__pycache__/__init__.cpython-38.pyc +0 -0
- audio_detokenizer/utils/__pycache__/class_utils.cpython-38.pyc +0 -0
- audio_detokenizer/utils/__pycache__/common.cpython-38.pyc +0 -0
- audio_detokenizer/utils/__pycache__/mask.cpython-38.pyc +0 -0
- audio_processing_bailingmm.py +41 -10
- bailingmm_utils.py +20 -7
- config.json +12 -5
- configuration_bailing_moe.py +3 -1
- configuration_bailingmm.py +4 -0
- configuration_whisper_encoder.py +37 -0
- connector/LICENSE +54 -0
- connector/README.md +111 -0
- connector/config.json +29 -0
- connector/generation_config.json +14 -0
- connector/gitattributes +35 -0
- connector/merges.txt +0 -0
- model-00001-of-00015.safetensors → connector/model-00001-of-00003.safetensors +2 -2
- connector/model-00002-of-00003.safetensors +3 -0
- connector/model-00003-of-00003.safetensors +3 -0
- connector/model.safetensors.index.json +441 -0
- connector/tokenizer.json +0 -0
- connector/tokenizer_config.json +207 -0
- connector/vocab.json +0 -0
- data/openai_whisper-20240930-py3-none-any.whl +3 -0
- data/wavs/speechQA_sample.wav +0 -0
- diffusion/__init__.py +0 -0
- diffusion/pipeline_sana.py +1011 -0
- diffusion/sana_loss.py +303 -0
.gitattributes
CHANGED
@@ -37,6 +37,6 @@ data/matcha_tts-0.0.5.1-cp38-cp38-linux_x86_64.whl filter=lfs diff=lfs merge=lfs
|
|
37 |
data/wavs/BAC009S0915W0292.wav filter=lfs diff=lfs merge=lfs -text
|
38 |
out.wav filter=lfs diff=lfs merge=lfs -text
|
39 |
talker/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
40 |
-
|
41 |
|
42 |
|
|
|
37 |
data/wavs/BAC009S0915W0292.wav filter=lfs diff=lfs merge=lfs -text
|
38 |
out.wav filter=lfs diff=lfs merge=lfs -text
|
39 |
talker/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
40 |
+
data/openai_whisper-20240930-py3-none-any.whl filter=lfs diff=lfs merge=lfs -text
|
41 |
|
42 |
|
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__/
|
2 |
+
*.DS_Store
|
3 |
+
|
audio_detokenizer/__pycache__/__init__.cpython-38.pyc
DELETED
Binary file (178 Bytes)
|
|
audio_detokenizer/cli/__pycache__/__init__.cpython-38.pyc
DELETED
Binary file (182 Bytes)
|
|
audio_detokenizer/cli/__pycache__/model.cpython-38.pyc
DELETED
Binary file (2.02 kB)
|
|
audio_detokenizer/flow/__pycache__/__init__.cpython-38.pyc
DELETED
Binary file (183 Bytes)
|
|
audio_detokenizer/flow/__pycache__/decoder.cpython-38.pyc
DELETED
Binary file (5.28 kB)
|
|
audio_detokenizer/flow/__pycache__/flow.cpython-38.pyc
DELETED
Binary file (4.15 kB)
|
|
audio_detokenizer/flow/__pycache__/flow_matching.cpython-38.pyc
DELETED
Binary file (6.1 kB)
|
|
audio_detokenizer/flow/__pycache__/length_regulator.cpython-38.pyc
DELETED
Binary file (1.48 kB)
|
|
audio_detokenizer/hifigan/__pycache__/__init__.cpython-38.pyc
DELETED
Binary file (186 Bytes)
|
|
audio_detokenizer/hifigan/__pycache__/f0_predictor.cpython-38.pyc
DELETED
Binary file (1.37 kB)
|
|
audio_detokenizer/hifigan/__pycache__/generator.cpython-38.pyc
DELETED
Binary file (11.3 kB)
|
|
audio_detokenizer/transformer/__pycache__/__init__.cpython-38.pyc
DELETED
Binary file (190 Bytes)
|
|
audio_detokenizer/transformer/__pycache__/activation.cpython-38.pyc
DELETED
Binary file (2.51 kB)
|
|
audio_detokenizer/transformer/__pycache__/attention.cpython-38.pyc
DELETED
Binary file (10.9 kB)
|
|
audio_detokenizer/transformer/__pycache__/convolution.cpython-38.pyc
DELETED
Binary file (3.1 kB)
|
|
audio_detokenizer/transformer/__pycache__/embedding.cpython-38.pyc
DELETED
Binary file (9.78 kB)
|
|
audio_detokenizer/transformer/__pycache__/encoder.cpython-38.pyc
DELETED
Binary file (19.6 kB)
|
|
audio_detokenizer/transformer/__pycache__/encoder_layer.cpython-38.pyc
DELETED
Binary file (8.64 kB)
|
|
audio_detokenizer/transformer/__pycache__/positionwise_feed_forward.cpython-38.pyc
DELETED
Binary file (3.79 kB)
|
|
audio_detokenizer/transformer/__pycache__/subsampling.cpython-38.pyc
DELETED
Binary file (10.6 kB)
|
|
audio_detokenizer/utils/__pycache__/__init__.cpython-38.pyc
DELETED
Binary file (184 Bytes)
|
|
audio_detokenizer/utils/__pycache__/class_utils.cpython-38.pyc
DELETED
Binary file (1.45 kB)
|
|
audio_detokenizer/utils/__pycache__/common.cpython-38.pyc
DELETED
Binary file (4.17 kB)
|
|
audio_detokenizer/utils/__pycache__/mask.cpython-38.pyc
DELETED
Binary file (5.12 kB)
|
|
audio_processing_bailingmm.py
CHANGED
@@ -7,11 +7,11 @@ import torch
|
|
7 |
import torch.utils.data
|
8 |
import torchaudio
|
9 |
import torchaudio.compliance.kaldi as kaldi
|
|
|
10 |
from torch.nn.utils.rnn import pad_sequence
|
11 |
|
12 |
from transformers.utils import TensorType
|
13 |
-
from transformers.feature_extraction_utils import FeatureExtractionMixin
|
14 |
-
from image_processing_bailingmm import BatchFeature
|
15 |
|
16 |
NORM_FACTOR_FOR_DTYPE = {
|
17 |
torch.int8: 2**7,
|
@@ -49,10 +49,13 @@ DEFAULT_TTS_TOKEN = '<tts>'
|
|
49 |
|
50 |
|
51 |
class BailingMMAudioProcessor(FeatureExtractionMixin):
|
52 |
-
def __init__(self, wav_frontend_args: Dict[str, Any], **kwargs):
|
53 |
super().__init__(**kwargs)
|
54 |
self.sample_rate = 16000
|
55 |
-
|
|
|
|
|
|
|
56 |
|
57 |
def to_dict(self) -> Dict[str, Any]:
|
58 |
output = copy.deepcopy(self.__dict__)
|
@@ -60,6 +63,8 @@ class BailingMMAudioProcessor(FeatureExtractionMixin):
|
|
60 |
output["wav_frontend"]["cmvn"] = output["wav_frontend"]["cmvn"].tolist()
|
61 |
output["wav_frontend"]["_non_persistent_buffers_set"] = list(output["wav_frontend"]["_non_persistent_buffers_set"])
|
62 |
output["audio_processor_type"] = self.__class__.__name__
|
|
|
|
|
63 |
return output
|
64 |
|
65 |
@classmethod
|
@@ -85,13 +90,22 @@ class BailingMMAudioProcessor(FeatureExtractionMixin):
|
|
85 |
"""Preprocess an audio or a batch of audios."""
|
86 |
return self.preprocess(audios, **kwargs)
|
87 |
|
88 |
-
def _preprocess_audio(self, waveform: torch.Tensor, sample_rate: int) -> torch.Tensor:
|
89 |
waveform = normalize_audio_tensor(waveform, sample_rate, target_sample_rate=self.sample_rate)
|
90 |
-
|
|
|
|
|
|
|
91 |
return audio_feat
|
92 |
|
93 |
-
def _make_batched_audios(self, audio_feat_list: List[torch.Tensor]) -> Dict[str, Any]:
|
94 |
audio_feats_lengths = torch.tensor([[audio_feat.shape[0]] for audio_feat in audio_feat_list], dtype=torch.long)
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
max_length = max(audio_feat.shape[0] for audio_feat in audio_feat_list)
|
96 |
audio_feats = torch.stack(
|
97 |
[
|
@@ -101,7 +115,7 @@ class BailingMMAudioProcessor(FeatureExtractionMixin):
|
|
101 |
) for audio_feat in audio_feat_list
|
102 |
], dim=0,
|
103 |
)
|
104 |
-
return {"audio_feats": audio_feats.numpy(), "audio_feats_lengths": audio_feats_lengths.numpy()}
|
105 |
|
106 |
def preprocess(
|
107 |
self,
|
@@ -110,10 +124,10 @@ class BailingMMAudioProcessor(FeatureExtractionMixin):
|
|
110 |
**kwargs,
|
111 |
) -> BatchFeature:
|
112 |
if isinstance(audios, List):
|
113 |
-
audio_inputs = self._make_batched_audios([self._preprocess_audio(waveform, sr) for waveform, sr in audios])
|
114 |
else:
|
115 |
waveform, sr = audios
|
116 |
-
audio_inputs = self._make_batched_audios([self._preprocess_audio(waveform, sr)])
|
117 |
return BatchFeature(data=audio_inputs, tensor_type=return_tensors)
|
118 |
|
119 |
|
@@ -252,6 +266,23 @@ class WavFrontend(torch.nn.Module):
|
|
252 |
return feats_pad, feats_lens
|
253 |
|
254 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
def load_cmvn(cmvn_file):
|
256 |
with open(cmvn_file, 'r', encoding='utf-8') as f:
|
257 |
lines = f.readlines()
|
|
|
7 |
import torch.utils.data
|
8 |
import torchaudio
|
9 |
import torchaudio.compliance.kaldi as kaldi
|
10 |
+
import whisper
|
11 |
from torch.nn.utils.rnn import pad_sequence
|
12 |
|
13 |
from transformers.utils import TensorType
|
14 |
+
from transformers.feature_extraction_utils import FeatureExtractionMixin, BatchFeature
|
|
|
15 |
|
16 |
NORM_FACTOR_FOR_DTYPE = {
|
17 |
torch.int8: 2**7,
|
|
|
49 |
|
50 |
|
51 |
class BailingMMAudioProcessor(FeatureExtractionMixin):
|
52 |
+
def __init__(self, wav_frontend_args: Dict[str, Any]=None, whisper_frontend_args: Dict[str, Any]=None, **kwargs):
|
53 |
super().__init__(**kwargs)
|
54 |
self.sample_rate = 16000
|
55 |
+
if wav_frontend_args is not None:
|
56 |
+
self.wav_frontend = WavFrontend(**wav_frontend_args)
|
57 |
+
if whisper_frontend_args is not None:
|
58 |
+
self.whisper_frontend = WhisperFrontend(**whisper_frontend_args)
|
59 |
|
60 |
def to_dict(self) -> Dict[str, Any]:
|
61 |
output = copy.deepcopy(self.__dict__)
|
|
|
63 |
output["wav_frontend"]["cmvn"] = output["wav_frontend"]["cmvn"].tolist()
|
64 |
output["wav_frontend"]["_non_persistent_buffers_set"] = list(output["wav_frontend"]["_non_persistent_buffers_set"])
|
65 |
output["audio_processor_type"] = self.__class__.__name__
|
66 |
+
if 'whisper_frontend' in output:
|
67 |
+
output["whisper_frontend"] = output["whisper_frontend"].__dict__
|
68 |
return output
|
69 |
|
70 |
@classmethod
|
|
|
90 |
"""Preprocess an audio or a batch of audios."""
|
91 |
return self.preprocess(audios, **kwargs)
|
92 |
|
93 |
+
def _preprocess_audio(self, waveform: torch.Tensor, sample_rate: int, use_whisper_encoder: bool=False) -> torch.Tensor:
|
94 |
waveform = normalize_audio_tensor(waveform, sample_rate, target_sample_rate=self.sample_rate)
|
95 |
+
if not use_whisper_encoder:
|
96 |
+
audio_feat = self.wav_frontend(waveform.unsqueeze(0), [len(waveform)])[0].squeeze(0)
|
97 |
+
else:
|
98 |
+
audio_feat = self.whisper_frontend(waveform.unsqueeze(0), [len(waveform)])[0].squeeze(0)
|
99 |
return audio_feat
|
100 |
|
101 |
+
def _make_batched_audios(self, audio_feat_list: List[torch.Tensor], use_whisper_encoder=False) -> Dict[str, Any]:
|
102 |
audio_feats_lengths = torch.tensor([[audio_feat.shape[0]] for audio_feat in audio_feat_list], dtype=torch.long)
|
103 |
+
if not use_whisper_encoder:
|
104 |
+
encoder_feats_lengths = audio_feats_lengths
|
105 |
+
else:
|
106 |
+
# whisper + project layer has two conv
|
107 |
+
encoder_feats_lengths = ((audio_feats_lengths-3+2*1)//2+1-3+2*1)//2+1
|
108 |
+
|
109 |
max_length = max(audio_feat.shape[0] for audio_feat in audio_feat_list)
|
110 |
audio_feats = torch.stack(
|
111 |
[
|
|
|
115 |
) for audio_feat in audio_feat_list
|
116 |
], dim=0,
|
117 |
)
|
118 |
+
return {"audio_feats": audio_feats.numpy(), "audio_feats_lengths": audio_feats_lengths.numpy(), "encoder_feats_lengths": encoder_feats_lengths}
|
119 |
|
120 |
def preprocess(
|
121 |
self,
|
|
|
124 |
**kwargs,
|
125 |
) -> BatchFeature:
|
126 |
if isinstance(audios, List):
|
127 |
+
audio_inputs = self._make_batched_audios([self._preprocess_audio(waveform, sr, use_whisper_encoder=kwargs.get('use_whisper_encoder', False)) for waveform, sr in audios], use_whisper_encoder=kwargs.get('use_whisper_encoder', False))
|
128 |
else:
|
129 |
waveform, sr = audios
|
130 |
+
audio_inputs = self._make_batched_audios([self._preprocess_audio(waveform, sr, use_whisper_encoder=kwargs.get('use_whisper_encoder', False))])
|
131 |
return BatchFeature(data=audio_inputs, tensor_type=return_tensors)
|
132 |
|
133 |
|
|
|
266 |
return feats_pad, feats_lens
|
267 |
|
268 |
|
269 |
+
class WhisperFrontend:
|
270 |
+
def __init__(self, n_mels: int=128):
|
271 |
+
self.n_mels = n_mels
|
272 |
+
|
273 |
+
def __call__(self, input: torch.Tensor, input_lengths: List[int]):
|
274 |
+
"""
|
275 |
+
input: [B, T]
|
276 |
+
input_lengths: [B]
|
277 |
+
"""
|
278 |
+
|
279 |
+
assert input.size(0) == 1
|
280 |
+
|
281 |
+
mel = whisper.log_mel_spectrogram(input.squeeze(0), n_mels=self.n_mels).to(input.device) # [n_mels, T]
|
282 |
+
feats_pad = mel.transpose(0, 1).unsqueeze(0) # [B=1, T, n_mels]
|
283 |
+
feats_lens = torch.tensor([mel.size(1)], dtype=torch.long) # [B=1]
|
284 |
+
return feats_pad, feats_lens
|
285 |
+
|
286 |
def load_cmvn(cmvn_file):
|
287 |
with open(cmvn_file, 'r', encoding='utf-8') as f:
|
288 |
lines = f.readlines()
|
bailingmm_utils.py
CHANGED
@@ -268,10 +268,13 @@ def _read_video_decord(
|
|
268 |
total_frames, video_fps = len(vr), vr.get_avg_fps()
|
269 |
logger.info(f"decord: {video_path=}, {total_frames=}, {video_fps=}, time={time.time() - st:.3f}s")
|
270 |
|
271 |
-
sample_method = ele.get("sample", "
|
272 |
# if sample_method == "sequence":
|
273 |
# total_frames = int(total_frames / video_fps * 2)
|
274 |
-
|
|
|
|
|
|
|
275 |
frame_indices = sample_frames(
|
276 |
num_frames=num_frames, total_frames=total_frames, sample=sample_method
|
277 |
)
|
@@ -353,14 +356,19 @@ def fetch_video(ele: dict, image_factor: int = IMAGE_FACTOR, return_video_sample
|
|
353 |
fetch_image({"image": video_element, **process_info}, size_factor=image_factor)
|
354 |
for video_element in ele["video"]
|
355 |
]
|
356 |
-
if len(images) > ele["max_frames"]:
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
num_frames = ceil_by_factor(len(images), FRAME_FACTOR)
|
362 |
if len(images) < num_frames:
|
363 |
images.extend([images[-1]] * (num_frames - len(images)))
|
|
|
|
|
|
|
|
|
|
|
364 |
if return_video_sample_fps:
|
365 |
return images, process_info.pop("sample_fps", 2.0)
|
366 |
return images
|
@@ -421,6 +429,11 @@ def process_vision_info(
|
|
421 |
else:
|
422 |
image_inputs.append(fetch_image(vision_info))
|
423 |
elif "video" in vision_info or "video_url" in vision_info:
|
|
|
|
|
|
|
|
|
|
|
424 |
video_inputs.append(fetch_video(vision_info))
|
425 |
elif "audio" in vision_info or "audio_url" in vision_info:
|
426 |
if isinstance(vision_info["audio"], (tuple, list)):
|
|
|
268 |
total_frames, video_fps = len(vr), vr.get_avg_fps()
|
269 |
logger.info(f"decord: {video_path=}, {total_frames=}, {video_fps=}, time={time.time() - st:.3f}s")
|
270 |
|
271 |
+
sample_method = ele.get("sample", "sequence")
|
272 |
# if sample_method == "sequence":
|
273 |
# total_frames = int(total_frames / video_fps * 2)
|
274 |
+
if video_fps > 2.0 and total_frames / float(video_fps) > 5.0:
|
275 |
+
num_frames = get_frames(ele, int(total_frames / float(video_fps) * 2))
|
276 |
+
else:
|
277 |
+
num_frames = get_frames(ele, total_frames)
|
278 |
frame_indices = sample_frames(
|
279 |
num_frames=num_frames, total_frames=total_frames, sample=sample_method
|
280 |
)
|
|
|
356 |
fetch_image({"image": video_element, **process_info}, size_factor=image_factor)
|
357 |
for video_element in ele["video"]
|
358 |
]
|
359 |
+
# if len(images) > ele["max_frames"]:
|
360 |
+
# num_frames_target = ele["max_frames"]
|
361 |
+
# print(ele["max_frames"])
|
362 |
+
# interval = len(images) // num_frames_target # 计算抽取间隔
|
363 |
+
# images = [images[i] for i in range(0, len(images), interval)][:num_frames_target]
|
364 |
num_frames = ceil_by_factor(len(images), FRAME_FACTOR)
|
365 |
if len(images) < num_frames:
|
366 |
images.extend([images[-1]] * (num_frames - len(images)))
|
367 |
+
if len(images) > ele["max_frames"]:
|
368 |
+
frame_indices = sample_frames(
|
369 |
+
num_frames=ele["max_frames"], total_frames=len(images), sample="uniform",
|
370 |
+
)
|
371 |
+
images = [images[i] for i in frame_indices]
|
372 |
if return_video_sample_fps:
|
373 |
return images, process_info.pop("sample_fps", 2.0)
|
374 |
return images
|
|
|
429 |
else:
|
430 |
image_inputs.append(fetch_image(vision_info))
|
431 |
elif "video" in vision_info or "video_url" in vision_info:
|
432 |
+
if is_video(vision_info['video']):
|
433 |
+
data_value = vision_info['video']
|
434 |
+
else:
|
435 |
+
data_value = [os.path.join(vision_info['video'], frame) for frame in os.listdir(vision_info['video'])]
|
436 |
+
vision_info['video']=data_value
|
437 |
video_inputs.append(fetch_video(vision_info))
|
438 |
elif "audio" in vision_info or "audio_url" in vision_info:
|
439 |
if isinstance(vision_info["audio"], (tuple, list)):
|
config.json
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": ".",
|
3 |
"architectures": [
|
4 |
"BailingMMNativeForConditionalGeneration"
|
5 |
],
|
@@ -39,7 +38,6 @@
|
|
39 |
"AutoConfig": "configuration_bailingmm.BailingMMConfig"
|
40 |
},
|
41 |
"llm_config": {
|
42 |
-
"_name_or_path": "",
|
43 |
"add_cross_attention": false,
|
44 |
"architectures": [
|
45 |
"BailingMoeForCausalLM"
|
@@ -93,7 +91,7 @@
|
|
93 |
"moe_intermediate_size": 1408,
|
94 |
"multi_gate": true,
|
95 |
"no_repeat_ngram_size": 0,
|
96 |
-
"norm_head":
|
97 |
"norm_softmax": false,
|
98 |
"norm_topk_prob": true,
|
99 |
"num_attention_heads": 16,
|
@@ -146,7 +144,6 @@
|
|
146 |
"mlp_depth": 2,
|
147 |
"model_type": "bailingmm",
|
148 |
"talker_config": {
|
149 |
-
"_name_or_path": "./talker",
|
150 |
"add_cross_attention": false,
|
151 |
"architectures": null,
|
152 |
"audio_vocab_size": 32768,
|
@@ -220,7 +217,6 @@
|
|
220 |
"torch_dtype": "float32",
|
221 |
"transformers_version": "4.45.0",
|
222 |
"vision_config": {
|
223 |
-
"_name_or_path": "",
|
224 |
"add_cross_attention": false,
|
225 |
"architectures": [
|
226 |
"Qwen2_5_VisionTransformer"
|
@@ -307,5 +303,16 @@
|
|
307 |
"typical_p": 1.0,
|
308 |
"use_bfloat16": false,
|
309 |
"window_size": 112
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
310 |
}
|
311 |
}
|
|
|
1 |
{
|
|
|
2 |
"architectures": [
|
3 |
"BailingMMNativeForConditionalGeneration"
|
4 |
],
|
|
|
38 |
"AutoConfig": "configuration_bailingmm.BailingMMConfig"
|
39 |
},
|
40 |
"llm_config": {
|
|
|
41 |
"add_cross_attention": false,
|
42 |
"architectures": [
|
43 |
"BailingMoeForCausalLM"
|
|
|
91 |
"moe_intermediate_size": 1408,
|
92 |
"multi_gate": true,
|
93 |
"no_repeat_ngram_size": 0,
|
94 |
+
"norm_head": false,
|
95 |
"norm_softmax": false,
|
96 |
"norm_topk_prob": true,
|
97 |
"num_attention_heads": 16,
|
|
|
144 |
"mlp_depth": 2,
|
145 |
"model_type": "bailingmm",
|
146 |
"talker_config": {
|
|
|
147 |
"add_cross_attention": false,
|
148 |
"architectures": null,
|
149 |
"audio_vocab_size": 32768,
|
|
|
217 |
"torch_dtype": "float32",
|
218 |
"transformers_version": "4.45.0",
|
219 |
"vision_config": {
|
|
|
220 |
"add_cross_attention": false,
|
221 |
"architectures": [
|
222 |
"Qwen2_5_VisionTransformer"
|
|
|
303 |
"typical_p": 1.0,
|
304 |
"use_bfloat16": false,
|
305 |
"window_size": 112
|
306 |
+
},
|
307 |
+
"whisper_config": {
|
308 |
+
"ds_kernel_size": 3,
|
309 |
+
"ds_stride": 2,
|
310 |
+
"whisper_encoder_config": {
|
311 |
+
"n_ctx": 15000,
|
312 |
+
"n_head": 20,
|
313 |
+
"n_layer": 32,
|
314 |
+
"n_mels": 128,
|
315 |
+
"n_state": 1280
|
316 |
+
}
|
317 |
}
|
318 |
}
|
configuration_bailing_moe.py
CHANGED
@@ -42,6 +42,7 @@ class BailingMoeConfig(PretrainedConfig):
|
|
42 |
output_router_logits=False,
|
43 |
multi_gate=False,
|
44 |
image_patch_token=126346,
|
|
|
45 |
**kwargs,
|
46 |
):
|
47 |
self.num_hidden_layers = num_hidden_layers
|
@@ -78,4 +79,5 @@ class BailingMoeConfig(PretrainedConfig):
|
|
78 |
self.output_router_logits = output_router_logits
|
79 |
self.multi_gate = multi_gate
|
80 |
self.image_patch_token = image_patch_token
|
81 |
-
super().__init__(pad_token_id=pad_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs)
|
|
|
|
42 |
output_router_logits=False,
|
43 |
multi_gate=False,
|
44 |
image_patch_token=126346,
|
45 |
+
_attn_implementation="flash_attention_2",
|
46 |
**kwargs,
|
47 |
):
|
48 |
self.num_hidden_layers = num_hidden_layers
|
|
|
79 |
self.output_router_logits = output_router_logits
|
80 |
self.multi_gate = multi_gate
|
81 |
self.image_patch_token = image_patch_token
|
82 |
+
super().__init__(pad_token_id=pad_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs)
|
83 |
+
self._attn_implementation = _attn_implementation
|
configuration_bailingmm.py
CHANGED
@@ -18,6 +18,8 @@ from qwen2_5_vit import Qwen2_5_VLVisionConfig
|
|
18 |
from configuration_audio import GLMAudioConfig
|
19 |
from configuration_bailing_moe import BailingMoeConfig
|
20 |
from configuration_bailing_talker import BailingTalkerConfig
|
|
|
|
|
21 |
|
22 |
class BailingMMConfig(PretrainedConfig):
|
23 |
model_type = "bailingmm"
|
@@ -28,6 +30,7 @@ class BailingMMConfig(PretrainedConfig):
|
|
28 |
llm_config: BailingMoeConfig = None,
|
29 |
vision_config: Qwen2_5_VLVisionConfig = None,
|
30 |
audio_config: GLMAudioConfig = None,
|
|
|
31 |
talker_config: BailingTalkerConfig = None,
|
32 |
**kwargs
|
33 |
):
|
@@ -36,4 +39,5 @@ class BailingMMConfig(PretrainedConfig):
|
|
36 |
self.llm_config = BailingMoeConfig(**llm_config) if isinstance(llm_config, dict) else llm_config
|
37 |
self.mlp_depth = mlp_depth
|
38 |
self.talker_config = BailingTalkerConfig(**talker_config) if isinstance(talker_config, dict) else talker_config
|
|
|
39 |
super().__init__(**kwargs)
|
|
|
18 |
from configuration_audio import GLMAudioConfig
|
19 |
from configuration_bailing_moe import BailingMoeConfig
|
20 |
from configuration_bailing_talker import BailingTalkerConfig
|
21 |
+
from configuration_whisper_encoder import WhisperEncoderConfig
|
22 |
+
|
23 |
|
24 |
class BailingMMConfig(PretrainedConfig):
|
25 |
model_type = "bailingmm"
|
|
|
30 |
llm_config: BailingMoeConfig = None,
|
31 |
vision_config: Qwen2_5_VLVisionConfig = None,
|
32 |
audio_config: GLMAudioConfig = None,
|
33 |
+
whisper_config: WhisperEncoderConfig = None,
|
34 |
talker_config: BailingTalkerConfig = None,
|
35 |
**kwargs
|
36 |
):
|
|
|
39 |
self.llm_config = BailingMoeConfig(**llm_config) if isinstance(llm_config, dict) else llm_config
|
40 |
self.mlp_depth = mlp_depth
|
41 |
self.talker_config = BailingTalkerConfig(**talker_config) if isinstance(talker_config, dict) else talker_config
|
42 |
+
self.whisper_config = WhisperEncoderConfig(**whisper_config) if isinstance(whisper_config, dict) else whisper_config
|
43 |
super().__init__(**kwargs)
|
configuration_whisper_encoder.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 shunxing1234 and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" GLMAudio model configuration """
|
16 |
+
|
17 |
+
from transformers.configuration_utils import PretrainedConfig
|
18 |
+
from transformers.utils import logging
|
19 |
+
|
20 |
+
logger = logging.get_logger(__name__)
|
21 |
+
|
22 |
+
|
23 |
+
class WhisperEncoderConfig(PretrainedConfig):
|
24 |
+
def __init__(
|
25 |
+
self,
|
26 |
+
whisper_encoder_config: dict = None,
|
27 |
+
ds_kernel_size=3,
|
28 |
+
ds_stride=2,
|
29 |
+
**kwargs
|
30 |
+
):
|
31 |
+
self.whisper_encoder_config = whisper_encoder_config
|
32 |
+
self.ds_kernel_size = ds_kernel_size
|
33 |
+
self.ds_stride = ds_stride
|
34 |
+
|
35 |
+
super().__init__(
|
36 |
+
**kwargs
|
37 |
+
)
|
connector/LICENSE
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Qwen RESEARCH LICENSE AGREEMENT
|
2 |
+
|
3 |
+
Qwen RESEARCH LICENSE AGREEMENT Release Date: September 19, 2024
|
4 |
+
|
5 |
+
By clicking to agree or by using or distributing any portion or element of the Qwen Materials, you will be deemed to have recognized and accepted the content of this Agreement, which is effective immediately.
|
6 |
+
|
7 |
+
1. Definitions
|
8 |
+
a. This Qwen RESEARCH LICENSE AGREEMENT (this "Agreement") shall mean the terms and conditions for use, reproduction, distribution and modification of the Materials as defined by this Agreement.
|
9 |
+
b. "We" (or "Us") shall mean Alibaba Cloud.
|
10 |
+
c. "You" (or "Your") shall mean a natural person or legal entity exercising the rights granted by this Agreement and/or using the Materials for any purpose and in any field of use.
|
11 |
+
d. "Third Parties" shall mean individuals or legal entities that are not under common control with us or you.
|
12 |
+
e. "Qwen" shall mean the large language models, and software and algorithms, consisting of trained model weights, parameters (including optimizer states), machine-learning model code, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by us.
|
13 |
+
f. "Materials" shall mean, collectively, Alibaba Cloud's proprietary Qwen and Documentation (and any portion thereof) made available under this Agreement.
|
14 |
+
g. "Source" form shall mean the preferred form for making modifications, including but not limited to model source code, documentation source, and configuration files.
|
15 |
+
h. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types.
|
16 |
+
i. "Non-Commercial" shall mean for research or evaluation purposes only.
|
17 |
+
|
18 |
+
2. Grant of Rights
|
19 |
+
a. You are granted a non-exclusive, worldwide, non-transferable and royalty-free limited license under Alibaba Cloud's intellectual property or other rights owned by us embodied in the Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Materials FOR NON-COMMERCIAL PURPOSES ONLY.
|
20 |
+
b. If you are commercially using the Materials, you shall request a license from us.
|
21 |
+
|
22 |
+
3. Redistribution
|
23 |
+
You may distribute copies or make the Materials, or derivative works thereof, available as part of a product or service that contains any of them, with or without modifications, and in Source or Object form, provided that you meet the following conditions:
|
24 |
+
a. You shall give any other recipients of the Materials or derivative works a copy of this Agreement;
|
25 |
+
b. You shall cause any modified files to carry prominent notices stating that you changed the files;
|
26 |
+
c. You shall retain in all copies of the Materials that you distribute the following attribution notices within a "Notice" text file distributed as a part of such copies: "Qwen is licensed under the Qwen RESEARCH LICENSE AGREEMENT, Copyright (c) Alibaba Cloud. All Rights Reserved."; and
|
27 |
+
d. You may add your own copyright statement to your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of your modifications, or for any such derivative works as a whole, provided your use, reproduction, and distribution of the work otherwise complies with the terms and conditions of this Agreement.
|
28 |
+
|
29 |
+
4. Rules of use
|
30 |
+
a. The Materials may be subject to export controls or restrictions in China, the United States or other countries or regions. You shall comply with applicable laws and regulations in your use of the Materials.
|
31 |
+
b. If you use the Materials or any outputs or results therefrom to create, train, fine-tune, or improve an AI model that is distributed or made available, you shall prominently display “Built with Qwen” or “Improved using Qwen” in the related product documentation.
|
32 |
+
|
33 |
+
5. Intellectual Property
|
34 |
+
a. We retain ownership of all intellectual property rights in and to the Materials and derivatives made by or for us. Conditioned upon compliance with the terms and conditions of this Agreement, with respect to any derivative works and modifications of the Materials that are made by you, you are and will be the owner of such derivative works and modifications.
|
35 |
+
b. No trademark license is granted to use the trade names, trademarks, service marks, or product names of us, except as required to fulfill notice requirements under this Agreement or as required for reasonable and customary use in describing and redistributing the Materials.
|
36 |
+
c. If you commence a lawsuit or other proceedings (including a cross-claim or counterclaim in a lawsuit) against us or any entity alleging that the Materials or any output therefrom, or any part of the foregoing, infringe any intellectual property or other right owned or licensable by you, then all licenses granted to you under this Agreement shall terminate as of the date such lawsuit or other proceeding is commenced or brought.
|
37 |
+
|
38 |
+
6. Disclaimer of Warranty and Limitation of Liability
|
39 |
+
a. We are not obligated to support, update, provide training for, or develop any further version of the Qwen Materials or to grant any license thereto.
|
40 |
+
b. THE MATERIALS ARE PROVIDED "AS IS" WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT, OR FITNESS FOR A PARTICULAR PURPOSE. WE MAKE NO WARRANTY AND ASSUME NO RESPONSIBILITY FOR THE SAFETY OR STABILITY OF THE MATERIALS AND ANY OUTPUT THEREFROM.
|
41 |
+
c. IN NO EVENT SHALL WE BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING, BUT NOT LIMITED TO ANY DIRECT, OR INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING FROM YOUR USE OR INABILITY TO USE THE MATERIALS OR ANY OUTPUT OF IT, NO MATTER HOW IT’S CAUSED.
|
42 |
+
d. You will defend, indemnify and hold harmless us from and against any claim by any third party arising out of or related to your use or distribution of the Materials.
|
43 |
+
|
44 |
+
7. Survival and Termination.
|
45 |
+
a. The term of this Agreement shall commence upon your acceptance of this Agreement or access to the Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein.
|
46 |
+
b. We may terminate this Agreement if you breach any of the terms or conditions of this Agreement. Upon termination of this Agreement, you must delete and cease use of the Materials. Sections 6 and 8 shall survive the termination of this Agreement.
|
47 |
+
|
48 |
+
8. Governing Law and Jurisdiction.
|
49 |
+
a. This Agreement and any dispute arising out of or relating to it will be governed by the laws of China, without regard to conflict of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement.
|
50 |
+
b. The People's Courts in Hangzhou City shall have exclusive jurisdiction over any dispute arising out of this Agreement.
|
51 |
+
|
52 |
+
9. Other Terms and Conditions.
|
53 |
+
a. Any arrangements, understandings, or agreements regarding the Material not stated herein are separate from and independent of the terms and conditions of this Agreement. You shall request a separate license from us, if you use the Materials in ways not expressly agreed to in this Agreement.
|
54 |
+
b. We shall not be bound by any additional or different terms or conditions communicated by you unless expressly agreed.
|
connector/README.md
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
license_name: qwen-research
|
4 |
+
license_link: https://huggingface.co/Qwen/Qwen2.5-3B-Instruct/blob/main/LICENSE
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
pipeline_tag: text-generation
|
8 |
+
base_model: Qwen/Qwen2.5-3B
|
9 |
+
tags:
|
10 |
+
- chat
|
11 |
+
library_name: transformers
|
12 |
+
---
|
13 |
+
|
14 |
+
# Qwen2.5-3B-Instruct
|
15 |
+
|
16 |
+
## Introduction
|
17 |
+
|
18 |
+
Qwen2.5 is the latest series of Qwen large language models. For Qwen2.5, we release a number of base language models and instruction-tuned language models ranging from 0.5 to 72 billion parameters. Qwen2.5 brings the following improvements upon Qwen2:
|
19 |
+
|
20 |
+
- Significantly **more knowledge** and has greatly improved capabilities in **coding** and **mathematics**, thanks to our specialized expert models in these domains.
|
21 |
+
- Significant improvements in **instruction following**, **generating long texts** (over 8K tokens), **understanding structured data** (e.g, tables), and **generating structured outputs** especially JSON. **More resilient to the diversity of system prompts**, enhancing role-play implementation and condition-setting for chatbots.
|
22 |
+
- **Long-context Support** up to 128K tokens and can generate up to 8K tokens.
|
23 |
+
- **Multilingual support** for over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more.
|
24 |
+
|
25 |
+
**This repo contains the instruction-tuned 3B Qwen2.5 model**, which has the following features:
|
26 |
+
- Type: Causal Language Models
|
27 |
+
- Training Stage: Pretraining & Post-training
|
28 |
+
- Architecture: transformers with RoPE, SwiGLU, RMSNorm, Attention QKV bias and tied word embeddings
|
29 |
+
- Number of Parameters: 3.09B
|
30 |
+
- Number of Paramaters (Non-Embedding): 2.77B
|
31 |
+
- Number of Layers: 36
|
32 |
+
- Number of Attention Heads (GQA): 16 for Q and 2 for KV
|
33 |
+
- Context Length: Full 32,768 tokens and generation 8192 tokens
|
34 |
+
|
35 |
+
For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2.5/), [GitHub](https://github.com/QwenLM/Qwen2.5), and [Documentation](https://qwen.readthedocs.io/en/latest/).
|
36 |
+
|
37 |
+
## Requirements
|
38 |
+
|
39 |
+
The code of Qwen2.5 has been in the latest Hugging face `transformers` and we advise you to use the latest version of `transformers`.
|
40 |
+
|
41 |
+
With `transformers<4.37.0`, you will encounter the following error:
|
42 |
+
```
|
43 |
+
KeyError: 'qwen2'
|
44 |
+
```
|
45 |
+
|
46 |
+
## Quickstart
|
47 |
+
|
48 |
+
Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
|
49 |
+
|
50 |
+
```python
|
51 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
52 |
+
|
53 |
+
model_name = "Qwen/Qwen2.5-3B-Instruct"
|
54 |
+
|
55 |
+
model = AutoModelForCausalLM.from_pretrained(
|
56 |
+
model_name,
|
57 |
+
torch_dtype="auto",
|
58 |
+
device_map="auto"
|
59 |
+
)
|
60 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
61 |
+
|
62 |
+
prompt = "Give me a short introduction to large language model."
|
63 |
+
messages = [
|
64 |
+
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
|
65 |
+
{"role": "user", "content": prompt}
|
66 |
+
]
|
67 |
+
text = tokenizer.apply_chat_template(
|
68 |
+
messages,
|
69 |
+
tokenize=False,
|
70 |
+
add_generation_prompt=True
|
71 |
+
)
|
72 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
73 |
+
|
74 |
+
generated_ids = model.generate(
|
75 |
+
**model_inputs,
|
76 |
+
max_new_tokens=512
|
77 |
+
)
|
78 |
+
generated_ids = [
|
79 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
80 |
+
]
|
81 |
+
|
82 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
83 |
+
```
|
84 |
+
|
85 |
+
|
86 |
+
## Evaluation & Performance
|
87 |
+
|
88 |
+
Detailed evaluation results are reported in this [📑 blog](https://qwenlm.github.io/blog/qwen2.5/).
|
89 |
+
|
90 |
+
For requirements on GPU memory and the respective throughput, see results [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html).
|
91 |
+
|
92 |
+
## Citation
|
93 |
+
|
94 |
+
If you find our work helpful, feel free to give us a cite.
|
95 |
+
|
96 |
+
```
|
97 |
+
@misc{qwen2.5,
|
98 |
+
title = {Qwen2.5: A Party of Foundation Models},
|
99 |
+
url = {https://qwenlm.github.io/blog/qwen2.5/},
|
100 |
+
author = {Qwen Team},
|
101 |
+
month = {September},
|
102 |
+
year = {2024}
|
103 |
+
}
|
104 |
+
|
105 |
+
@article{qwen2,
|
106 |
+
title={Qwen2 Technical Report},
|
107 |
+
author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan},
|
108 |
+
journal={arXiv preprint arXiv:2407.10671},
|
109 |
+
year={2024}
|
110 |
+
}
|
111 |
+
```
|
connector/config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/video_hy2/modelzoo/Qwen2.5-3B-Instruct/",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151645,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 2048,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 11008,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"max_window_layers": 70,
|
15 |
+
"model_type": "qwen2",
|
16 |
+
"num_attention_heads": 16,
|
17 |
+
"num_hidden_layers": 36,
|
18 |
+
"num_key_value_heads": 2,
|
19 |
+
"rms_norm_eps": 1e-06,
|
20 |
+
"rope_scaling": null,
|
21 |
+
"rope_theta": 1000000.0,
|
22 |
+
"sliding_window": null,
|
23 |
+
"tie_word_embeddings": true,
|
24 |
+
"torch_dtype": "float32",
|
25 |
+
"transformers_version": "4.46.1",
|
26 |
+
"use_cache": true,
|
27 |
+
"use_sliding_window": false,
|
28 |
+
"vocab_size": 151936
|
29 |
+
}
|
connector/generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.05,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.46.1"
|
14 |
+
}
|
connector/gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
connector/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00015.safetensors → connector/model-00001-of-00003.safetensors
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a83d6ee4f16eaddeb3531ddda142489eb8e11f5b8b0f06c2b2494154693cc8c4
|
3 |
+
size 4982131536
|
connector/model-00002-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:65dcc8192c84451c559229ccadf78a8040c9a9aa4571f8fe9728a52b547ba32a
|
3 |
+
size 4932949336
|
connector/model-00003-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1f0f64f6662c7059f6578f03a0ed65c11c2a73f23c6c55d0872edb1423840b21
|
3 |
+
size 2428723160
|
connector/model.safetensors.index.json
ADDED
@@ -0,0 +1,441 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 12343754752
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"model.embed_tokens.weight": "model-00001-of-00003.safetensors",
|
7 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
8 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
9 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
10 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
11 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
12 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
17 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
19 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
20 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
21 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
22 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
23 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
24 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
26 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
27 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
29 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
31 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
32 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
33 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
34 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
35 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
36 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
38 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
39 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
41 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
43 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
44 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
45 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
46 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
47 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
48 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
50 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
51 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
53 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
55 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
56 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
57 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
58 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
59 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
60 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
62 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
63 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
65 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
67 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
68 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
69 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
70 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
71 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
72 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
74 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
75 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
77 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
79 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
80 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
81 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
82 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
83 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
84 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
86 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
87 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
89 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
91 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
92 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
93 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
94 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
95 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
96 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
98 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
99 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
101 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
103 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
104 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
105 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
106 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
107 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
108 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
110 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
111 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
113 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
115 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
116 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
117 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
118 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
119 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
120 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
122 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
123 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
125 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
127 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
128 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
129 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
130 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
131 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
132 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
134 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
135 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
137 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
139 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
140 |
+
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
141 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
142 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
143 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
144 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
146 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
147 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
149 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
151 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
152 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
153 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
154 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
155 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
156 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
158 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
159 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
161 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
163 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
164 |
+
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
165 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
166 |
+
"model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
167 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
168 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
170 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
171 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
173 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
175 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
176 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
177 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
178 |
+
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
179 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
180 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
182 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
183 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
185 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
187 |
+
"model.layers.22.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
188 |
+
"model.layers.22.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
189 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
190 |
+
"model.layers.22.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
191 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
192 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
194 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
195 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
197 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
199 |
+
"model.layers.23.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
200 |
+
"model.layers.23.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
201 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
202 |
+
"model.layers.23.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
203 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
204 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
206 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
207 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
209 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
211 |
+
"model.layers.24.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
212 |
+
"model.layers.24.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
213 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
214 |
+
"model.layers.24.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
215 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
216 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
218 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
219 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
221 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
223 |
+
"model.layers.25.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
224 |
+
"model.layers.25.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
225 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
226 |
+
"model.layers.25.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
227 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
228 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
230 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
231 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
233 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
235 |
+
"model.layers.26.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
236 |
+
"model.layers.26.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
237 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
238 |
+
"model.layers.26.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
239 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
240 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
242 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
243 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
245 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
247 |
+
"model.layers.27.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
248 |
+
"model.layers.27.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
249 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
250 |
+
"model.layers.27.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
251 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
252 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
254 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
255 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
257 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
259 |
+
"model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
260 |
+
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
261 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
262 |
+
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
263 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
264 |
+
"model.layers.28.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
265 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
266 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
267 |
+
"model.layers.28.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
268 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
269 |
+
"model.layers.28.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
270 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
271 |
+
"model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
272 |
+
"model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
273 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
274 |
+
"model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
275 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
276 |
+
"model.layers.29.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
|
277 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
278 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
279 |
+
"model.layers.29.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
|
280 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
281 |
+
"model.layers.29.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
|
282 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
283 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
284 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
285 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
286 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
287 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
288 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
289 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
290 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
291 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
292 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
293 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
294 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
295 |
+
"model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
296 |
+
"model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
297 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
298 |
+
"model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
299 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
300 |
+
"model.layers.30.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
|
301 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
302 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
303 |
+
"model.layers.30.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
|
304 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
305 |
+
"model.layers.30.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
|
306 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
307 |
+
"model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
308 |
+
"model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
309 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
310 |
+
"model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
311 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
312 |
+
"model.layers.31.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
|
313 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
314 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
315 |
+
"model.layers.31.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
|
316 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
317 |
+
"model.layers.31.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
|
318 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
319 |
+
"model.layers.32.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
320 |
+
"model.layers.32.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
321 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
322 |
+
"model.layers.32.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
323 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
324 |
+
"model.layers.32.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
|
325 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
326 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
327 |
+
"model.layers.32.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
|
328 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
329 |
+
"model.layers.32.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
|
330 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
331 |
+
"model.layers.33.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
332 |
+
"model.layers.33.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
333 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
334 |
+
"model.layers.33.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
335 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
336 |
+
"model.layers.33.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
|
337 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
338 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
339 |
+
"model.layers.33.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
|
340 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
341 |
+
"model.layers.33.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
|
342 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
343 |
+
"model.layers.34.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
344 |
+
"model.layers.34.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
345 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
346 |
+
"model.layers.34.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
347 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
348 |
+
"model.layers.34.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
|
349 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
350 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
351 |
+
"model.layers.34.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
|
352 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
353 |
+
"model.layers.34.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
|
354 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
355 |
+
"model.layers.35.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
356 |
+
"model.layers.35.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
357 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
358 |
+
"model.layers.35.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
359 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
360 |
+
"model.layers.35.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
|
361 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
362 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
363 |
+
"model.layers.35.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
|
364 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
365 |
+
"model.layers.35.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
|
366 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
367 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
368 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
369 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
370 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
371 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
372 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
373 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
374 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
375 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
376 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
377 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
378 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
379 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
380 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
381 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
382 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
383 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
384 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
385 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
386 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
387 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
388 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
389 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
390 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
391 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
392 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
393 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
394 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
395 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
396 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
397 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
398 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
399 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
400 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
401 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
402 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
403 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
404 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
405 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
406 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
407 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
408 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
409 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
410 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
411 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
412 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
413 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
414 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
415 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
416 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
417 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
418 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
419 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
420 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
421 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
422 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
423 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
424 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
425 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
426 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
427 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
428 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
429 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
430 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
431 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
432 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
433 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
434 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
435 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
436 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
437 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
438 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
439 |
+
"model.norm.weight": "model-00003-of-00003.safetensors"
|
440 |
+
}
|
441 |
+
}
|
connector/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
connector/tokenizer_config.json
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|im_end|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"model_max_length": 131072,
|
203 |
+
"pad_token": "<|endoftext|>",
|
204 |
+
"split_special_tokens": false,
|
205 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
206 |
+
"unk_token": null
|
207 |
+
}
|
connector/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/openai_whisper-20240930-py3-none-any.whl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9616410f3c1e0ce500bc34f0231d1e56ce59a0081baba22253d153f01e8938f0
|
3 |
+
size 803668
|
data/wavs/speechQA_sample.wav
ADDED
Binary file (51.6 kB). View file
|
|
diffusion/__init__.py
ADDED
File without changes
|
diffusion/pipeline_sana.py
ADDED
@@ -0,0 +1,1011 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 PixArt-Sigma Authors and The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import html
|
16 |
+
import inspect
|
17 |
+
import re
|
18 |
+
import urllib.parse as ul
|
19 |
+
import warnings
|
20 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
21 |
+
|
22 |
+
import torch
|
23 |
+
from transformers import Gemma2PreTrainedModel, GemmaTokenizer, GemmaTokenizerFast
|
24 |
+
|
25 |
+
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
26 |
+
from diffusers.image_processor import PixArtImageProcessor
|
27 |
+
from diffusers.loaders import SanaLoraLoaderMixin
|
28 |
+
from diffusers.models import AutoencoderDC, SanaTransformer2DModel
|
29 |
+
from diffusers.schedulers import DPMSolverMultistepScheduler
|
30 |
+
from diffusers.utils import (
|
31 |
+
BACKENDS_MAPPING,
|
32 |
+
USE_PEFT_BACKEND,
|
33 |
+
is_bs4_available,
|
34 |
+
is_ftfy_available,
|
35 |
+
is_torch_xla_available,
|
36 |
+
logging,
|
37 |
+
replace_example_docstring,
|
38 |
+
scale_lora_layers,
|
39 |
+
unscale_lora_layers,
|
40 |
+
)
|
41 |
+
from diffusers.utils.torch_utils import randn_tensor
|
42 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
43 |
+
from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha import (
|
44 |
+
ASPECT_RATIO_512_BIN,
|
45 |
+
ASPECT_RATIO_1024_BIN,
|
46 |
+
)
|
47 |
+
from diffusers.pipelines.pixart_alpha.pipeline_pixart_sigma import ASPECT_RATIO_2048_BIN
|
48 |
+
from diffusers.pipelines.sana.pipeline_output import SanaPipelineOutput
|
49 |
+
|
50 |
+
|
51 |
+
if is_torch_xla_available():
|
52 |
+
import torch_xla.core.xla_model as xm
|
53 |
+
|
54 |
+
XLA_AVAILABLE = True
|
55 |
+
else:
|
56 |
+
XLA_AVAILABLE = False
|
57 |
+
|
58 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
59 |
+
|
60 |
+
if is_bs4_available():
|
61 |
+
from bs4 import BeautifulSoup
|
62 |
+
|
63 |
+
if is_ftfy_available():
|
64 |
+
import ftfy
|
65 |
+
|
66 |
+
|
67 |
+
ASPECT_RATIO_4096_BIN = {
|
68 |
+
"0.25": [2048.0, 8192.0],
|
69 |
+
"0.26": [2048.0, 7936.0],
|
70 |
+
"0.27": [2048.0, 7680.0],
|
71 |
+
"0.28": [2048.0, 7424.0],
|
72 |
+
"0.32": [2304.0, 7168.0],
|
73 |
+
"0.33": [2304.0, 6912.0],
|
74 |
+
"0.35": [2304.0, 6656.0],
|
75 |
+
"0.4": [2560.0, 6400.0],
|
76 |
+
"0.42": [2560.0, 6144.0],
|
77 |
+
"0.48": [2816.0, 5888.0],
|
78 |
+
"0.5": [2816.0, 5632.0],
|
79 |
+
"0.52": [2816.0, 5376.0],
|
80 |
+
"0.57": [3072.0, 5376.0],
|
81 |
+
"0.6": [3072.0, 5120.0],
|
82 |
+
"0.68": [3328.0, 4864.0],
|
83 |
+
"0.72": [3328.0, 4608.0],
|
84 |
+
"0.78": [3584.0, 4608.0],
|
85 |
+
"0.82": [3584.0, 4352.0],
|
86 |
+
"0.88": [3840.0, 4352.0],
|
87 |
+
"0.94": [3840.0, 4096.0],
|
88 |
+
"1.0": [4096.0, 4096.0],
|
89 |
+
"1.07": [4096.0, 3840.0],
|
90 |
+
"1.13": [4352.0, 3840.0],
|
91 |
+
"1.21": [4352.0, 3584.0],
|
92 |
+
"1.29": [4608.0, 3584.0],
|
93 |
+
"1.38": [4608.0, 3328.0],
|
94 |
+
"1.46": [4864.0, 3328.0],
|
95 |
+
"1.67": [5120.0, 3072.0],
|
96 |
+
"1.75": [5376.0, 3072.0],
|
97 |
+
"2.0": [5632.0, 2816.0],
|
98 |
+
"2.09": [5888.0, 2816.0],
|
99 |
+
"2.4": [6144.0, 2560.0],
|
100 |
+
"2.5": [6400.0, 2560.0],
|
101 |
+
"2.89": [6656.0, 2304.0],
|
102 |
+
"3.0": [6912.0, 2304.0],
|
103 |
+
"3.11": [7168.0, 2304.0],
|
104 |
+
"3.62": [7424.0, 2048.0],
|
105 |
+
"3.75": [7680.0, 2048.0],
|
106 |
+
"3.88": [7936.0, 2048.0],
|
107 |
+
"4.0": [8192.0, 2048.0],
|
108 |
+
}
|
109 |
+
|
110 |
+
EXAMPLE_DOC_STRING = """
|
111 |
+
Examples:
|
112 |
+
```py
|
113 |
+
>>> import torch
|
114 |
+
>>> from diffusers import SanaPipeline
|
115 |
+
|
116 |
+
>>> pipe = SanaPipeline.from_pretrained(
|
117 |
+
... "Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers", torch_dtype=torch.float32
|
118 |
+
... )
|
119 |
+
>>> pipe.to("cuda")
|
120 |
+
>>> pipe.text_encoder.to(torch.bfloat16)
|
121 |
+
>>> pipe.transformer = pipe.transformer.to(torch.bfloat16)
|
122 |
+
|
123 |
+
>>> image = pipe(prompt='a cyberpunk cat with a neon sign that says "Sana"')[0]
|
124 |
+
>>> image[0].save("output.png")
|
125 |
+
```
|
126 |
+
"""
|
127 |
+
|
128 |
+
|
129 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
130 |
+
def retrieve_timesteps(
|
131 |
+
scheduler,
|
132 |
+
num_inference_steps: Optional[int] = None,
|
133 |
+
device: Optional[Union[str, torch.device]] = None,
|
134 |
+
timesteps: Optional[List[int]] = None,
|
135 |
+
sigmas: Optional[List[float]] = None,
|
136 |
+
**kwargs,
|
137 |
+
):
|
138 |
+
r"""
|
139 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
140 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
141 |
+
|
142 |
+
Args:
|
143 |
+
scheduler (`SchedulerMixin`):
|
144 |
+
The scheduler to get timesteps from.
|
145 |
+
num_inference_steps (`int`):
|
146 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
147 |
+
must be `None`.
|
148 |
+
device (`str` or `torch.device`, *optional*):
|
149 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
150 |
+
timesteps (`List[int]`, *optional*):
|
151 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
152 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
153 |
+
sigmas (`List[float]`, *optional*):
|
154 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
155 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
156 |
+
|
157 |
+
Returns:
|
158 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
159 |
+
second element is the number of inference steps.
|
160 |
+
"""
|
161 |
+
if timesteps is not None and sigmas is not None:
|
162 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
163 |
+
if timesteps is not None:
|
164 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
165 |
+
if not accepts_timesteps:
|
166 |
+
raise ValueError(
|
167 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
168 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
169 |
+
)
|
170 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
171 |
+
timesteps = scheduler.timesteps
|
172 |
+
num_inference_steps = len(timesteps)
|
173 |
+
elif sigmas is not None:
|
174 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
175 |
+
if not accept_sigmas:
|
176 |
+
raise ValueError(
|
177 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
178 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
179 |
+
)
|
180 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
181 |
+
timesteps = scheduler.timesteps
|
182 |
+
num_inference_steps = len(timesteps)
|
183 |
+
else:
|
184 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
185 |
+
timesteps = scheduler.timesteps
|
186 |
+
return timesteps, num_inference_steps
|
187 |
+
|
188 |
+
|
189 |
+
class SanaPipeline(DiffusionPipeline, SanaLoraLoaderMixin):
|
190 |
+
r"""
|
191 |
+
Pipeline for text-to-image generation using [Sana](https://huggingface.co/papers/2410.10629).
|
192 |
+
"""
|
193 |
+
|
194 |
+
# fmt: off
|
195 |
+
bad_punct_regex = re.compile(r"[" + "#®•©™&@·º½¾¿¡§~" + r"\)" + r"\(" + r"\]" + r"\[" + r"\}" + r"\{" + r"\|" + "\\" + r"\/" + r"\*" + r"]{1,}")
|
196 |
+
# fmt: on
|
197 |
+
|
198 |
+
model_cpu_offload_seq = "text_encoder->transformer->vae"
|
199 |
+
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
200 |
+
|
201 |
+
def __init__(
|
202 |
+
self,
|
203 |
+
tokenizer: Union[GemmaTokenizer, GemmaTokenizerFast],
|
204 |
+
text_encoder: Gemma2PreTrainedModel,
|
205 |
+
vae: AutoencoderDC,
|
206 |
+
transformer: SanaTransformer2DModel,
|
207 |
+
scheduler: DPMSolverMultistepScheduler,
|
208 |
+
):
|
209 |
+
super().__init__()
|
210 |
+
|
211 |
+
self.register_modules(
|
212 |
+
tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler
|
213 |
+
)
|
214 |
+
|
215 |
+
self.vae_scale_factor = (
|
216 |
+
2 ** (len(self.vae.config.encoder_block_out_channels) - 1)
|
217 |
+
if hasattr(self, "vae") and self.vae is not None
|
218 |
+
else 32
|
219 |
+
)
|
220 |
+
self.image_processor = PixArtImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
221 |
+
|
222 |
+
def enable_vae_slicing(self):
|
223 |
+
r"""
|
224 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
225 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
226 |
+
"""
|
227 |
+
self.vae.enable_slicing()
|
228 |
+
|
229 |
+
def disable_vae_slicing(self):
|
230 |
+
r"""
|
231 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
232 |
+
computing decoding in one step.
|
233 |
+
"""
|
234 |
+
self.vae.disable_slicing()
|
235 |
+
|
236 |
+
def enable_vae_tiling(self):
|
237 |
+
r"""
|
238 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
239 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
240 |
+
processing larger images.
|
241 |
+
"""
|
242 |
+
self.vae.enable_tiling()
|
243 |
+
|
244 |
+
def disable_vae_tiling(self):
|
245 |
+
r"""
|
246 |
+
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
247 |
+
computing decoding in one step.
|
248 |
+
"""
|
249 |
+
self.vae.disable_tiling()
|
250 |
+
|
251 |
+
def _get_gemma_prompt_embeds(
|
252 |
+
self,
|
253 |
+
prompt: Union[str, List[str]],
|
254 |
+
device: torch.device,
|
255 |
+
dtype: torch.dtype,
|
256 |
+
clean_caption: bool = False,
|
257 |
+
max_sequence_length: int = 300,
|
258 |
+
complex_human_instruction: Optional[List[str]] = None,
|
259 |
+
):
|
260 |
+
r"""
|
261 |
+
Encodes the prompt into text encoder hidden states.
|
262 |
+
|
263 |
+
Args:
|
264 |
+
prompt (`str` or `List[str]`, *optional*):
|
265 |
+
prompt to be encoded
|
266 |
+
device: (`torch.device`, *optional*):
|
267 |
+
torch device to place the resulting embeddings on
|
268 |
+
clean_caption (`bool`, defaults to `False`):
|
269 |
+
If `True`, the function will preprocess and clean the provided caption before encoding.
|
270 |
+
max_sequence_length (`int`, defaults to 300): Maximum sequence length to use for the prompt.
|
271 |
+
complex_human_instruction (`list[str]`, defaults to `complex_human_instruction`):
|
272 |
+
If `complex_human_instruction` is not empty, the function will use the complex Human instruction for
|
273 |
+
the prompt.
|
274 |
+
"""
|
275 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
276 |
+
|
277 |
+
if getattr(self, "tokenizer", None) is not None:
|
278 |
+
self.tokenizer.padding_side = "right"
|
279 |
+
|
280 |
+
prompt = self._text_preprocessing(prompt, clean_caption=clean_caption)
|
281 |
+
|
282 |
+
# prepare complex human instruction
|
283 |
+
if not complex_human_instruction:
|
284 |
+
max_length_all = max_sequence_length
|
285 |
+
else:
|
286 |
+
chi_prompt = "\n".join(complex_human_instruction)
|
287 |
+
prompt = [chi_prompt + p for p in prompt]
|
288 |
+
num_chi_prompt_tokens = len(self.tokenizer.encode(chi_prompt))
|
289 |
+
max_length_all = num_chi_prompt_tokens + max_sequence_length - 2
|
290 |
+
|
291 |
+
text_inputs = self.tokenizer(
|
292 |
+
prompt,
|
293 |
+
padding="max_length",
|
294 |
+
max_length=max_length_all,
|
295 |
+
truncation=True,
|
296 |
+
add_special_tokens=True,
|
297 |
+
return_tensors="pt",
|
298 |
+
)
|
299 |
+
text_input_ids = text_inputs.input_ids
|
300 |
+
|
301 |
+
prompt_attention_mask = text_inputs.attention_mask
|
302 |
+
prompt_attention_mask = prompt_attention_mask.to(device)
|
303 |
+
|
304 |
+
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask)
|
305 |
+
prompt_embeds = prompt_embeds[0].to(dtype=dtype, device=device)
|
306 |
+
|
307 |
+
return prompt_embeds, prompt_attention_mask
|
308 |
+
|
309 |
+
def encode_prompt(
|
310 |
+
self,
|
311 |
+
prompt: Union[str, List[str]],
|
312 |
+
do_classifier_free_guidance: bool = True,
|
313 |
+
negative_prompt: str = "",
|
314 |
+
num_images_per_prompt: int = 1,
|
315 |
+
device: Optional[torch.device] = None,
|
316 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
317 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
318 |
+
prompt_attention_mask: Optional[torch.Tensor] = None,
|
319 |
+
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
|
320 |
+
clean_caption: bool = False,
|
321 |
+
max_sequence_length: int = 300,
|
322 |
+
complex_human_instruction: Optional[List[str]] = None,
|
323 |
+
lora_scale: Optional[float] = None,
|
324 |
+
):
|
325 |
+
r"""
|
326 |
+
Encodes the prompt into text encoder hidden states.
|
327 |
+
|
328 |
+
Args:
|
329 |
+
prompt (`str` or `List[str]`, *optional*):
|
330 |
+
prompt to be encoded
|
331 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
332 |
+
The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`
|
333 |
+
instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For
|
334 |
+
PixArt-Alpha, this should be "".
|
335 |
+
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
|
336 |
+
whether to use classifier free guidance or not
|
337 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
338 |
+
number of images that should be generated per prompt
|
339 |
+
device: (`torch.device`, *optional*):
|
340 |
+
torch device to place the resulting embeddings on
|
341 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
342 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
343 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
344 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
345 |
+
Pre-generated negative text embeddings. For Sana, it's should be the embeddings of the "" string.
|
346 |
+
clean_caption (`bool`, defaults to `False`):
|
347 |
+
If `True`, the function will preprocess and clean the provided caption before encoding.
|
348 |
+
max_sequence_length (`int`, defaults to 300): Maximum sequence length to use for the prompt.
|
349 |
+
complex_human_instruction (`list[str]`, defaults to `complex_human_instruction`):
|
350 |
+
If `complex_human_instruction` is not empty, the function will use the complex Human instruction for
|
351 |
+
the prompt.
|
352 |
+
"""
|
353 |
+
|
354 |
+
if device is None:
|
355 |
+
device = self._execution_device
|
356 |
+
|
357 |
+
if self.transformer is not None:
|
358 |
+
dtype = self.transformer.dtype
|
359 |
+
elif self.text_encoder is not None:
|
360 |
+
dtype = self.text_encoder.dtype
|
361 |
+
else:
|
362 |
+
dtype = None
|
363 |
+
|
364 |
+
# set lora scale so that monkey patched LoRA
|
365 |
+
# function of text encoder can correctly access it
|
366 |
+
if lora_scale is not None and isinstance(self, SanaLoraLoaderMixin):
|
367 |
+
self._lora_scale = lora_scale
|
368 |
+
|
369 |
+
# dynamically adjust the LoRA scale
|
370 |
+
if self.text_encoder is not None and USE_PEFT_BACKEND:
|
371 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
372 |
+
|
373 |
+
if prompt is not None and isinstance(prompt, str):
|
374 |
+
batch_size = 1
|
375 |
+
elif prompt is not None and isinstance(prompt, list):
|
376 |
+
batch_size = len(prompt)
|
377 |
+
else:
|
378 |
+
batch_size = prompt_embeds.shape[0]
|
379 |
+
|
380 |
+
if getattr(self, "tokenizer", None) is not None:
|
381 |
+
self.tokenizer.padding_side = "right"
|
382 |
+
|
383 |
+
# See Section 3.1. of the paper.
|
384 |
+
max_length = max_sequence_length
|
385 |
+
select_index = [0] + list(range(-max_length + 1, 0))
|
386 |
+
|
387 |
+
if prompt_embeds is None:
|
388 |
+
prompt_embeds, prompt_attention_mask = self._get_gemma_prompt_embeds(
|
389 |
+
prompt=prompt,
|
390 |
+
device=device,
|
391 |
+
dtype=dtype,
|
392 |
+
clean_caption=clean_caption,
|
393 |
+
max_sequence_length=max_sequence_length,
|
394 |
+
complex_human_instruction=complex_human_instruction,
|
395 |
+
)
|
396 |
+
|
397 |
+
prompt_embeds = prompt_embeds[:, select_index]
|
398 |
+
prompt_attention_mask = prompt_attention_mask[:, select_index]
|
399 |
+
|
400 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
401 |
+
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
402 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
403 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
404 |
+
prompt_attention_mask = prompt_attention_mask.view(bs_embed, -1)
|
405 |
+
prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1)
|
406 |
+
|
407 |
+
# get unconditional embeddings for classifier free guidance
|
408 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
409 |
+
negative_prompt = [negative_prompt] * batch_size if isinstance(negative_prompt, str) else negative_prompt
|
410 |
+
negative_prompt_embeds, negative_prompt_attention_mask = self._get_gemma_prompt_embeds(
|
411 |
+
prompt=negative_prompt,
|
412 |
+
device=device,
|
413 |
+
dtype=dtype,
|
414 |
+
clean_caption=clean_caption,
|
415 |
+
max_sequence_length=max_sequence_length,
|
416 |
+
complex_human_instruction=False,
|
417 |
+
)
|
418 |
+
|
419 |
+
if do_classifier_free_guidance:
|
420 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
421 |
+
seq_len = negative_prompt_embeds.shape[1]
|
422 |
+
|
423 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
|
424 |
+
|
425 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
426 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
427 |
+
|
428 |
+
negative_prompt_attention_mask = negative_prompt_attention_mask.view(bs_embed, -1)
|
429 |
+
negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1)
|
430 |
+
else:
|
431 |
+
negative_prompt_embeds = None
|
432 |
+
negative_prompt_attention_mask = None
|
433 |
+
|
434 |
+
if self.text_encoder is not None:
|
435 |
+
if isinstance(self, SanaLoraLoaderMixin) and USE_PEFT_BACKEND:
|
436 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
437 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
438 |
+
|
439 |
+
return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask
|
440 |
+
|
441 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
442 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
443 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
444 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
445 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
446 |
+
# and should be between [0, 1]
|
447 |
+
|
448 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
449 |
+
extra_step_kwargs = {}
|
450 |
+
if accepts_eta:
|
451 |
+
extra_step_kwargs["eta"] = eta
|
452 |
+
|
453 |
+
# check if the scheduler accepts generator
|
454 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
455 |
+
if accepts_generator:
|
456 |
+
extra_step_kwargs["generator"] = generator
|
457 |
+
return extra_step_kwargs
|
458 |
+
|
459 |
+
def check_inputs(
|
460 |
+
self,
|
461 |
+
prompt,
|
462 |
+
height,
|
463 |
+
width,
|
464 |
+
callback_on_step_end_tensor_inputs=None,
|
465 |
+
negative_prompt=None,
|
466 |
+
prompt_embeds=None,
|
467 |
+
negative_prompt_embeds=None,
|
468 |
+
prompt_attention_mask=None,
|
469 |
+
negative_prompt_attention_mask=None,
|
470 |
+
):
|
471 |
+
if height % 32 != 0 or width % 32 != 0:
|
472 |
+
raise ValueError(f"`height` and `width` have to be divisible by 32 but are {height} and {width}.")
|
473 |
+
|
474 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
475 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
476 |
+
):
|
477 |
+
raise ValueError(
|
478 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
479 |
+
)
|
480 |
+
|
481 |
+
if prompt is not None and prompt_embeds is not None:
|
482 |
+
raise ValueError(
|
483 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
484 |
+
" only forward one of the two."
|
485 |
+
)
|
486 |
+
elif prompt is None and prompt_embeds is None:
|
487 |
+
raise ValueError(
|
488 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
489 |
+
)
|
490 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
491 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
492 |
+
|
493 |
+
if prompt is not None and negative_prompt_embeds is not None:
|
494 |
+
raise ValueError(
|
495 |
+
f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
|
496 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
497 |
+
)
|
498 |
+
|
499 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
500 |
+
raise ValueError(
|
501 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
502 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
503 |
+
)
|
504 |
+
|
505 |
+
if prompt_embeds is not None and prompt_attention_mask is None:
|
506 |
+
raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
|
507 |
+
|
508 |
+
if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
|
509 |
+
raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
|
510 |
+
|
511 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
512 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
513 |
+
raise ValueError(
|
514 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
515 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
516 |
+
f" {negative_prompt_embeds.shape}."
|
517 |
+
)
|
518 |
+
if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
|
519 |
+
raise ValueError(
|
520 |
+
"`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
|
521 |
+
f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
|
522 |
+
f" {negative_prompt_attention_mask.shape}."
|
523 |
+
)
|
524 |
+
|
525 |
+
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing
|
526 |
+
def _text_preprocessing(self, text, clean_caption=False):
|
527 |
+
if clean_caption and not is_bs4_available():
|
528 |
+
logger.warning(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`"))
|
529 |
+
logger.warning("Setting `clean_caption` to False...")
|
530 |
+
clean_caption = False
|
531 |
+
|
532 |
+
if clean_caption and not is_ftfy_available():
|
533 |
+
logger.warning(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`"))
|
534 |
+
logger.warning("Setting `clean_caption` to False...")
|
535 |
+
clean_caption = False
|
536 |
+
|
537 |
+
if not isinstance(text, (tuple, list)):
|
538 |
+
text = [text]
|
539 |
+
|
540 |
+
def process(text: str):
|
541 |
+
if clean_caption:
|
542 |
+
text = self._clean_caption(text)
|
543 |
+
text = self._clean_caption(text)
|
544 |
+
else:
|
545 |
+
text = text.lower().strip()
|
546 |
+
return text
|
547 |
+
|
548 |
+
return [process(t) for t in text]
|
549 |
+
|
550 |
+
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption
|
551 |
+
def _clean_caption(self, caption):
|
552 |
+
caption = str(caption)
|
553 |
+
caption = ul.unquote_plus(caption)
|
554 |
+
caption = caption.strip().lower()
|
555 |
+
caption = re.sub("<person>", "person", caption)
|
556 |
+
# urls:
|
557 |
+
caption = re.sub(
|
558 |
+
r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
|
559 |
+
"",
|
560 |
+
caption,
|
561 |
+
) # regex for urls
|
562 |
+
caption = re.sub(
|
563 |
+
r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
|
564 |
+
"",
|
565 |
+
caption,
|
566 |
+
) # regex for urls
|
567 |
+
# html:
|
568 |
+
caption = BeautifulSoup(caption, features="html.parser").text
|
569 |
+
|
570 |
+
# @<nickname>
|
571 |
+
caption = re.sub(r"@[\w\d]+\b", "", caption)
|
572 |
+
|
573 |
+
# 31C0—31EF CJK Strokes
|
574 |
+
# 31F0��31FF Katakana Phonetic Extensions
|
575 |
+
# 3200—32FF Enclosed CJK Letters and Months
|
576 |
+
# 3300—33FF CJK Compatibility
|
577 |
+
# 3400—4DBF CJK Unified Ideographs Extension A
|
578 |
+
# 4DC0—4DFF Yijing Hexagram Symbols
|
579 |
+
# 4E00—9FFF CJK Unified Ideographs
|
580 |
+
caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
|
581 |
+
caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
|
582 |
+
caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
|
583 |
+
caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
|
584 |
+
caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
|
585 |
+
caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
|
586 |
+
caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
|
587 |
+
#######################################################
|
588 |
+
|
589 |
+
# все виды тире / all types of dash --> "-"
|
590 |
+
caption = re.sub(
|
591 |
+
r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa
|
592 |
+
"-",
|
593 |
+
caption,
|
594 |
+
)
|
595 |
+
|
596 |
+
# кавычки к одному стандарту
|
597 |
+
caption = re.sub(r"[`´«»“”¨]", '"', caption)
|
598 |
+
caption = re.sub(r"[‘’]", "'", caption)
|
599 |
+
|
600 |
+
# "
|
601 |
+
caption = re.sub(r""?", "", caption)
|
602 |
+
# &
|
603 |
+
caption = re.sub(r"&", "", caption)
|
604 |
+
|
605 |
+
# ip adresses:
|
606 |
+
caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)
|
607 |
+
|
608 |
+
# article ids:
|
609 |
+
caption = re.sub(r"\d:\d\d\s+$", "", caption)
|
610 |
+
|
611 |
+
# \n
|
612 |
+
caption = re.sub(r"\\n", " ", caption)
|
613 |
+
|
614 |
+
# "#123"
|
615 |
+
caption = re.sub(r"#\d{1,3}\b", "", caption)
|
616 |
+
# "#12345.."
|
617 |
+
caption = re.sub(r"#\d{5,}\b", "", caption)
|
618 |
+
# "123456.."
|
619 |
+
caption = re.sub(r"\b\d{6,}\b", "", caption)
|
620 |
+
# filenames:
|
621 |
+
caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption)
|
622 |
+
|
623 |
+
#
|
624 |
+
caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT"""
|
625 |
+
caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT"""
|
626 |
+
|
627 |
+
caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT
|
628 |
+
caption = re.sub(r"\s+\.\s+", r" ", caption) # " . "
|
629 |
+
|
630 |
+
# this-is-my-cute-cat / this_is_my_cute_cat
|
631 |
+
regex2 = re.compile(r"(?:\-|\_)")
|
632 |
+
if len(re.findall(regex2, caption)) > 3:
|
633 |
+
caption = re.sub(regex2, " ", caption)
|
634 |
+
|
635 |
+
caption = ftfy.fix_text(caption)
|
636 |
+
caption = html.unescape(html.unescape(caption))
|
637 |
+
|
638 |
+
caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640
|
639 |
+
caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc
|
640 |
+
caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231
|
641 |
+
|
642 |
+
caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
|
643 |
+
caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
|
644 |
+
caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
|
645 |
+
caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption)
|
646 |
+
caption = re.sub(r"\bpage\s+\d+\b", "", caption)
|
647 |
+
|
648 |
+
caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a...
|
649 |
+
|
650 |
+
caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)
|
651 |
+
|
652 |
+
caption = re.sub(r"\b\s+\:\s+", r": ", caption)
|
653 |
+
caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
|
654 |
+
caption = re.sub(r"\s+", " ", caption)
|
655 |
+
|
656 |
+
caption.strip()
|
657 |
+
|
658 |
+
caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
|
659 |
+
caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
|
660 |
+
caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
|
661 |
+
caption = re.sub(r"^\.\S+$", "", caption)
|
662 |
+
|
663 |
+
return caption.strip()
|
664 |
+
|
665 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
666 |
+
if latents is not None:
|
667 |
+
return latents.to(device=device, dtype=dtype)
|
668 |
+
|
669 |
+
shape = (
|
670 |
+
batch_size,
|
671 |
+
num_channels_latents,
|
672 |
+
int(height) // self.vae_scale_factor,
|
673 |
+
int(width) // self.vae_scale_factor,
|
674 |
+
)
|
675 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
676 |
+
raise ValueError(
|
677 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
678 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
679 |
+
)
|
680 |
+
|
681 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
682 |
+
return latents
|
683 |
+
|
684 |
+
@property
|
685 |
+
def guidance_scale(self):
|
686 |
+
return self._guidance_scale
|
687 |
+
|
688 |
+
@property
|
689 |
+
def attention_kwargs(self):
|
690 |
+
return self._attention_kwargs
|
691 |
+
|
692 |
+
@property
|
693 |
+
def do_classifier_free_guidance(self):
|
694 |
+
return self._guidance_scale > 1.0
|
695 |
+
|
696 |
+
@property
|
697 |
+
def num_timesteps(self):
|
698 |
+
return self._num_timesteps
|
699 |
+
|
700 |
+
@property
|
701 |
+
def interrupt(self):
|
702 |
+
return self._interrupt
|
703 |
+
|
704 |
+
@torch.no_grad()
|
705 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
706 |
+
def __call__(
|
707 |
+
self,
|
708 |
+
prompt: Union[str, List[str]] = None,
|
709 |
+
negative_prompt: Union[str, List[str]] = None,
|
710 |
+
num_inference_steps: int = 20,
|
711 |
+
timesteps: List[int] = None,
|
712 |
+
sigmas: List[float] = None,
|
713 |
+
guidance_scale: float = 4.5,
|
714 |
+
num_images_per_prompt: Optional[int] = 1,
|
715 |
+
height: int = 1024,
|
716 |
+
width: int = 1024,
|
717 |
+
eta: float = 0.0,
|
718 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
719 |
+
latents: Optional[torch.Tensor] = None,
|
720 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
721 |
+
prompt_attention_mask: Optional[torch.Tensor] = None,
|
722 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
723 |
+
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
|
724 |
+
output_type: Optional[str] = "pil",
|
725 |
+
device: Optional[Union[str, torch.device]] = None,
|
726 |
+
return_dict: bool = True,
|
727 |
+
clean_caption: bool = False,
|
728 |
+
use_resolution_binning: bool = True,
|
729 |
+
attention_kwargs: Optional[Dict[str, Any]] = None,
|
730 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
731 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
732 |
+
max_sequence_length: int = 300,
|
733 |
+
complex_human_instruction: List[str] = [
|
734 |
+
"Given a user prompt, generate an 'Enhanced prompt' that provides detailed visual descriptions suitable for image generation. Evaluate the level of detail in the user prompt:",
|
735 |
+
"- If the prompt is simple, focus on adding specifics about colors, shapes, sizes, textures, and spatial relationships to create vivid and concrete scenes.",
|
736 |
+
"- If the prompt is already detailed, refine and enhance the existing details slightly without overcomplicating.",
|
737 |
+
"Here are examples of how to transform or refine prompts:",
|
738 |
+
"- User Prompt: A cat sleeping -> Enhanced: A small, fluffy white cat curled up in a round shape, sleeping peacefully on a warm sunny windowsill, surrounded by pots of blooming red flowers.",
|
739 |
+
"- User Prompt: A busy city street -> Enhanced: A bustling city street scene at dusk, featuring glowing street lamps, a diverse crowd of people in colorful clothing, and a double-decker bus passing by towering glass skyscrapers.",
|
740 |
+
"Please generate only the enhanced description for the prompt below and avoid including any additional commentary or evaluations:",
|
741 |
+
"User Prompt: ",
|
742 |
+
],
|
743 |
+
) -> Union[SanaPipelineOutput, Tuple]:
|
744 |
+
"""
|
745 |
+
Function invoked when calling the pipeline for generation.
|
746 |
+
|
747 |
+
Args:
|
748 |
+
prompt (`str` or `List[str]`, *optional*):
|
749 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
750 |
+
instead.
|
751 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
752 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
753 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
754 |
+
less than `1`).
|
755 |
+
num_inference_steps (`int`, *optional*, defaults to 20):
|
756 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
757 |
+
expense of slower inference.
|
758 |
+
timesteps (`List[int]`, *optional*):
|
759 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
760 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
761 |
+
passed will be used. Must be in descending order.
|
762 |
+
sigmas (`List[float]`, *optional*):
|
763 |
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
764 |
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
765 |
+
will be used.
|
766 |
+
guidance_scale (`float`, *optional*, defaults to 4.5):
|
767 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
768 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
769 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
770 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
771 |
+
usually at the expense of lower image quality.
|
772 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
773 |
+
The number of images to generate per prompt.
|
774 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size):
|
775 |
+
The height in pixels of the generated image.
|
776 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size):
|
777 |
+
The width in pixels of the generated image.
|
778 |
+
eta (`float`, *optional*, defaults to 0.0):
|
779 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
780 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
781 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
782 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
783 |
+
to make generation deterministic.
|
784 |
+
latents (`torch.Tensor`, *optional*):
|
785 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
786 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
787 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
788 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
789 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
790 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
791 |
+
prompt_attention_mask (`torch.Tensor`, *optional*): Pre-generated attention mask for text embeddings.
|
792 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
793 |
+
Pre-generated negative text embeddings. For PixArt-Sigma this negative prompt should be "". If not
|
794 |
+
provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
|
795 |
+
negative_prompt_attention_mask (`torch.Tensor`, *optional*):
|
796 |
+
Pre-generated attention mask for negative text embeddings.
|
797 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
798 |
+
The output format of the generate image. Choose between
|
799 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
800 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
801 |
+
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
|
802 |
+
attention_kwargs:
|
803 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
804 |
+
`self.processor` in
|
805 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
806 |
+
clean_caption (`bool`, *optional*, defaults to `True`):
|
807 |
+
Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to
|
808 |
+
be installed. If the dependencies are not installed, the embeddings will be created from the raw
|
809 |
+
prompt.
|
810 |
+
use_resolution_binning (`bool` defaults to `True`):
|
811 |
+
If set to `True`, the requested height and width are first mapped to the closest resolutions using
|
812 |
+
`ASPECT_RATIO_1024_BIN`. After the produced latents are decoded into images, they are resized back to
|
813 |
+
the requested resolution. Useful for generating non-square images.
|
814 |
+
callback_on_step_end (`Callable`, *optional*):
|
815 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
816 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
817 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
818 |
+
`callback_on_step_end_tensor_inputs`.
|
819 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
820 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
821 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
822 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
823 |
+
max_sequence_length (`int` defaults to `300`):
|
824 |
+
Maximum sequence length to use with the `prompt`.
|
825 |
+
complex_human_instruction (`List[str]`, *optional*):
|
826 |
+
Instructions for complex human attention:
|
827 |
+
https://github.com/NVlabs/Sana/blob/main/configs/sana_app_config/Sana_1600M_app.yaml#L55.
|
828 |
+
|
829 |
+
Examples:
|
830 |
+
|
831 |
+
Returns:
|
832 |
+
[`~pipelines.sana.pipeline_output.SanaPipelineOutput`] or `tuple`:
|
833 |
+
If `return_dict` is `True`, [`~pipelines.sana.pipeline_output.SanaPipelineOutput`] is returned,
|
834 |
+
otherwise a `tuple` is returned where the first element is a list with the generated images
|
835 |
+
"""
|
836 |
+
|
837 |
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
838 |
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
839 |
+
|
840 |
+
# 1. Check inputs. Raise error if not correct
|
841 |
+
if use_resolution_binning:
|
842 |
+
if self.transformer.config.sample_size == 128:
|
843 |
+
aspect_ratio_bin = ASPECT_RATIO_4096_BIN
|
844 |
+
elif self.transformer.config.sample_size == 64:
|
845 |
+
aspect_ratio_bin = ASPECT_RATIO_2048_BIN
|
846 |
+
elif self.transformer.config.sample_size == 32:
|
847 |
+
aspect_ratio_bin = ASPECT_RATIO_1024_BIN
|
848 |
+
elif self.transformer.config.sample_size == 16:
|
849 |
+
aspect_ratio_bin = ASPECT_RATIO_512_BIN
|
850 |
+
else:
|
851 |
+
raise ValueError("Invalid sample size")
|
852 |
+
orig_height, orig_width = height, width
|
853 |
+
height, width = self.image_processor.classify_height_width_bin(height, width, ratios=aspect_ratio_bin)
|
854 |
+
|
855 |
+
self.check_inputs(
|
856 |
+
prompt,
|
857 |
+
height,
|
858 |
+
width,
|
859 |
+
callback_on_step_end_tensor_inputs,
|
860 |
+
negative_prompt,
|
861 |
+
prompt_embeds,
|
862 |
+
negative_prompt_embeds,
|
863 |
+
prompt_attention_mask,
|
864 |
+
negative_prompt_attention_mask,
|
865 |
+
)
|
866 |
+
|
867 |
+
self._guidance_scale = guidance_scale
|
868 |
+
self._attention_kwargs = attention_kwargs
|
869 |
+
self._interrupt = False
|
870 |
+
|
871 |
+
# 2. Default height and width to transformer
|
872 |
+
if prompt is not None and isinstance(prompt, str):
|
873 |
+
batch_size = 1
|
874 |
+
elif prompt is not None and isinstance(prompt, list):
|
875 |
+
batch_size = len(prompt)
|
876 |
+
else:
|
877 |
+
batch_size = prompt_embeds.shape[0]
|
878 |
+
|
879 |
+
device = device or self._execution_device
|
880 |
+
lora_scale = self.attention_kwargs.get("scale", None) if self.attention_kwargs is not None else None
|
881 |
+
|
882 |
+
# 3. Encode input prompt
|
883 |
+
(
|
884 |
+
prompt_embeds,
|
885 |
+
prompt_attention_mask,
|
886 |
+
negative_prompt_embeds,
|
887 |
+
negative_prompt_attention_mask,
|
888 |
+
) = self.encode_prompt(
|
889 |
+
prompt,
|
890 |
+
self.do_classifier_free_guidance,
|
891 |
+
negative_prompt=negative_prompt,
|
892 |
+
num_images_per_prompt=num_images_per_prompt,
|
893 |
+
device=device,
|
894 |
+
prompt_embeds=prompt_embeds,
|
895 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
896 |
+
prompt_attention_mask=prompt_attention_mask,
|
897 |
+
negative_prompt_attention_mask=negative_prompt_attention_mask,
|
898 |
+
clean_caption=clean_caption,
|
899 |
+
max_sequence_length=max_sequence_length,
|
900 |
+
complex_human_instruction=complex_human_instruction,
|
901 |
+
lora_scale=lora_scale,
|
902 |
+
)
|
903 |
+
if self.do_classifier_free_guidance:
|
904 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
905 |
+
prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
|
906 |
+
|
907 |
+
# 4. Prepare timesteps
|
908 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
909 |
+
self.scheduler, num_inference_steps, device, timesteps, sigmas
|
910 |
+
)
|
911 |
+
|
912 |
+
# 5. Prepare latents.
|
913 |
+
latent_channels = self.transformer.config.in_channels
|
914 |
+
latents = self.prepare_latents(
|
915 |
+
batch_size * num_images_per_prompt,
|
916 |
+
latent_channels,
|
917 |
+
height,
|
918 |
+
width,
|
919 |
+
torch.float32,
|
920 |
+
device,
|
921 |
+
generator,
|
922 |
+
latents,
|
923 |
+
)
|
924 |
+
|
925 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
926 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
927 |
+
|
928 |
+
# 7. Denoising loop
|
929 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
930 |
+
self._num_timesteps = len(timesteps)
|
931 |
+
|
932 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
933 |
+
for i, t in enumerate(timesteps):
|
934 |
+
if self.interrupt:
|
935 |
+
continue
|
936 |
+
|
937 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
938 |
+
latent_model_input = latent_model_input.to(prompt_embeds.dtype)
|
939 |
+
|
940 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
941 |
+
timestep = t.expand(latent_model_input.shape[0]).to(latents.dtype)
|
942 |
+
timestep = timestep * self.transformer.config.timestep_scale
|
943 |
+
|
944 |
+
# predict noise model_output
|
945 |
+
noise_pred = self.transformer(
|
946 |
+
latent_model_input,
|
947 |
+
encoder_hidden_states=prompt_embeds,
|
948 |
+
encoder_attention_mask=prompt_attention_mask,
|
949 |
+
timestep=timestep,
|
950 |
+
return_dict=False,
|
951 |
+
attention_kwargs=self.attention_kwargs,
|
952 |
+
)[0]
|
953 |
+
|
954 |
+
noise_pred = noise_pred.float()
|
955 |
+
|
956 |
+
# perform guidance
|
957 |
+
if self.do_classifier_free_guidance:
|
958 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
959 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
960 |
+
|
961 |
+
# learned sigma
|
962 |
+
if self.transformer.config.out_channels // 2 == latent_channels:
|
963 |
+
noise_pred = noise_pred.chunk(2, dim=1)[0]
|
964 |
+
else:
|
965 |
+
noise_pred = noise_pred
|
966 |
+
|
967 |
+
# compute previous image: x_t -> x_t-1
|
968 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
969 |
+
|
970 |
+
if callback_on_step_end is not None:
|
971 |
+
callback_kwargs = {}
|
972 |
+
for k in callback_on_step_end_tensor_inputs:
|
973 |
+
callback_kwargs[k] = locals()[k]
|
974 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
975 |
+
|
976 |
+
latents = callback_outputs.pop("latents", latents)
|
977 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
978 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
979 |
+
|
980 |
+
# call the callback, if provided
|
981 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
982 |
+
progress_bar.update()
|
983 |
+
|
984 |
+
if XLA_AVAILABLE:
|
985 |
+
xm.mark_step()
|
986 |
+
|
987 |
+
if output_type == "latent":
|
988 |
+
image = latents
|
989 |
+
else:
|
990 |
+
latents = latents.to(self.vae.dtype)
|
991 |
+
try:
|
992 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
993 |
+
except torch.cuda.OutOfMemoryError as e:
|
994 |
+
warnings.warn(
|
995 |
+
f"{e}. \n"
|
996 |
+
f"Try to use VAE tiling for large images. For example: \n"
|
997 |
+
f"pipe.vae.enable_tiling(tile_sample_min_width=512, tile_sample_min_height=512)"
|
998 |
+
)
|
999 |
+
if use_resolution_binning:
|
1000 |
+
image = self.image_processor.resize_and_crop_tensor(image, orig_width, orig_height)
|
1001 |
+
|
1002 |
+
if not output_type == "latent":
|
1003 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
1004 |
+
|
1005 |
+
# Offload all models
|
1006 |
+
self.maybe_free_model_hooks()
|
1007 |
+
|
1008 |
+
if not return_dict:
|
1009 |
+
return (image,)
|
1010 |
+
|
1011 |
+
return SanaPipelineOutput(images=image)
|
diffusion/sana_loss.py
ADDED
@@ -0,0 +1,303 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
|
4 |
+
import copy
|
5 |
+
from diffusers import DPMSolverMultistepScheduler
|
6 |
+
import os
|
7 |
+
from collections import OrderedDict
|
8 |
+
import logging
|
9 |
+
from safetensors.torch import load_file
|
10 |
+
from diffusers import (
|
11 |
+
AutoencoderDC,
|
12 |
+
FlowMatchEulerDiscreteScheduler,
|
13 |
+
SanaTransformer2DModel
|
14 |
+
)
|
15 |
+
import torch.nn as nn
|
16 |
+
from .pipeline_sana import SanaPipeline
|
17 |
+
# from flux_encoder import tokenize_prompt, encode_prompt
|
18 |
+
|
19 |
+
logging.basicConfig(level=logging.INFO)
|
20 |
+
logger = logging.getLogger(__name__)
|
21 |
+
|
22 |
+
class ToClipMLP(nn.Module):
|
23 |
+
def __init__(self, input_dim, output_dim):
|
24 |
+
super().__init__()
|
25 |
+
#self.activation_fn = ACT2FN[config.hidden_act]
|
26 |
+
self.fc1 = nn.Linear(input_dim, 2048)
|
27 |
+
self.layer_norm1 = nn.LayerNorm(2048)
|
28 |
+
self.relu = nn.ReLU()
|
29 |
+
self.fc2 = nn.Linear(2048, output_dim)
|
30 |
+
self.layer_norm2 = nn.LayerNorm(output_dim)
|
31 |
+
|
32 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
33 |
+
hidden_states = self.fc1(hidden_states)
|
34 |
+
hidden_states = self.layer_norm1(hidden_states)
|
35 |
+
hidden_states = self.relu(hidden_states)
|
36 |
+
hidden_states = self.fc2(hidden_states)
|
37 |
+
hidden_states = self.layer_norm2(hidden_states)
|
38 |
+
return hidden_states
|
39 |
+
|
40 |
+
class ToClipMLP(nn.Module):
|
41 |
+
def __init__(self, input_dim, output_dim):
|
42 |
+
super().__init__()
|
43 |
+
#self.activation_fn = ACT2FN[config.hidden_act]
|
44 |
+
self.fc1 = nn.Linear(input_dim, 2048)
|
45 |
+
self.layer_norm1 = nn.LayerNorm(2048)
|
46 |
+
self.relu = nn.ReLU()
|
47 |
+
self.fc2 = nn.Linear(2048, output_dim)
|
48 |
+
self.layer_norm2 = nn.LayerNorm(output_dim)
|
49 |
+
|
50 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
51 |
+
hidden_states = self.fc1(hidden_states)
|
52 |
+
hidden_states = self.layer_norm1(hidden_states)
|
53 |
+
hidden_states = self.relu(hidden_states)
|
54 |
+
hidden_states = self.fc2(hidden_states)
|
55 |
+
hidden_states = self.layer_norm2(hidden_states)
|
56 |
+
return hidden_states
|
57 |
+
|
58 |
+
|
59 |
+
class SanaModel_withMLP(nn.Module):
|
60 |
+
def __init__(self, sana, vision_dim=1152):
|
61 |
+
super().__init__()
|
62 |
+
self.sana = sana
|
63 |
+
self.dtype = torch.bfloat16
|
64 |
+
self.mlp = ToClipMLP(vision_dim, 2304)
|
65 |
+
# self.mlp_pool = ToClipMLP(vision_dim, 768)
|
66 |
+
self.config = self.sana.config
|
67 |
+
|
68 |
+
def forward(self, hidden_states,
|
69 |
+
timestep,
|
70 |
+
encoder_hidden_states,
|
71 |
+
return_dict,
|
72 |
+
encoder_attention_mask=None,
|
73 |
+
**kargs):
|
74 |
+
|
75 |
+
encoder_hidden_states = self.mlp(encoder_hidden_states)
|
76 |
+
hidden_states = self.sana(
|
77 |
+
hidden_states=hidden_states,
|
78 |
+
encoder_hidden_states=encoder_hidden_states,
|
79 |
+
encoder_attention_mask=encoder_attention_mask,
|
80 |
+
timestep=timestep,
|
81 |
+
return_dict=False,
|
82 |
+
**kargs
|
83 |
+
)
|
84 |
+
return hidden_states
|
85 |
+
|
86 |
+
def enable_gradient_checkpointing(self):
|
87 |
+
self.sana.enable_gradient_checkpointing()
|
88 |
+
|
89 |
+
def inference_load_denoising_pretrained_weights(
|
90 |
+
net,
|
91 |
+
weights_path,
|
92 |
+
names=None,
|
93 |
+
prefix_to_remove=None,
|
94 |
+
):
|
95 |
+
# state_dict = load_file(weights_path, map_location="cpu")
|
96 |
+
state_dict = load_file(weights_path)
|
97 |
+
net.load_state_dict(state_dict, strict=False)
|
98 |
+
return
|
99 |
+
|
100 |
+
|
101 |
+
def load_denoising_pretrained_weights(
|
102 |
+
net,
|
103 |
+
weights_path,
|
104 |
+
names=None,
|
105 |
+
prefix_to_remove=None,
|
106 |
+
):
|
107 |
+
state_dict = torch.load(weights_path, map_location="cpu")
|
108 |
+
if "model" in state_dict:
|
109 |
+
state_dict = state_dict["model"]
|
110 |
+
elif "net" in state_dict:
|
111 |
+
state_dict = state_dict["net"]
|
112 |
+
|
113 |
+
#if torch.distributed.get_rank() == 0 and names is not None:
|
114 |
+
# embed()
|
115 |
+
|
116 |
+
#torch.distributed.barrier()
|
117 |
+
if names is not None:
|
118 |
+
selected_state_dict = OrderedDict()
|
119 |
+
for ori_name in names:
|
120 |
+
name = ori_name[len(prefix_to_remove):] if prefix_to_remove is not None else ori_name
|
121 |
+
selected_state_dict[name] = state_dict[ori_name]
|
122 |
+
|
123 |
+
state_dict = selected_state_dict
|
124 |
+
|
125 |
+
net.load_state_dict(state_dict, strict=True)
|
126 |
+
return
|
127 |
+
|
128 |
+
|
129 |
+
class SANALoss(torch.nn.Module):
|
130 |
+
def __init__(
|
131 |
+
self,
|
132 |
+
model_path, scheduler_path, vision_dim=3584, diffusion_type='flow_matching', convert_vpred_to_xpred=True,
|
133 |
+
checkpoint_path=None,
|
134 |
+
# checkpoint_path_withmlp=None,
|
135 |
+
# mlp_checkpoint_path=None,
|
136 |
+
mlp_state_dict=None,
|
137 |
+
trainable_params='all', device='cpu', guidance_scale=3.5, revision=None, variant=None, repa_loss=False, mid_layer_idx=10, mid_loss_weight=1.0
|
138 |
+
):
|
139 |
+
super(SANALoss, self).__init__()
|
140 |
+
self.torch_type = torch.bfloat16
|
141 |
+
self.base_model_path = model_path
|
142 |
+
self.use_mid_loss = repa_loss
|
143 |
+
self.mid_loss_weight = mid_loss_weight
|
144 |
+
self.mid_layer_idx = mid_layer_idx
|
145 |
+
#self.text_encoder = Gemma2Model.from_pretrained(model_path, subfolder="text_encoder")
|
146 |
+
#self.tokenizer = AutoTokenizer.from_pretrained(model_path,subfolder="tokenizer")
|
147 |
+
self.scheduler = DPMSolverMultistepScheduler.from_pretrained(model_path, subfolder="scheduler")
|
148 |
+
#self.sana_pipeline = SanaPipeline.from_pretrained(model_path, torch_dtype=torch.bfloat16,)
|
149 |
+
|
150 |
+
self.device = torch.device(torch.cuda.current_device())
|
151 |
+
self.scheduler_path = scheduler_path
|
152 |
+
self.vae = AutoencoderDC.from_pretrained(
|
153 |
+
model_path,
|
154 |
+
subfolder="vae",
|
155 |
+
revision=revision,
|
156 |
+
variant=variant,
|
157 |
+
)
|
158 |
+
|
159 |
+
# self.vae.to(self.torch_type).to(self.device)
|
160 |
+
self.vae.requires_grad_(False)
|
161 |
+
|
162 |
+
self.train_model = SanaTransformer2DModel.from_pretrained(
|
163 |
+
model_path, subfolder="transformer", revision=revision, variant=variant
|
164 |
+
)
|
165 |
+
|
166 |
+
if checkpoint_path is not None:
|
167 |
+
assert os.path.exists(checkpoint_path)
|
168 |
+
load_denoising_pretrained_weights(self.train_model, checkpoint_path)
|
169 |
+
|
170 |
+
# self.train_model = UNet2DConditionModel_withMLP(self.train_model, vision_dim=vision_dim)
|
171 |
+
|
172 |
+
self.train_model = SanaModel_withMLP(self.train_model, vision_dim=vision_dim)
|
173 |
+
# if checkpoint_path_withmlp is not None:
|
174 |
+
# assert os.path.exists(checkpoint_path_withmlp)
|
175 |
+
# load_denoising_pretrained_weights(self.train_model, checkpoint_path_withmlp)
|
176 |
+
# elif mlp_checkpoint_path is not None:
|
177 |
+
# assert os.path.exists(mlp_checkpoint_path)
|
178 |
+
# inference_load_denoising_pretrained_weights(self.train_model, mlp_checkpoint_path)
|
179 |
+
assert mlp_state_dict is not None
|
180 |
+
self.train_model.mlp.load_state_dict(mlp_state_dict, strict=True)
|
181 |
+
|
182 |
+
# 创建处理中间层特征的MLP
|
183 |
+
hidden_dim = 2240
|
184 |
+
self.mid_layer_mlp = None
|
185 |
+
if self.use_mid_loss:
|
186 |
+
self.mid_layer_mlp = torch.nn.Sequential(
|
187 |
+
torch.nn.Linear(hidden_dim, hidden_dim * 2),
|
188 |
+
torch.nn.GELU(),
|
189 |
+
torch.nn.Linear(hidden_dim * 2, 32),
|
190 |
+
torch.nn.LayerNorm(32)
|
191 |
+
)
|
192 |
+
|
193 |
+
# 初始化MLP的权重
|
194 |
+
for m in self.mid_layer_mlp.modules():
|
195 |
+
if isinstance(m, torch.nn.Linear):
|
196 |
+
# 使用Kaiming初始化权重
|
197 |
+
torch.nn.init.kaiming_normal_(m.weight, a=0, mode='fan_in', nonlinearity='leaky_relu')
|
198 |
+
if m.bias is not None:
|
199 |
+
# 将偏置初始化为0
|
200 |
+
torch.nn.init.zeros_(m.bias)
|
201 |
+
|
202 |
+
self.train_model.enable_gradient_checkpointing()
|
203 |
+
|
204 |
+
self.set_trainable_params(trainable_params)
|
205 |
+
|
206 |
+
|
207 |
+
num_parameters_trainable = 0
|
208 |
+
num_parameters = 0
|
209 |
+
name_parameters_trainable = []
|
210 |
+
for n, p in self.train_model.named_parameters():
|
211 |
+
num_parameters += p.data.nelement()
|
212 |
+
if not p.requires_grad:
|
213 |
+
continue # frozen weights
|
214 |
+
name_parameters_trainable.append(n)
|
215 |
+
num_parameters_trainable += p.data.nelement()
|
216 |
+
|
217 |
+
self.noise_scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
|
218 |
+
self.scheduler_path, subfolder="scheduler"
|
219 |
+
)
|
220 |
+
self.noise_scheduler_copy = copy.deepcopy(self.noise_scheduler)
|
221 |
+
|
222 |
+
|
223 |
+
# if self.train_model.config.guidance_embeds:
|
224 |
+
# self.guidance = torch.tensor([guidance_scale], device=self.device)
|
225 |
+
# # guidance = guidance.expand(model_input.shape[0])
|
226 |
+
# else:
|
227 |
+
# self.guidance = None
|
228 |
+
|
229 |
+
logger.info("Preparation done. Starting training diffusion ...")
|
230 |
+
|
231 |
+
def get_sigmas(self, timesteps, n_dim=4, dtype=torch.float32):
|
232 |
+
# sigmas = noise_scheduler_copy.sigmas.to(device=self.device, dtype=dtype)
|
233 |
+
sigmas = self.noise_scheduler_copy.sigmas
|
234 |
+
schedule_timesteps = self.noise_scheduler_copy.timesteps.to(device=timesteps.device)
|
235 |
+
timesteps = timesteps
|
236 |
+
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
|
237 |
+
|
238 |
+
sigma = sigmas[step_indices].flatten()
|
239 |
+
while len(sigma.shape) < n_dim:
|
240 |
+
sigma = sigma.unsqueeze(-1)
|
241 |
+
return sigma
|
242 |
+
|
243 |
+
def compute_text_embeddings(self, prompt, text_encoders, tokenizers):
|
244 |
+
with torch.no_grad():
|
245 |
+
prompt_embeds, pooled_prompt_embeds, text_ids = encode_prompt(
|
246 |
+
[text_encoders], [tokenizers], prompt, 77
|
247 |
+
)
|
248 |
+
# prompt_embeds = prompt_embeds.to(local_rank)
|
249 |
+
pooled_prompt_embeds = pooled_prompt_embeds.to(local_rank)
|
250 |
+
# text_ids = text_ids.to(local_rank)
|
251 |
+
return prompt_embeds, pooled_prompt_embeds, text_ids
|
252 |
+
|
253 |
+
def set_trainable_params(self, trainable_params):
|
254 |
+
|
255 |
+
self.vae.requires_grad_(False)
|
256 |
+
|
257 |
+
if trainable_params == 'all':
|
258 |
+
self.train_model.requires_grad_(True)
|
259 |
+
else:
|
260 |
+
self.train_model.requires_grad_(False)
|
261 |
+
for name, module in self.train_model.named_modules():
|
262 |
+
for trainable_param in trainable_params:
|
263 |
+
if trainable_param in name:
|
264 |
+
for params in module.parameters():
|
265 |
+
params.requires_grad = True
|
266 |
+
|
267 |
+
num_parameters_trainable = 0
|
268 |
+
num_parameters = 0
|
269 |
+
name_parameters_trainable = []
|
270 |
+
for n, p in self.train_model.named_parameters():
|
271 |
+
num_parameters += p.data.nelement()
|
272 |
+
if not p.requires_grad:
|
273 |
+
continue # frozen weights
|
274 |
+
name_parameters_trainable.append(n)
|
275 |
+
num_parameters_trainable += p.data.nelement()
|
276 |
+
|
277 |
+
def sample(self, encoder_hidden_states, steps=20, cfg=7.0, seed=42, height=512, width=512):
|
278 |
+
#self.pipelines = SanaPipeline.from_pretrained(self.base_model_path)#.to(device=self.device)
|
279 |
+
self.pipelines = SanaPipeline(vae=self.vae,
|
280 |
+
transformer=self.train_model,
|
281 |
+
text_encoder=None,
|
282 |
+
tokenizer=None,
|
283 |
+
scheduler=self.noise_scheduler,
|
284 |
+
).to(self.device)
|
285 |
+
|
286 |
+
prompt_attention_mask = torch.ones(encoder_hidden_states.shape[:2]).to(self.device)
|
287 |
+
negative_attention_mask = torch.ones(encoder_hidden_states.shape[:2]).to(self.device)
|
288 |
+
|
289 |
+
image = self.pipelines(
|
290 |
+
prompt_embeds=encoder_hidden_states,
|
291 |
+
prompt_attention_mask=prompt_attention_mask,
|
292 |
+
negative_prompt_embeds=encoder_hidden_states*0,
|
293 |
+
negative_prompt_attention_mask=negative_attention_mask,
|
294 |
+
guidance_scale=cfg,
|
295 |
+
generator=torch.manual_seed(seed),
|
296 |
+
num_inference_steps=steps,
|
297 |
+
device=self.device,
|
298 |
+
height=height,
|
299 |
+
width=width,
|
300 |
+
max_sequence_length=300,
|
301 |
+
).images[0]
|
302 |
+
|
303 |
+
return image
|