update 2 weights
Browse files- config.json +54 -0
- configuration_bailing_moe_linear_v2.py +92 -0
- generation_config.json +9 -0
- model-00001-of-00031.safetensors +3 -0
- model-00002-of-00031.safetensors +3 -0
- model.safetensors.index.json +0 -0
- modeling_bailing_moe_linear_v2.py +1758 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +17 -0
config.json
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"BailingMoeLinearV2ForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_dropout": 0.0,
|
| 6 |
+
"auto_map": {
|
| 7 |
+
"AutoConfig": "configuration_bailing_moe_linear_v2.BailingMoeLinearV2Config",
|
| 8 |
+
"AutoModel": "modeling_bailing_moe_linear_v2.BailingMoeLinearV2Model",
|
| 9 |
+
"AutoModelForCausalLM": "modeling_bailing_moe_linear_v2.BailingMoeLinearV2ForCausalLM"
|
| 10 |
+
},
|
| 11 |
+
"num_hidden_layers": 32,
|
| 12 |
+
"hidden_size": 4096,
|
| 13 |
+
"intermediate_size": 9216,
|
| 14 |
+
"pad_token_id": 156892,
|
| 15 |
+
"eos_token_id": 156892,
|
| 16 |
+
"first_k_dense_replace": 1,
|
| 17 |
+
"hidden_act": "silu",
|
| 18 |
+
"max_position_embeddings": 131072,
|
| 19 |
+
"model_type": "bailing_moe_linear",
|
| 20 |
+
"moe_intermediate_size": 1024,
|
| 21 |
+
"norm_topk_prob": true,
|
| 22 |
+
"num_experts_per_tok": 8,
|
| 23 |
+
"num_attention_heads": 32,
|
| 24 |
+
"num_experts": 256,
|
| 25 |
+
"num_key_value_heads": 4,
|
| 26 |
+
"rope_theta": 600000,
|
| 27 |
+
"rope_scaling": null,
|
| 28 |
+
"tie_word_embeddings": false,
|
| 29 |
+
"torch_dtype": "bfloat16",
|
| 30 |
+
"transformers_version": "4.56.1",
|
| 31 |
+
"use_bias": false,
|
| 32 |
+
"use_rmsnorm": true,
|
| 33 |
+
"rms_norm_eps": 1e-06,
|
| 34 |
+
"head_dim": 128,
|
| 35 |
+
"num_shared_experts": 1,
|
| 36 |
+
"use_cache": true,
|
| 37 |
+
"use_qkv_bias": false,
|
| 38 |
+
"embedding_dropout": 0.0,
|
| 39 |
+
"output_dropout": 0.0,
|
| 40 |
+
"vocab_size": 157184,
|
| 41 |
+
"partial_rotary_factor": 0.5,
|
| 42 |
+
"router_dtype": "fp32",
|
| 43 |
+
"moe_router_enable_expert_bias": true,
|
| 44 |
+
"routed_scaling_factor": 2.5,
|
| 45 |
+
"n_group": 8,
|
| 46 |
+
"topk_group": 4,
|
| 47 |
+
"use_qk_norm": true,
|
| 48 |
+
"score_function": "sigmoid",
|
| 49 |
+
"moe_shared_expert_intermediate_size": 1024,
|
| 50 |
+
"num_nextn_predict_layers": 0,
|
| 51 |
+
"layer_group_size": 8,
|
| 52 |
+
"group_norm_size": 4,
|
| 53 |
+
"linear_silu": false
|
| 54 |
+
}
|
configuration_bailing_moe_linear_v2.py
ADDED
|
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Bailing MoE V2 model configuration"""
|
| 2 |
+
|
| 3 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class BailingMoeLinearV2Config(PretrainedConfig):
|
| 7 |
+
|
| 8 |
+
def __init__(
|
| 9 |
+
self,
|
| 10 |
+
vocab_size=157184,
|
| 11 |
+
hidden_size=2048,
|
| 12 |
+
intermediate_size=5120,
|
| 13 |
+
num_hidden_layers=20,
|
| 14 |
+
num_attention_heads=16,
|
| 15 |
+
num_key_value_heads=4,
|
| 16 |
+
hidden_act="silu",
|
| 17 |
+
use_qkv_bias=False, # bailing only
|
| 18 |
+
use_bias=False, # bailing only
|
| 19 |
+
rms_norm_eps=1e-06,
|
| 20 |
+
tie_word_embeddings=False, # PretrainedConfig key, here change default value.
|
| 21 |
+
embedding_dropout=0.0,
|
| 22 |
+
attention_dropout=0.0,
|
| 23 |
+
output_dropout=0.0,
|
| 24 |
+
initializer_range=0.02,
|
| 25 |
+
max_position_embeddings=32768,
|
| 26 |
+
rope_theta=600000.0,
|
| 27 |
+
use_cache=True,
|
| 28 |
+
max_window_layers=20,
|
| 29 |
+
rope_scaling=None,
|
| 30 |
+
pad_token_id=156892,
|
| 31 |
+
eos_token_id=156892,
|
| 32 |
+
num_experts=256,
|
| 33 |
+
num_shared_experts=1,
|
| 34 |
+
num_experts_per_tok=8,
|
| 35 |
+
n_group=8,
|
| 36 |
+
topk_group=4,
|
| 37 |
+
moe_intermediate_size=512,
|
| 38 |
+
first_k_dense_replace=1,
|
| 39 |
+
head_dim=128,
|
| 40 |
+
output_router_logits=False,
|
| 41 |
+
use_qk_norm=True,
|
| 42 |
+
num_nextn_predict_layers=0,
|
| 43 |
+
mtp_loss_scaling_factor=0,
|
| 44 |
+
moe_router_enable_expert_bias=True,
|
| 45 |
+
routed_scaling_factor=1.0,
|
| 46 |
+
layer_group_size=1,
|
| 47 |
+
group_norm_size=1,
|
| 48 |
+
linear_silu=False,
|
| 49 |
+
**kwargs,
|
| 50 |
+
):
|
| 51 |
+
self.num_hidden_layers = num_hidden_layers
|
| 52 |
+
self.vocab_size = vocab_size
|
| 53 |
+
self.hidden_size = hidden_size
|
| 54 |
+
self.intermediate_size = intermediate_size
|
| 55 |
+
self.num_attention_heads = num_attention_heads
|
| 56 |
+
self.num_key_value_heads = num_key_value_heads
|
| 57 |
+
self.hidden_act = hidden_act
|
| 58 |
+
self.use_qkv_bias = use_qkv_bias
|
| 59 |
+
self.use_bias = use_bias
|
| 60 |
+
self.rms_norm_eps = rms_norm_eps
|
| 61 |
+
self.embedding_dropout = embedding_dropout
|
| 62 |
+
self.attention_dropout = attention_dropout
|
| 63 |
+
self.output_dropout = output_dropout
|
| 64 |
+
self.num_nextn_predict_layers = num_nextn_predict_layers
|
| 65 |
+
self.mtp_loss_scaling_factor = mtp_loss_scaling_factor
|
| 66 |
+
self.initializer_range = initializer_range
|
| 67 |
+
self.max_position_embeddings = max_position_embeddings
|
| 68 |
+
self.rope_theta = rope_theta
|
| 69 |
+
self.use_cache = use_cache
|
| 70 |
+
self.max_window_layers = max_window_layers
|
| 71 |
+
self.head_dim = head_dim or self.hidden_size // self.num_attention_heads
|
| 72 |
+
self.rope_scaling = rope_scaling
|
| 73 |
+
self.use_qk_norm = use_qk_norm
|
| 74 |
+
self.moe_router_enable_expert_bias = moe_router_enable_expert_bias
|
| 75 |
+
self.routed_scaling_factor = routed_scaling_factor
|
| 76 |
+
|
| 77 |
+
# MoE configs
|
| 78 |
+
self.num_experts = num_experts
|
| 79 |
+
self.num_shared_experts = num_shared_experts
|
| 80 |
+
self.num_experts_per_tok = num_experts_per_tok
|
| 81 |
+
self.n_group = n_group
|
| 82 |
+
self.topk_group = topk_group
|
| 83 |
+
self.moe_intermediate_size = moe_intermediate_size
|
| 84 |
+
self.first_k_dense_replace = first_k_dense_replace
|
| 85 |
+
self.output_router_logits = output_router_logits
|
| 86 |
+
|
| 87 |
+
# Linear configs
|
| 88 |
+
self.layer_group_size = layer_group_size
|
| 89 |
+
self.group_norm_size = group_norm_size
|
| 90 |
+
self.linear_silu = linear_silu
|
| 91 |
+
|
| 92 |
+
super().__init__(pad_token_id=pad_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs)
|
generation_config.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 156891,
|
| 3 |
+
"eos_token_id": [
|
| 4 |
+
156892,
|
| 5 |
+
156895
|
| 6 |
+
],
|
| 7 |
+
"pad_token_id": 156892,
|
| 8 |
+
"transformers_version": "4.56.1"
|
| 9 |
+
}
|
model-00001-of-00031.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2df5c9c5da6e7c136cbf989dc4bed0254c05f087c92cc66959a21f2c4baf5b66
|
| 3 |
+
size 8514614696
|
model-00002-of-00031.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:94b2f591ffe308a8d3c07e716812a4d38ee43e0e58d17caadc5f0d57f3fa080b
|
| 3 |
+
size 6637609416
|
model.safetensors.index.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
modeling_bailing_moe_linear_v2.py
ADDED
|
@@ -0,0 +1,1758 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2025 Antgroup and The HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
| 5 |
+
# and OPT implementations in this library. It has been modified from its
|
| 6 |
+
# original forms to accommodate minor architectural differences compared
|
| 7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
| 8 |
+
#
|
| 9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 10 |
+
# you may not use this file except in compliance with the License.
|
| 11 |
+
# You may obtain a copy of the License at
|
| 12 |
+
#
|
| 13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 14 |
+
#
|
| 15 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 18 |
+
# See the License for the specific language governing permissions and
|
| 19 |
+
# limitations under the License.
|
| 20 |
+
"""PyTorch BailingMoE model."""
|
| 21 |
+
|
| 22 |
+
import math
|
| 23 |
+
import warnings
|
| 24 |
+
from typing import List, Optional, Tuple, Union
|
| 25 |
+
|
| 26 |
+
import torch
|
| 27 |
+
import torch.nn.functional as F
|
| 28 |
+
from torch import nn
|
| 29 |
+
|
| 30 |
+
from transformers.activations import ACT2FN
|
| 31 |
+
from transformers.cache_utils import Cache, DynamicCache
|
| 32 |
+
from transformers.modeling_attn_mask_utils import (
|
| 33 |
+
AttentionMaskConverter,
|
| 34 |
+
_prepare_4d_attention_mask,
|
| 35 |
+
_prepare_4d_causal_attention_mask,
|
| 36 |
+
_prepare_4d_causal_attention_mask_for_sdpa,
|
| 37 |
+
)
|
| 38 |
+
from transformers.modeling_outputs import MoeModelOutputWithPast
|
| 39 |
+
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
| 40 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 41 |
+
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS, is_torch_greater_or_equal_than_1_13
|
| 42 |
+
from transformers.utils import (
|
| 43 |
+
add_start_docstrings,
|
| 44 |
+
add_start_docstrings_to_model_forward,
|
| 45 |
+
is_flash_attn_2_available,
|
| 46 |
+
is_flash_attn_greater_or_equal_2_10,
|
| 47 |
+
logging,
|
| 48 |
+
replace_return_docstrings,
|
| 49 |
+
)
|
| 50 |
+
from transformers.utils.import_utils import is_torch_fx_available
|
| 51 |
+
from .configuration_bailing_moe_linear_v2 import BailingMoeLinearV2Config
|
| 52 |
+
from transformers.generation.utils import GenerationMixin
|
| 53 |
+
from dataclasses import dataclass
|
| 54 |
+
from transformers.utils import ModelOutput
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
if is_flash_attn_2_available():
|
| 58 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
| 59 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
| 60 |
+
|
| 61 |
+
from fla.ops.simple_gla.fused_recurrent import fused_recurrent_simple_gla
|
| 62 |
+
from fla.ops.simple_gla.chunk import chunk_simple_gla
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
# This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
|
| 66 |
+
# It means that the function will not be traced through and simply appear as a node in the graph.
|
| 67 |
+
if is_torch_fx_available():
|
| 68 |
+
if not is_torch_greater_or_equal_than_1_13:
|
| 69 |
+
import torch.fx
|
| 70 |
+
|
| 71 |
+
_prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
logger = logging.get_logger(__name__)
|
| 75 |
+
|
| 76 |
+
_CONFIG_FOR_DOC = "BailingMoeLinearV2Config"
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def roll_tensor(tensor, shifts=-1, dims=-1, fill_value=0):
|
| 80 |
+
"""Roll the tensor input along the given dimension(s).
|
| 81 |
+
Inserted elements are set to be 0.0.
|
| 82 |
+
"""
|
| 83 |
+
rolled_tensor = torch.roll(tensor, shifts=shifts, dims=dims)
|
| 84 |
+
rolled_tensor.select(dims, shifts).fill_(fill_value)
|
| 85 |
+
return rolled_tensor, rolled_tensor.sum()
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
@dataclass
|
| 89 |
+
class MoEV2CausalLMOutputWithPast(ModelOutput):
|
| 90 |
+
"""
|
| 91 |
+
Base class for causal language model (or autoregressive) outputs as well as Mixture of Expert's router hidden
|
| 92 |
+
states terms, to train a MoE model.
|
| 93 |
+
Args:
|
| 94 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
| 95 |
+
Language modeling loss (for next-token prediction).
|
| 96 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
| 97 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
| 98 |
+
past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
| 99 |
+
It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).
|
| 100 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
| 101 |
+
`past_key_values` input) to speed up sequential decoding.
|
| 102 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
| 103 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
| 104 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
| 105 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
| 106 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
| 107 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
| 108 |
+
sequence_length)`.
|
| 109 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
| 110 |
+
heads.
|
| 111 |
+
z_loss (`torch.FloatTensor`, *optional*, returned when `labels` is provided):
|
| 112 |
+
z_loss for the sparse modules.
|
| 113 |
+
aux_loss (`torch.FloatTensor`, *optional*, returned when `labels` is provided):
|
| 114 |
+
aux_loss for the sparse modules.
|
| 115 |
+
router_logits (`tuple(torch.FloatTensor)`, *optional*, returned when `output_router_logits=True` is passed or when `config.add_router_probs=True`):
|
| 116 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, sequence_length, num_experts)`.
|
| 117 |
+
Router logits of the encoder model, useful to compute the auxiliary loss and the z_loss for the sparse
|
| 118 |
+
modules.
|
| 119 |
+
"""
|
| 120 |
+
|
| 121 |
+
loss: Optional[torch.FloatTensor] = None
|
| 122 |
+
logits: Optional[torch.FloatTensor] = None
|
| 123 |
+
past_key_values: Optional[Cache] = None
|
| 124 |
+
hidden_states: Optional[tuple[torch.FloatTensor, ...]] = None
|
| 125 |
+
attentions: Optional[tuple[torch.FloatTensor, ...]] = None
|
| 126 |
+
z_loss: Optional[torch.FloatTensor] = None
|
| 127 |
+
aux_loss: Optional[torch.FloatTensor] = None
|
| 128 |
+
router_logits: Optional[tuple[torch.FloatTensor]] = None
|
| 129 |
+
mtp_loss: Optional[torch.FloatTensor] = None
|
| 130 |
+
mtp_logits: Optional[tuple[torch.FloatTensor, ...]] = None
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
class MoeV2ModelOutputWithPast(MoeModelOutputWithPast):
|
| 134 |
+
|
| 135 |
+
def __init__(self, mtp_hidden_states=None, **kwargs):
|
| 136 |
+
super().__init__(**kwargs)
|
| 137 |
+
self.mtp_hidden_states = mtp_hidden_states
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
def _get_unpad_data(attention_mask):
|
| 141 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
| 142 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
| 143 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
| 144 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
| 145 |
+
return (
|
| 146 |
+
indices,
|
| 147 |
+
cu_seqlens,
|
| 148 |
+
max_seqlen_in_batch,
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
| 153 |
+
warnings.warn(
|
| 154 |
+
"Calling `transformers.models.BailingMoeV2.modeling_BailingMoeV2._prepare_4d_attention_mask` is deprecated and will be removed in v4.37. Use `transformers.modeling_attn_mask_utils._prepare_4d_attention_mask"
|
| 155 |
+
)
|
| 156 |
+
return _prepare_4d_attention_mask(mask=mask, dtype=dtype, tgt_len=tgt_len)
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
def _make_causal_mask(
|
| 160 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
| 161 |
+
):
|
| 162 |
+
warnings.warn(
|
| 163 |
+
"Calling `transformers.models.BailingMoeV2.modeling_BailingMoeV2._make_causal_mask` is deprecated and will be removed in v4.37. Use `transformers.models.BailingMoeV2.modeling_BailingMoeV2.AttentionMaskConverter._make_causal_mask"
|
| 164 |
+
)
|
| 165 |
+
return AttentionMaskConverter._make_causal_mask(
|
| 166 |
+
input_ids_shape=input_ids_shape, dtype=dtype, device=device, past_key_values_length=past_key_values_length
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
class BailingMoeV2RMSNorm(nn.Module):
|
| 171 |
+
def __init__(self, hidden_size, eps=1e-6):
|
| 172 |
+
"""
|
| 173 |
+
BailingMoeV2RMSNorm is equivalent to T5LayerNorm
|
| 174 |
+
"""
|
| 175 |
+
super().__init__()
|
| 176 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 177 |
+
self.variance_epsilon = eps
|
| 178 |
+
|
| 179 |
+
def forward(self, hidden_states):
|
| 180 |
+
input_dtype = hidden_states.dtype
|
| 181 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 182 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 183 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 184 |
+
return self.weight * hidden_states.to(input_dtype)
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
class BailingMoeV2GroupRMSNorm(nn.Module):
|
| 188 |
+
def __init__(self, hidden_size, group_norm_size, eps=1e-6):
|
| 189 |
+
"""
|
| 190 |
+
BailingMoeV2RMSNorm is equivalent to T5LayerNorm
|
| 191 |
+
"""
|
| 192 |
+
super().__init__()
|
| 193 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 194 |
+
self.group_norm_size = group_norm_size
|
| 195 |
+
assert hidden_size % group_norm_size == 0, "hidden_size must be divisible by group_norm_size"
|
| 196 |
+
self.variance_epsilon = eps
|
| 197 |
+
|
| 198 |
+
def forward(self, hidden_states):
|
| 199 |
+
input_dtype = hidden_states.dtype
|
| 200 |
+
input_shape = hidden_states.size()
|
| 201 |
+
group_input_shape = input_shape[:-1] + (self.group_norm_size, input_shape[-1] // self.group_norm_size)
|
| 202 |
+
hidden_states = hidden_states.view(group_input_shape)
|
| 203 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 204 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 205 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 206 |
+
return self.weight * hidden_states.to(input_dtype).view(input_shape)
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
ALL_LAYERNORM_LAYERS.append(BailingMoeV2RMSNorm)
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
class BailingMoeV2RotaryEmbedding(nn.Module):
|
| 213 |
+
def __init__(self, config: BailingMoeLinearV2Config, device=None):
|
| 214 |
+
super().__init__()
|
| 215 |
+
# BC: "rope_type" was originally "type"
|
| 216 |
+
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
|
| 217 |
+
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
| 218 |
+
else:
|
| 219 |
+
self.rope_type = "default"
|
| 220 |
+
self.max_seq_len_cached = config.max_position_embeddings
|
| 221 |
+
self.original_max_seq_len = config.max_position_embeddings
|
| 222 |
+
|
| 223 |
+
self.config = config
|
| 224 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
| 225 |
+
|
| 226 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
|
| 227 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 228 |
+
self.original_inv_freq = self.inv_freq
|
| 229 |
+
|
| 230 |
+
@torch.no_grad()
|
| 231 |
+
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
|
| 232 |
+
def forward(self, x, position_ids):
|
| 233 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
|
| 234 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
| 235 |
+
|
| 236 |
+
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
|
| 237 |
+
with torch.autocast(device_type=device_type, enabled=False): # Force float32
|
| 238 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
| 239 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 240 |
+
cos = emb.cos() * self.attention_scaling
|
| 241 |
+
sin = emb.sin() * self.attention_scaling
|
| 242 |
+
|
| 243 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
| 247 |
+
def rotate_half(x):
|
| 248 |
+
"""Rotates half the hidden dims of the input."""
|
| 249 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 250 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
| 251 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
| 255 |
+
def apply_rotary_pos_emb(q, k, cos, sin, unsqueeze_dim=1):
|
| 256 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
| 257 |
+
Args:
|
| 258 |
+
q (`torch.Tensor`): The query tensor.
|
| 259 |
+
k (`torch.Tensor`): The key tensor.
|
| 260 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
| 261 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
| 262 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
| 263 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
| 264 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
| 265 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
| 266 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
| 267 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
| 268 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
| 269 |
+
Returns:
|
| 270 |
+
`tuple(torch.Tensor)` comprising the query and key tensors rotated using the Rotary Position Embedding.
|
| 271 |
+
"""
|
| 272 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
| 273 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
| 274 |
+
|
| 275 |
+
# Keep half or full tensor for later concatenation
|
| 276 |
+
rotary_dim = cos.shape[-1]
|
| 277 |
+
q_rot, q_pass = q[..., :rotary_dim], q[..., rotary_dim:]
|
| 278 |
+
k_rot, k_pass = k[..., :rotary_dim], k[..., rotary_dim:]
|
| 279 |
+
|
| 280 |
+
# Apply rotary embeddings on the first half or full tensor
|
| 281 |
+
q_embed = (q_rot * cos) + (rotate_half(q_rot) * sin)
|
| 282 |
+
k_embed = (k_rot * cos) + (rotate_half(k_rot) * sin)
|
| 283 |
+
|
| 284 |
+
# Concatenate back to full shape
|
| 285 |
+
q_embed = torch.cat([q_embed, q_pass], dim=-1)
|
| 286 |
+
k_embed = torch.cat([k_embed, k_pass], dim=-1)
|
| 287 |
+
return q_embed, k_embed
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
class BailingMoeV2MLP(nn.Module):
|
| 291 |
+
def __init__(self, config: BailingMoeLinearV2Config, intermediate_size: int):
|
| 292 |
+
super().__init__()
|
| 293 |
+
self.config = config
|
| 294 |
+
self.hidden_size = config.hidden_size
|
| 295 |
+
self.intermediate_size = intermediate_size
|
| 296 |
+
|
| 297 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 298 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 299 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
| 300 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
| 301 |
+
|
| 302 |
+
def forward(self, x):
|
| 303 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
| 304 |
+
|
| 305 |
+
|
| 306 |
+
class BailingMoeV2Gate(nn.Module):
|
| 307 |
+
def __init__(self, config):
|
| 308 |
+
super().__init__()
|
| 309 |
+
self.config = config
|
| 310 |
+
self.top_k = config.num_experts_per_tok
|
| 311 |
+
self.num_experts = config.num_experts
|
| 312 |
+
|
| 313 |
+
self.n_group = config.n_group
|
| 314 |
+
self.topk_group = config.topk_group
|
| 315 |
+
|
| 316 |
+
# topk selection algorithm
|
| 317 |
+
self.gating_dim = config.hidden_size
|
| 318 |
+
self.weight = nn.Parameter(torch.empty((self.num_experts, self.gating_dim)))
|
| 319 |
+
self.routed_scaling_factor = config.routed_scaling_factor
|
| 320 |
+
|
| 321 |
+
self.register_buffer("expert_bias", torch.zeros((self.num_experts)))
|
| 322 |
+
self.reset_parameters()
|
| 323 |
+
|
| 324 |
+
def reset_parameters(self) -> None:
|
| 325 |
+
import torch.nn.init as init
|
| 326 |
+
|
| 327 |
+
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
|
| 328 |
+
|
| 329 |
+
def group_limited_topk(
|
| 330 |
+
self,
|
| 331 |
+
scores: torch.Tensor,
|
| 332 |
+
):
|
| 333 |
+
num_tokens, _ = scores.size()
|
| 334 |
+
# Organize the experts into groups
|
| 335 |
+
group_scores = scores.view(num_tokens, self.n_group, -1).topk(2, dim=-1)[0].sum(dim=-1)
|
| 336 |
+
group_idx = torch.topk(group_scores, k=self.topk_group, dim=-1, sorted=False)[1]
|
| 337 |
+
group_mask = torch.zeros_like(group_scores)
|
| 338 |
+
group_mask.scatter_(1, group_idx, 1)
|
| 339 |
+
|
| 340 |
+
# Mask the experts based on selection groups
|
| 341 |
+
score_mask = (
|
| 342 |
+
group_mask.unsqueeze(-1)
|
| 343 |
+
.expand(num_tokens, self.n_group, self.num_experts // self.n_group)
|
| 344 |
+
.reshape(num_tokens, -1)
|
| 345 |
+
)
|
| 346 |
+
|
| 347 |
+
masked_scores = scores.masked_fill(~score_mask.bool(), float('-inf'))
|
| 348 |
+
probs, top_indices = torch.topk(masked_scores, k=self.top_k, dim=-1)
|
| 349 |
+
|
| 350 |
+
return probs, top_indices
|
| 351 |
+
|
| 352 |
+
def forward(self, hidden_states):
|
| 353 |
+
# compute gating score
|
| 354 |
+
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
|
| 355 |
+
logits = F.linear(hidden_states.type(torch.float32), self.weight.type(torch.float32))
|
| 356 |
+
|
| 357 |
+
scores = torch.sigmoid(logits.float()).type_as(logits)
|
| 358 |
+
|
| 359 |
+
scores_for_routing = scores + self.expert_bias
|
| 360 |
+
_, topk_idx = self.group_limited_topk(scores_for_routing)
|
| 361 |
+
|
| 362 |
+
scores = torch.gather(scores, dim=1, index=topk_idx).type_as(logits)
|
| 363 |
+
|
| 364 |
+
topk_weight = scores / (scores.sum(dim=-1, keepdim=True) + 1e-20) if self.top_k > 1 else scores
|
| 365 |
+
topk_weight = topk_weight * self.routed_scaling_factor
|
| 366 |
+
|
| 367 |
+
return topk_idx, topk_weight, logits
|
| 368 |
+
|
| 369 |
+
|
| 370 |
+
class BailingMoeV2SparseMoeBlock(nn.Module):
|
| 371 |
+
"""
|
| 372 |
+
A mixed expert module containing shared experts.
|
| 373 |
+
"""
|
| 374 |
+
|
| 375 |
+
def __init__(self, config: BailingMoeLinearV2Config):
|
| 376 |
+
super().__init__()
|
| 377 |
+
self.config = config
|
| 378 |
+
self.num_experts_per_tok = config.num_experts_per_tok
|
| 379 |
+
self._setup_experts()
|
| 380 |
+
self.gate = BailingMoeV2Gate(config)
|
| 381 |
+
if config.num_shared_experts is not None:
|
| 382 |
+
self.shared_experts = BailingMoeV2MLP(
|
| 383 |
+
config=config, intermediate_size=config.moe_intermediate_size * config.num_shared_experts
|
| 384 |
+
)
|
| 385 |
+
|
| 386 |
+
def _setup_experts(self):
|
| 387 |
+
self.experts = nn.ModuleList(
|
| 388 |
+
[
|
| 389 |
+
BailingMoeV2MLP(config=self.config, intermediate_size=self.config.moe_intermediate_size)
|
| 390 |
+
for _ in range(self.config.num_experts)
|
| 391 |
+
]
|
| 392 |
+
)
|
| 393 |
+
|
| 394 |
+
def forward(self, hidden_states):
|
| 395 |
+
identity = hidden_states
|
| 396 |
+
bsz, seq_len, h = hidden_states.shape
|
| 397 |
+
topk_idx, topk_weight, router_logits = self.gate(hidden_states)
|
| 398 |
+
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
|
| 399 |
+
flat_topk_idx = topk_idx.view(-1)
|
| 400 |
+
if self.training:
|
| 401 |
+
hidden_states = hidden_states.repeat_interleave(self.num_experts_per_tok, dim=0)
|
| 402 |
+
y = torch.empty_like(hidden_states)
|
| 403 |
+
for i, expert in enumerate(self.experts):
|
| 404 |
+
y[flat_topk_idx == i] = expert(hidden_states[flat_topk_idx == i])
|
| 405 |
+
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
|
| 406 |
+
y = y.to(hidden_states.dtype).view(bsz, seq_len, h)
|
| 407 |
+
else:
|
| 408 |
+
y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(bsz, seq_len, h)
|
| 409 |
+
if self.config.num_shared_experts is not None:
|
| 410 |
+
y = y + self.shared_experts(identity)
|
| 411 |
+
return y, (router_logits.view(bsz, seq_len, -1), topk_idx.view(bsz, seq_len, -1))
|
| 412 |
+
|
| 413 |
+
@torch.no_grad()
|
| 414 |
+
def moe_infer(self, x, topk_ids, topk_weight):
|
| 415 |
+
cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts)))
|
| 416 |
+
cnts.scatter_(1, topk_ids, 1)
|
| 417 |
+
tokens_per_expert = cnts.sum(dim=0)
|
| 418 |
+
idxs = topk_ids.view(-1).argsort()
|
| 419 |
+
sorted_tokens = x[idxs // topk_ids.shape[1]]
|
| 420 |
+
tokens_per_expert = tokens_per_expert.cpu().numpy()
|
| 421 |
+
outputs = []
|
| 422 |
+
start_idx = 0
|
| 423 |
+
for i, num_tokens in enumerate(tokens_per_expert):
|
| 424 |
+
end_idx = start_idx + num_tokens
|
| 425 |
+
if num_tokens == 0:
|
| 426 |
+
continue
|
| 427 |
+
expert = self.experts[i]
|
| 428 |
+
tokens_for_this_expert = sorted_tokens[start_idx:end_idx]
|
| 429 |
+
expert_out = expert(tokens_for_this_expert)
|
| 430 |
+
outputs.append(expert_out.to(x.device))
|
| 431 |
+
start_idx = end_idx
|
| 432 |
+
|
| 433 |
+
outs = torch.cat(outputs, dim=0) if len(outputs) else sorted_tokens.new_empty(0)
|
| 434 |
+
new_x = torch.empty_like(outs)
|
| 435 |
+
new_x[idxs] = outs
|
| 436 |
+
final_out = (
|
| 437 |
+
new_x.view(*topk_ids.shape, -1)
|
| 438 |
+
.type(topk_weight.dtype)
|
| 439 |
+
.mul_(topk_weight.unsqueeze(dim=-1))
|
| 440 |
+
.sum(dim=1)
|
| 441 |
+
.type(new_x.dtype)
|
| 442 |
+
)
|
| 443 |
+
return final_out
|
| 444 |
+
|
| 445 |
+
|
| 446 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
| 447 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int, head_first: bool = True) -> torch.Tensor:
|
| 448 |
+
"""
|
| 449 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). If head_first is True, the hidden states go from (batch,
|
| 450 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 451 |
+
"""
|
| 452 |
+
if n_rep == 1:
|
| 453 |
+
return hidden_states
|
| 454 |
+
if head_first:
|
| 455 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 456 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
| 457 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 458 |
+
else:
|
| 459 |
+
batch, slen, num_key_value_heads, head_dim = hidden_states.shape
|
| 460 |
+
hidden_states = hidden_states[:, :, :, None, :].expand(batch, slen, num_key_value_heads, n_rep, head_dim)
|
| 461 |
+
return hidden_states.reshape(batch, slen, num_key_value_heads * n_rep, head_dim)
|
| 462 |
+
|
| 463 |
+
|
| 464 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->BailingMoeV2
|
| 465 |
+
class BailingMoeV2Attention(nn.Module):
|
| 466 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 467 |
+
|
| 468 |
+
def __init__(self, config: BailingMoeLinearV2Config, layer_idx: Optional[int] = None):
|
| 469 |
+
super().__init__()
|
| 470 |
+
self.config = config
|
| 471 |
+
self.layer_idx = layer_idx
|
| 472 |
+
if layer_idx is None:
|
| 473 |
+
logger.warning_once(
|
| 474 |
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
| 475 |
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
| 476 |
+
"when creating this class."
|
| 477 |
+
)
|
| 478 |
+
|
| 479 |
+
self.attention_dropout = config.attention_dropout
|
| 480 |
+
self.hidden_size = config.hidden_size
|
| 481 |
+
self.num_heads = config.num_attention_heads
|
| 482 |
+
self.head_dim = config.head_dim or self.hidden_size // self.num_heads
|
| 483 |
+
partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
|
| 484 |
+
self.rope_dim = int(self.head_dim * partial_rotary_factor)
|
| 485 |
+
self.num_key_value_heads = config.num_key_value_heads
|
| 486 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 487 |
+
self.max_position_embeddings = config.max_position_embeddings
|
| 488 |
+
self.rope_theta = config.rope_theta
|
| 489 |
+
self.is_causal = True
|
| 490 |
+
|
| 491 |
+
self.query_key_value = nn.Linear(
|
| 492 |
+
self.hidden_size,
|
| 493 |
+
(self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
|
| 494 |
+
bias=config.use_qkv_bias,
|
| 495 |
+
)
|
| 496 |
+
|
| 497 |
+
if self.config.use_qk_norm:
|
| 498 |
+
self.query_layernorm = BailingMoeV2RMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
| 499 |
+
self.key_layernorm = BailingMoeV2RMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
| 500 |
+
self.dense = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.use_bias)
|
| 501 |
+
|
| 502 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
| 503 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
| 504 |
+
|
| 505 |
+
def forward(
|
| 506 |
+
self,
|
| 507 |
+
hidden_states: torch.Tensor,
|
| 508 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 509 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 510 |
+
past_key_value: Optional[Cache] = None,
|
| 511 |
+
output_attentions: bool = False,
|
| 512 |
+
use_cache: bool = False,
|
| 513 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
| 514 |
+
**kwargs,
|
| 515 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 516 |
+
|
| 517 |
+
bsz, q_len, _ = hidden_states.size()
|
| 518 |
+
|
| 519 |
+
qkv = self.query_key_value(hidden_states)
|
| 520 |
+
qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
|
| 521 |
+
|
| 522 |
+
query_states, key_states, value_states = qkv.split(
|
| 523 |
+
[self.num_heads, self.num_key_value_heads, self.num_key_value_heads], dim=-2
|
| 524 |
+
)
|
| 525 |
+
query_states = query_states.transpose(1, 2)
|
| 526 |
+
key_states = key_states.transpose(1, 2)
|
| 527 |
+
value_states = value_states.transpose(1, 2)
|
| 528 |
+
|
| 529 |
+
if self.config.use_qk_norm:
|
| 530 |
+
query_states = self.query_layernorm(query_states)
|
| 531 |
+
key_states = self.key_layernorm(key_states)
|
| 532 |
+
|
| 533 |
+
cos, sin = position_embeddings
|
| 534 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 535 |
+
|
| 536 |
+
if past_key_value is not None:
|
| 537 |
+
if self.layer_idx is None:
|
| 538 |
+
raise ValueError(
|
| 539 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
| 540 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
| 541 |
+
"with a layer index."
|
| 542 |
+
)
|
| 543 |
+
cache_kwargs = {"sin": sin, "cos": cos}
|
| 544 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 545 |
+
|
| 546 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 547 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 548 |
+
|
| 549 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
| 550 |
+
|
| 551 |
+
kv_seq_len = key_states.shape[-2]
|
| 552 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
| 553 |
+
raise ValueError(
|
| 554 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
| 555 |
+
f" {attn_weights.size()}"
|
| 556 |
+
)
|
| 557 |
+
|
| 558 |
+
if attention_mask is not None:
|
| 559 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
| 560 |
+
raise ValueError(
|
| 561 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
| 562 |
+
)
|
| 563 |
+
attn_weights = attn_weights + attention_mask
|
| 564 |
+
|
| 565 |
+
# upcast attention to fp32
|
| 566 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
| 567 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
| 568 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 569 |
+
|
| 570 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
| 571 |
+
raise ValueError(
|
| 572 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
| 573 |
+
f" {attn_output.size()}"
|
| 574 |
+
)
|
| 575 |
+
|
| 576 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 577 |
+
|
| 578 |
+
attn_output = attn_output.reshape(bsz, q_len, -1)
|
| 579 |
+
|
| 580 |
+
attn_output = self.dense(attn_output)
|
| 581 |
+
|
| 582 |
+
if not output_attentions:
|
| 583 |
+
attn_weights = None
|
| 584 |
+
|
| 585 |
+
return attn_output, attn_weights, past_key_value
|
| 586 |
+
|
| 587 |
+
|
| 588 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->BailingMoeV2
|
| 589 |
+
class BailingMoeV2FlashAttention2(BailingMoeV2Attention):
|
| 590 |
+
"""
|
| 591 |
+
BailingMoeV2 flash attention module. This module inherits from `BailingMoeV2Attention` as the weights of the module stays
|
| 592 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
| 593 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
| 594 |
+
"""
|
| 595 |
+
|
| 596 |
+
def __init__(self, *args, **kwargs):
|
| 597 |
+
super().__init__(*args, **kwargs)
|
| 598 |
+
|
| 599 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
| 600 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
| 601 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
| 602 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
| 603 |
+
|
| 604 |
+
def forward(
|
| 605 |
+
self,
|
| 606 |
+
hidden_states: torch.Tensor,
|
| 607 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
| 608 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 609 |
+
past_key_value: Optional[Cache] = None,
|
| 610 |
+
output_attentions: bool = False,
|
| 611 |
+
use_cache: bool = False,
|
| 612 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
| 613 |
+
**kwargs,
|
| 614 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 615 |
+
# BailingMoeV2FlashAttention2 attention does not support output_attentions
|
| 616 |
+
output_attentions = False
|
| 617 |
+
|
| 618 |
+
bsz, q_len, _ = hidden_states.size()
|
| 619 |
+
|
| 620 |
+
# Flash attention requires the input to have the shape
|
| 621 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
| 622 |
+
# therefore we just need to keep the original shape
|
| 623 |
+
|
| 624 |
+
qkv = self.query_key_value(hidden_states)
|
| 625 |
+
qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
|
| 626 |
+
|
| 627 |
+
query_states, key_states, value_states = qkv.split(
|
| 628 |
+
[self.num_heads, self.num_key_value_heads, self.num_key_value_heads], dim=-2
|
| 629 |
+
)
|
| 630 |
+
query_states = query_states.transpose(1, 2)
|
| 631 |
+
key_states = key_states.transpose(1, 2)
|
| 632 |
+
value_states = value_states.transpose(1, 2)
|
| 633 |
+
|
| 634 |
+
if self.config.use_qk_norm:
|
| 635 |
+
query_states = self.query_layernorm(query_states)
|
| 636 |
+
key_states = self.key_layernorm(key_states)
|
| 637 |
+
|
| 638 |
+
cos, sin = position_embeddings
|
| 639 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 640 |
+
|
| 641 |
+
if past_key_value is not None:
|
| 642 |
+
cache_kwargs = {"sin": sin, "cos": cos}
|
| 643 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 644 |
+
|
| 645 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
| 646 |
+
# to be able to avoid many of these transpose/reshape/view.
|
| 647 |
+
query_states = query_states.transpose(1, 2)
|
| 648 |
+
key_states = key_states.transpose(1, 2)
|
| 649 |
+
value_states = value_states.transpose(1, 2)
|
| 650 |
+
|
| 651 |
+
dropout_rate = self.attention_dropout if self.training else 0.0
|
| 652 |
+
|
| 653 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
| 654 |
+
# therefore the input hidden states gets silently cast in float32. Hence, we need
|
| 655 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
| 656 |
+
# This might slow down training & inference so it is recommended to not cast the LayerNorms
|
| 657 |
+
# in fp32. (BailingMoeV2RMSNorm handles it correctly)
|
| 658 |
+
|
| 659 |
+
input_dtype = query_states.dtype
|
| 660 |
+
if input_dtype == torch.float32:
|
| 661 |
+
# Handle the case where the model is quantized
|
| 662 |
+
if hasattr(self.config, "_pre_quantization_dtype"):
|
| 663 |
+
target_dtype = self.config._pre_quantization_dtype
|
| 664 |
+
elif torch.is_autocast_enabled():
|
| 665 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
| 666 |
+
else:
|
| 667 |
+
target_dtype = self.query_key_value.weight.dtype
|
| 668 |
+
|
| 669 |
+
logger.warning_once(
|
| 670 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
| 671 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
| 672 |
+
f" {target_dtype}."
|
| 673 |
+
)
|
| 674 |
+
|
| 675 |
+
query_states = query_states.to(target_dtype)
|
| 676 |
+
key_states = key_states.to(target_dtype)
|
| 677 |
+
value_states = value_states.to(target_dtype)
|
| 678 |
+
|
| 679 |
+
attn_output = self._flash_attention_forward(
|
| 680 |
+
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
|
| 681 |
+
)
|
| 682 |
+
|
| 683 |
+
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
|
| 684 |
+
attn_output = self.dense(attn_output)
|
| 685 |
+
|
| 686 |
+
if not output_attentions:
|
| 687 |
+
attn_weights = None
|
| 688 |
+
|
| 689 |
+
return attn_output, attn_weights, past_key_value
|
| 690 |
+
|
| 691 |
+
def _flash_attention_forward(
|
| 692 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
| 693 |
+
):
|
| 694 |
+
"""
|
| 695 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
| 696 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
| 697 |
+
Args:
|
| 698 |
+
query_states (`torch.Tensor`):
|
| 699 |
+
Input query states to be passed to Flash Attention API
|
| 700 |
+
key_states (`torch.Tensor`):
|
| 701 |
+
Input key states to be passed to Flash Attention API
|
| 702 |
+
value_states (`torch.Tensor`):
|
| 703 |
+
Input value states to be passed to Flash Attention API
|
| 704 |
+
attention_mask (`torch.Tensor`):
|
| 705 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
| 706 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
| 707 |
+
dropout (`int`, *optional*):
|
| 708 |
+
Attention dropout
|
| 709 |
+
softmax_scale (`float`, *optional*):
|
| 710 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
| 711 |
+
query_length (`int`):
|
| 712 |
+
The length of the query sequence in terms of tokens. This represents the number of tokens in the
|
| 713 |
+
`query_states` tensor along the sequence dimension. It is used to determine the effective sequence
|
| 714 |
+
length for attention computations.
|
| 715 |
+
"""
|
| 716 |
+
if not self._flash_attn_uses_top_left_mask:
|
| 717 |
+
causal = self.is_causal
|
| 718 |
+
else:
|
| 719 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in BailingMoeV2FlashAttention2 __init__.
|
| 720 |
+
causal = self.is_causal and query_length != 1
|
| 721 |
+
|
| 722 |
+
# Contains at least one padding token in the sequence
|
| 723 |
+
if attention_mask is not None:
|
| 724 |
+
batch_size = query_states.shape[0]
|
| 725 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
| 726 |
+
query_states, key_states, value_states, attention_mask, query_length
|
| 727 |
+
)
|
| 728 |
+
|
| 729 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
| 730 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
| 731 |
+
|
| 732 |
+
attn_output_unpad = flash_attn_varlen_func(
|
| 733 |
+
query_states,
|
| 734 |
+
key_states,
|
| 735 |
+
value_states,
|
| 736 |
+
cu_seqlens_q=cu_seqlens_q,
|
| 737 |
+
cu_seqlens_k=cu_seqlens_k,
|
| 738 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
| 739 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
| 740 |
+
dropout_p=dropout,
|
| 741 |
+
softmax_scale=softmax_scale,
|
| 742 |
+
causal=causal,
|
| 743 |
+
)
|
| 744 |
+
|
| 745 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
| 746 |
+
else:
|
| 747 |
+
attn_output = flash_attn_func(
|
| 748 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
| 749 |
+
)
|
| 750 |
+
|
| 751 |
+
return attn_output
|
| 752 |
+
|
| 753 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
| 754 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
| 755 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
| 756 |
+
|
| 757 |
+
key_layer = index_first_axis(
|
| 758 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
| 759 |
+
)
|
| 760 |
+
value_layer = index_first_axis(
|
| 761 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
| 762 |
+
)
|
| 763 |
+
if query_length == kv_seq_len:
|
| 764 |
+
query_layer = index_first_axis(
|
| 765 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
| 766 |
+
)
|
| 767 |
+
cu_seqlens_q = cu_seqlens_k
|
| 768 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
| 769 |
+
indices_q = indices_k
|
| 770 |
+
elif query_length == 1:
|
| 771 |
+
max_seqlen_in_batch_q = 1
|
| 772 |
+
cu_seqlens_q = torch.arange(
|
| 773 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
| 774 |
+
) # There is a memcpy here, that is very bad.
|
| 775 |
+
indices_q = cu_seqlens_q[:-1]
|
| 776 |
+
query_layer = query_layer.squeeze(1)
|
| 777 |
+
else:
|
| 778 |
+
# The -q_len: slice assumes left padding.
|
| 779 |
+
attention_mask = attention_mask[:, -query_length:]
|
| 780 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
| 781 |
+
|
| 782 |
+
return (
|
| 783 |
+
query_layer,
|
| 784 |
+
key_layer,
|
| 785 |
+
value_layer,
|
| 786 |
+
indices_q,
|
| 787 |
+
(cu_seqlens_q, cu_seqlens_k),
|
| 788 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
| 789 |
+
)
|
| 790 |
+
|
| 791 |
+
|
| 792 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->BailingMoeV2
|
| 793 |
+
class BailingMoeV2SdpaAttention(BailingMoeV2Attention):
|
| 794 |
+
"""
|
| 795 |
+
BailingMoeV2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
| 796 |
+
`BailingMoeV2Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
| 797 |
+
SDPA API.
|
| 798 |
+
"""
|
| 799 |
+
|
| 800 |
+
# Adapted from BailingMoeV2Attention.forward
|
| 801 |
+
def forward(
|
| 802 |
+
self,
|
| 803 |
+
hidden_states: torch.Tensor,
|
| 804 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 805 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 806 |
+
past_key_value: Optional[Cache] = None,
|
| 807 |
+
output_attentions: bool = False,
|
| 808 |
+
use_cache: bool = False,
|
| 809 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
| 810 |
+
**kwargs,
|
| 811 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 812 |
+
if output_attentions:
|
| 813 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
| 814 |
+
logger.warning_once(
|
| 815 |
+
"BailingMoeV2Model is using BailingMoeV2SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
| 816 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
| 817 |
+
)
|
| 818 |
+
return super().forward(
|
| 819 |
+
hidden_states=hidden_states,
|
| 820 |
+
attention_mask=attention_mask,
|
| 821 |
+
position_ids=position_ids,
|
| 822 |
+
past_key_value=past_key_value,
|
| 823 |
+
output_attentions=output_attentions,
|
| 824 |
+
use_cache=use_cache,
|
| 825 |
+
)
|
| 826 |
+
|
| 827 |
+
bsz, q_len, _ = hidden_states.size()
|
| 828 |
+
|
| 829 |
+
qkv = self.query_key_value(hidden_states)
|
| 830 |
+
qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
|
| 831 |
+
|
| 832 |
+
query_states, key_states, value_states = qkv.split(
|
| 833 |
+
[self.num_heads, self.num_key_value_heads, self.num_key_value_heads], dim=-2
|
| 834 |
+
)
|
| 835 |
+
query_states = query_states.transpose(1, 2)
|
| 836 |
+
key_states = key_states.transpose(1, 2)
|
| 837 |
+
value_states = value_states.transpose(1, 2)
|
| 838 |
+
|
| 839 |
+
if self.config.use_qk_norm:
|
| 840 |
+
query_states = self.query_layernorm(query_states)
|
| 841 |
+
key_states = self.key_layernorm(key_states)
|
| 842 |
+
|
| 843 |
+
cos, sin = position_embeddings
|
| 844 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 845 |
+
|
| 846 |
+
if past_key_value is not None:
|
| 847 |
+
cache_kwargs = {"sin": sin, "cos": cos}
|
| 848 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 849 |
+
|
| 850 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 851 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 852 |
+
|
| 853 |
+
if attention_mask is not None:
|
| 854 |
+
kv_seq_len = key_states.shape[-2]
|
| 855 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
| 856 |
+
raise ValueError(
|
| 857 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
| 858 |
+
)
|
| 859 |
+
|
| 860 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
| 861 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
| 862 |
+
if query_states.device.type == "cuda" and attention_mask is not None:
|
| 863 |
+
query_states = query_states.contiguous()
|
| 864 |
+
key_states = key_states.contiguous()
|
| 865 |
+
value_states = value_states.contiguous()
|
| 866 |
+
|
| 867 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
| 868 |
+
query_states,
|
| 869 |
+
key_states,
|
| 870 |
+
value_states,
|
| 871 |
+
attn_mask=attention_mask,
|
| 872 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
| 873 |
+
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
|
| 874 |
+
is_causal=self.is_causal and attention_mask is None and q_len > 1,
|
| 875 |
+
)
|
| 876 |
+
|
| 877 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 878 |
+
attn_output = attn_output.reshape(bsz, q_len, -1)
|
| 879 |
+
|
| 880 |
+
attn_output = self.dense(attn_output)
|
| 881 |
+
|
| 882 |
+
return attn_output, None, past_key_value
|
| 883 |
+
|
| 884 |
+
|
| 885 |
+
ATTENTION_CLASSES = {
|
| 886 |
+
"eager": BailingMoeV2Attention,
|
| 887 |
+
"flash_attention_2": BailingMoeV2FlashAttention2,
|
| 888 |
+
"sdpa": BailingMoeV2SdpaAttention,
|
| 889 |
+
}
|
| 890 |
+
|
| 891 |
+
|
| 892 |
+
class BailingMoeV2LinearAttention(nn.Module):
|
| 893 |
+
"""
|
| 894 |
+
BailingMoeAttention implements a linear attention mechanism based on Lightning Attention-2
|
| 895 |
+
(https://arxiv.org/abs/2401.04658) with efficient computation using flash-linear-attention operators.
|
| 896 |
+
|
| 897 |
+
The implementation leverages optimized kernels from the flash-linear-attention library
|
| 898 |
+
(https://github.com/fla-org/flash-linear-attention) for maximum performance.
|
| 899 |
+
"""
|
| 900 |
+
def __init__(self, config: BailingMoeLinearV2Config, layer_idx: Optional[int] = None):
|
| 901 |
+
super().__init__()
|
| 902 |
+
self.config = config
|
| 903 |
+
self.layer_idx = layer_idx
|
| 904 |
+
if layer_idx is None:
|
| 905 |
+
logger.warning_once(
|
| 906 |
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
| 907 |
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
| 908 |
+
"when creating this class."
|
| 909 |
+
)
|
| 910 |
+
self.hidden_size = config.hidden_size
|
| 911 |
+
self.num_heads = config.num_attention_heads
|
| 912 |
+
self.head_dim = config.head_dim or self.hidden_size // self.num_heads
|
| 913 |
+
self.num_key_value_heads = config.num_attention_heads
|
| 914 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 915 |
+
partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
|
| 916 |
+
self.rope_dim = int(self.head_dim * partial_rotary_factor)
|
| 917 |
+
|
| 918 |
+
self.use_qk_norm = getattr(config, "use_qk_norm", False)
|
| 919 |
+
self.rms_norm_eps = getattr(config, "rms_norm_eps", 1e-5)
|
| 920 |
+
self.mode = 'chunk'
|
| 921 |
+
|
| 922 |
+
self.query_key_value = nn.Linear(
|
| 923 |
+
self.hidden_size,
|
| 924 |
+
(self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
|
| 925 |
+
bias=config.use_qkv_bias,
|
| 926 |
+
)
|
| 927 |
+
|
| 928 |
+
if self.config.use_qk_norm:
|
| 929 |
+
self.query_layernorm = BailingMoeV2RMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
| 930 |
+
self.key_layernorm = BailingMoeV2RMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
| 931 |
+
|
| 932 |
+
self.rotary_emb = BailingMoeV2RotaryEmbedding(config=config)
|
| 933 |
+
|
| 934 |
+
self.dense = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.use_bias)
|
| 935 |
+
|
| 936 |
+
self.g_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
| 937 |
+
self.g_norm = BailingMoeV2GroupRMSNorm(self.num_heads * self.head_dim, group_norm_size=config.group_norm_size, eps=self.rms_norm_eps)
|
| 938 |
+
slope = - BailingMoeV2LinearAttention.build_slope_tensor(self.num_heads) * (1 - (self.layer_idx - 1) / (self.config.num_hidden_layers - 1) + 1e-5)
|
| 939 |
+
self.register_buffer('slope', slope, persistent=False)
|
| 940 |
+
|
| 941 |
+
self.lightning_attn_ops = {
|
| 942 |
+
'chunk': chunk_simple_gla,
|
| 943 |
+
'fused_recurrent': fused_recurrent_simple_gla
|
| 944 |
+
}
|
| 945 |
+
|
| 946 |
+
@staticmethod
|
| 947 |
+
def build_slope_tensor(n_attention_heads: int):
|
| 948 |
+
"""
|
| 949 |
+
Build a tensor of slopes for Lightning Attention-2 as described in the paper:
|
| 950 |
+
"Lightning Attention-2: A Free Lunch for Handling Unlimited Sequence Lengths in Large Language Models"
|
| 951 |
+
(https://arxiv.org/abs/2401.04658)
|
| 952 |
+
|
| 953 |
+
This function computes the slope values that control the decay rate of attention scores
|
| 954 |
+
based on the number of attention heads. The slopes are designed to have specific
|
| 955 |
+
mathematical properties that work optimally when the number of heads is a power of 2.
|
| 956 |
+
|
| 957 |
+
For non-power-of-2 head counts, a workaround is implemented to maintain similar properties.
|
| 958 |
+
|
| 959 |
+
Args:
|
| 960 |
+
n_attention_heads (int): Number of attention heads in the model
|
| 961 |
+
|
| 962 |
+
Returns:
|
| 963 |
+
torch.Tensor: A tensor of shape [n_attention_heads] containing the computed slopes
|
| 964 |
+
|
| 965 |
+
Note:
|
| 966 |
+
Code copied from: https://github.com/OpenNLPLab/lightning-attention/blob/d15c38529bbd5c2c82b44ddda3cac885825aa873/lightning_attn/utils/utils.py#L6
|
| 967 |
+
"""
|
| 968 |
+
def get_slopes(n):
|
| 969 |
+
def get_slopes_power_of_2(n):
|
| 970 |
+
start = 2 ** (-(2 ** -(math.log2(n) - 3)))
|
| 971 |
+
ratio = start
|
| 972 |
+
return [start * ratio ** i for i in range(n)]
|
| 973 |
+
|
| 974 |
+
if math.log2(n).is_integer():
|
| 975 |
+
return get_slopes_power_of_2(
|
| 976 |
+
n) # In the paper, we only train models that have 2^a heads for some a. This function has
|
| 977 |
+
else: # some good properties that only occur when the input is a power of 2. To maintain that even
|
| 978 |
+
closest_power_of_2 = 2 ** math.floor(
|
| 979 |
+
math.log2(n)) # when the number of heads is not a power of 2, we use this workaround.
|
| 980 |
+
return (get_slopes_power_of_2(closest_power_of_2)
|
| 981 |
+
+ get_slopes(2 * closest_power_of_2)[0::2][:n - closest_power_of_2])
|
| 982 |
+
|
| 983 |
+
slopes = torch.tensor(get_slopes(n_attention_heads), dtype=torch.float)
|
| 984 |
+
return slopes
|
| 985 |
+
|
| 986 |
+
|
| 987 |
+
def forward(
|
| 988 |
+
self,
|
| 989 |
+
hidden_states: torch.Tensor,
|
| 990 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 991 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 992 |
+
past_key_value: Optional[Cache] = None,
|
| 993 |
+
output_attentions: bool = False,
|
| 994 |
+
use_cache: bool = False,
|
| 995 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 996 |
+
**kwargs,
|
| 997 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 998 |
+
if attention_mask is not None:
|
| 999 |
+
assert len(attention_mask.shape) == 2, (
|
| 1000 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
| 1001 |
+
"for padding purposes (0 indicating padding). "
|
| 1002 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
| 1003 |
+
)
|
| 1004 |
+
|
| 1005 |
+
# launching the triton kernel for just one token will actually be slower
|
| 1006 |
+
mode = 'fused_recurrent' if hidden_states.shape[1] <= 64 else self.mode
|
| 1007 |
+
|
| 1008 |
+
# Currently output_attentions can only be False, returning attention weights is not supported
|
| 1009 |
+
assert not output_attentions, "output_attentions can only be False, returning attention weights is not supported"
|
| 1010 |
+
|
| 1011 |
+
bsz, q_len, _ = hidden_states.size()
|
| 1012 |
+
device = hidden_states.device
|
| 1013 |
+
|
| 1014 |
+
qkv = self.query_key_value(hidden_states)
|
| 1015 |
+
qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
|
| 1016 |
+
query_states, key_states, value_states = qkv.split(
|
| 1017 |
+
[self.num_heads, self.num_key_value_heads, self.num_key_value_heads], dim=-2
|
| 1018 |
+
)
|
| 1019 |
+
if self.config.use_qk_norm:
|
| 1020 |
+
query_states = self.query_layernorm(query_states)
|
| 1021 |
+
key_states = self.key_layernorm(key_states)
|
| 1022 |
+
|
| 1023 |
+
cos, sin = position_embeddings
|
| 1024 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, unsqueeze_dim=2)
|
| 1025 |
+
|
| 1026 |
+
if self.num_key_value_groups > 1:
|
| 1027 |
+
# [bsz, q_len, n_kv_heads, head_dim] -> [bsz, q_len, n_heads, head_dim]
|
| 1028 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups, head_first=False)
|
| 1029 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups, head_first=False)
|
| 1030 |
+
|
| 1031 |
+
recurrent_state = None
|
| 1032 |
+
if past_key_value is not None and isinstance(past_key_value, Cache):
|
| 1033 |
+
# ensure the cache list is long enough
|
| 1034 |
+
while len(past_key_value.layers) <= self.layer_idx:
|
| 1035 |
+
past_key_value.layers.append(DynamicLayer())
|
| 1036 |
+
|
| 1037 |
+
if past_key_value.layers[self.layer_idx].keys is not None:
|
| 1038 |
+
recurrent_state = past_key_value.layers[self.layer_idx].keys
|
| 1039 |
+
# ensure recurrent_state is on the same device as hidden_states
|
| 1040 |
+
if recurrent_state.device != hidden_states.device:
|
| 1041 |
+
recurrent_state = recurrent_state.to(device).contiguous()
|
| 1042 |
+
|
| 1043 |
+
if recurrent_state is None:
|
| 1044 |
+
# dealing with left-padding
|
| 1045 |
+
if attention_mask is not None and use_cache:
|
| 1046 |
+
value_states = value_states.mul_(attention_mask[:, -q_len:, None, None])
|
| 1047 |
+
|
| 1048 |
+
o, recurrent_state = self.lightning_attn_ops[mode](
|
| 1049 |
+
q=query_states,
|
| 1050 |
+
k=key_states,
|
| 1051 |
+
v=value_states,
|
| 1052 |
+
g=self.slope[None, None, :].expand(bsz, q_len, self.num_heads),
|
| 1053 |
+
initial_state=recurrent_state,
|
| 1054 |
+
output_final_state=use_cache,
|
| 1055 |
+
)
|
| 1056 |
+
|
| 1057 |
+
o = o.reshape(bsz, q_len, -1)
|
| 1058 |
+
o = self.g_norm(o)
|
| 1059 |
+
g_proj = self.g_proj(hidden_states)
|
| 1060 |
+
o = o * torch.sigmoid_(g_proj)
|
| 1061 |
+
o = self.dense(o)
|
| 1062 |
+
|
| 1063 |
+
if use_cache and past_key_value is not None and isinstance(past_key_value, Cache):
|
| 1064 |
+
target_device = None
|
| 1065 |
+
for cache in past_key_value.layers:
|
| 1066 |
+
if cache.keys is not None:
|
| 1067 |
+
target_device = cache.keys.device
|
| 1068 |
+
break
|
| 1069 |
+
if target_device is None:
|
| 1070 |
+
target_device = recurrent_state.device
|
| 1071 |
+
|
| 1072 |
+
# move to target device
|
| 1073 |
+
if recurrent_state.device != target_device:
|
| 1074 |
+
recurrent_state = recurrent_state.to(target_device)
|
| 1075 |
+
|
| 1076 |
+
past_key_value.layers[self.layer_idx].keys = recurrent_state
|
| 1077 |
+
|
| 1078 |
+
return o, None, past_key_value
|
| 1079 |
+
|
| 1080 |
+
|
| 1081 |
+
class BailingMoeV2MTPLayer(nn.Module):
|
| 1082 |
+
def __init__(self, config: BailingMoeLinearV2Config, layer_idx: int):
|
| 1083 |
+
super().__init__()
|
| 1084 |
+
self.layer_idx = layer_idx
|
| 1085 |
+
self.input_layernorm = BailingMoeV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 1086 |
+
self.enorm = BailingMoeV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 1087 |
+
|
| 1088 |
+
self.eh_proj = nn.Linear(config.hidden_size * 2, config.hidden_size, bias=False)
|
| 1089 |
+
self.post_attention_layernorm = BailingMoeV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 1090 |
+
self.attention = ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
|
| 1091 |
+
self.mlp = BailingMoeV2SparseMoeBlock(config)
|
| 1092 |
+
|
| 1093 |
+
self.hnorm = BailingMoeV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 1094 |
+
self.final_layernorm = BailingMoeV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 1095 |
+
|
| 1096 |
+
def forward(
|
| 1097 |
+
self,
|
| 1098 |
+
input_embeds,
|
| 1099 |
+
hidden_states: torch.Tensor,
|
| 1100 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1101 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1102 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 1103 |
+
output_attentions: Optional[bool] = False,
|
| 1104 |
+
output_router_logits: Optional[bool] = False,
|
| 1105 |
+
use_cache: Optional[bool] = False,
|
| 1106 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
| 1107 |
+
**kwargs,
|
| 1108 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 1109 |
+
input_embeds = self.enorm(input_embeds)
|
| 1110 |
+
hidden_states = self.hnorm(hidden_states)
|
| 1111 |
+
hidden_states = self.eh_proj(torch.cat([input_embeds, hidden_states], dim=-1))
|
| 1112 |
+
residual = hidden_states
|
| 1113 |
+
|
| 1114 |
+
hidden_states = self.input_layernorm(hidden_states)
|
| 1115 |
+
|
| 1116 |
+
# Self Attention
|
| 1117 |
+
hidden_states, self_attn_weights, present_key_value = self.attention(
|
| 1118 |
+
hidden_states=hidden_states,
|
| 1119 |
+
attention_mask=attention_mask,
|
| 1120 |
+
position_ids=position_ids,
|
| 1121 |
+
past_key_value=past_key_value,
|
| 1122 |
+
output_attentions=output_attentions,
|
| 1123 |
+
position_embeddings=position_embeddings,
|
| 1124 |
+
use_cache=use_cache,
|
| 1125 |
+
)
|
| 1126 |
+
hidden_states = residual + hidden_states
|
| 1127 |
+
|
| 1128 |
+
# Fully Connected
|
| 1129 |
+
residual = hidden_states
|
| 1130 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 1131 |
+
hidden_states = self.mlp(hidden_states)
|
| 1132 |
+
if isinstance(hidden_states, tuple):
|
| 1133 |
+
hidden_states, router_logits = hidden_states
|
| 1134 |
+
else:
|
| 1135 |
+
router_logits = None
|
| 1136 |
+
hidden_states = residual + hidden_states.to(residual.device)
|
| 1137 |
+
hidden_states = self.final_layernorm(hidden_states)
|
| 1138 |
+
|
| 1139 |
+
outputs = (hidden_states,)
|
| 1140 |
+
|
| 1141 |
+
if output_attentions:
|
| 1142 |
+
outputs += (self_attn_weights,)
|
| 1143 |
+
|
| 1144 |
+
if use_cache:
|
| 1145 |
+
outputs += (present_key_value,)
|
| 1146 |
+
|
| 1147 |
+
if output_router_logits:
|
| 1148 |
+
outputs += (router_logits,)
|
| 1149 |
+
|
| 1150 |
+
return outputs
|
| 1151 |
+
|
| 1152 |
+
|
| 1153 |
+
class BailingMoeLinearV2DecoderLayer(nn.Module):
|
| 1154 |
+
def __init__(self, config: BailingMoeLinearV2Config, layer_idx: int):
|
| 1155 |
+
super().__init__()
|
| 1156 |
+
self.hidden_size = config.hidden_size
|
| 1157 |
+
self.attention_layer_type = "attention" if (layer_idx + 1) % config.layer_group_size == 0 or \
|
| 1158 |
+
layer_idx >= config.num_hidden_layers // config.layer_group_size * config.layer_group_size else "linear_attention"
|
| 1159 |
+
|
| 1160 |
+
if self.attention_layer_type == "attention":
|
| 1161 |
+
self.attention = ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
|
| 1162 |
+
else:
|
| 1163 |
+
self.attention = BailingMoeV2LinearAttention(
|
| 1164 |
+
config=config,
|
| 1165 |
+
layer_idx=layer_idx
|
| 1166 |
+
)
|
| 1167 |
+
|
| 1168 |
+
self.mlp = (
|
| 1169 |
+
BailingMoeV2SparseMoeBlock(config)
|
| 1170 |
+
if (config.num_experts is not None and layer_idx >= config.first_k_dense_replace)
|
| 1171 |
+
else BailingMoeV2MLP(config=config, intermediate_size=config.intermediate_size)
|
| 1172 |
+
)
|
| 1173 |
+
self.input_layernorm = BailingMoeV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 1174 |
+
self.post_attention_layernorm = BailingMoeV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 1175 |
+
|
| 1176 |
+
def forward(
|
| 1177 |
+
self,
|
| 1178 |
+
hidden_states: torch.Tensor,
|
| 1179 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1180 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1181 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 1182 |
+
output_attentions: Optional[bool] = False,
|
| 1183 |
+
output_router_logits: Optional[bool] = False,
|
| 1184 |
+
use_cache: Optional[bool] = False,
|
| 1185 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
| 1186 |
+
**kwargs,
|
| 1187 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 1188 |
+
"""
|
| 1189 |
+
Args:
|
| 1190 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 1191 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
| 1192 |
+
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
| 1193 |
+
query_sequence_length, key_sequence_length)` if default attention is used.
|
| 1194 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1195 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 1196 |
+
config.n_positions - 1]`.
|
| 1197 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*):
|
| 1198 |
+
cached past key and value projection states
|
| 1199 |
+
output_attentions (`bool`, *optional*):
|
| 1200 |
+
Whether to return the attentions tensors of all attention layers. See `attentions` under
|
| 1201 |
+
returned tensors for more detail.
|
| 1202 |
+
output_router_logits (`bool`, *optional*):
|
| 1203 |
+
Whether or not to return the logits of all the routers. They are useful for computing the router loss,
|
| 1204 |
+
and should not be returned during inference.
|
| 1205 |
+
use_cache (`bool`, *optional*):
|
| 1206 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
| 1207 |
+
(see `past_key_values`).
|
| 1208 |
+
"""
|
| 1209 |
+
residual = hidden_states
|
| 1210 |
+
|
| 1211 |
+
hidden_states = self.input_layernorm(hidden_states)
|
| 1212 |
+
|
| 1213 |
+
# Self Attention
|
| 1214 |
+
if self.attention_layer_type == "attention":
|
| 1215 |
+
hidden_states, self_attn_weights, present_key_value = self.attention(
|
| 1216 |
+
hidden_states=hidden_states,
|
| 1217 |
+
attention_mask=attention_mask,
|
| 1218 |
+
position_ids=position_ids,
|
| 1219 |
+
past_key_value=past_key_value,
|
| 1220 |
+
output_attentions=output_attentions,
|
| 1221 |
+
position_embeddings=position_embeddings,
|
| 1222 |
+
use_cache=use_cache,
|
| 1223 |
+
)
|
| 1224 |
+
else:
|
| 1225 |
+
batch_size, seq_len = hidden_states.shape[0], hidden_states.shape[1]
|
| 1226 |
+
device = hidden_states.device
|
| 1227 |
+
|
| 1228 |
+
if attention_mask is None:
|
| 1229 |
+
# if attention_mask is None, create a full mask
|
| 1230 |
+
attention_mask = torch.ones((batch_size, seq_len), dtype=torch.int32, device=device)
|
| 1231 |
+
elif attention_mask.dim() == 4 and attention_mask.shape[1] == 1:
|
| 1232 |
+
attention_mask = attention_mask[:, 0, -1, :].to(torch.int32)
|
| 1233 |
+
attention_mask = (attention_mask > -1e4).to(torch.int32)
|
| 1234 |
+
elif attention_mask.dim() == 2:
|
| 1235 |
+
attention_mask = attention_mask.to(torch.int32)
|
| 1236 |
+
else:
|
| 1237 |
+
raise ValueError(f"Unsupported mask dimension: {attention_mask.shape}")
|
| 1238 |
+
|
| 1239 |
+
hidden_states, self_attn_weights, present_key_value = self.attention(
|
| 1240 |
+
hidden_states=hidden_states,
|
| 1241 |
+
attention_mask=attention_mask,
|
| 1242 |
+
past_key_value=past_key_value,
|
| 1243 |
+
position_ids=position_ids,
|
| 1244 |
+
use_cache=use_cache,
|
| 1245 |
+
output_attentions=output_attentions,
|
| 1246 |
+
position_embeddings=position_embeddings,
|
| 1247 |
+
)
|
| 1248 |
+
|
| 1249 |
+
hidden_states = residual + hidden_states
|
| 1250 |
+
|
| 1251 |
+
# Fully Connected
|
| 1252 |
+
residual = hidden_states
|
| 1253 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 1254 |
+
hidden_states = self.mlp(hidden_states)
|
| 1255 |
+
if isinstance(hidden_states, tuple):
|
| 1256 |
+
hidden_states, router_logits = hidden_states
|
| 1257 |
+
else:
|
| 1258 |
+
router_logits = None
|
| 1259 |
+
hidden_states = residual + hidden_states.to(residual.device)
|
| 1260 |
+
|
| 1261 |
+
outputs = (hidden_states,)
|
| 1262 |
+
|
| 1263 |
+
if output_attentions:
|
| 1264 |
+
outputs += (self_attn_weights,)
|
| 1265 |
+
|
| 1266 |
+
if use_cache:
|
| 1267 |
+
outputs += (present_key_value,)
|
| 1268 |
+
|
| 1269 |
+
if output_router_logits:
|
| 1270 |
+
outputs += (router_logits,)
|
| 1271 |
+
|
| 1272 |
+
return outputs
|
| 1273 |
+
|
| 1274 |
+
|
| 1275 |
+
BAILINGMOEV2_START_DOCSTRING = r"""
|
| 1276 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 1277 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 1278 |
+
etc.)
|
| 1279 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 1280 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 1281 |
+
and behavior.
|
| 1282 |
+
Parameters:
|
| 1283 |
+
config ([`BailingMoeLinearV2Config`]):
|
| 1284 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
| 1285 |
+
load the weights associated with the model, only the configuration. Check out the
|
| 1286 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 1287 |
+
"""
|
| 1288 |
+
|
| 1289 |
+
|
| 1290 |
+
@add_start_docstrings(
|
| 1291 |
+
"The bare BailingMoeV2 Model outputting raw hidden-states without any specific head on top.",
|
| 1292 |
+
BAILINGMOEV2_START_DOCSTRING,
|
| 1293 |
+
)
|
| 1294 |
+
class BailingMoeV2PreTrainedModel(PreTrainedModel):
|
| 1295 |
+
config_class = BailingMoeLinearV2Config
|
| 1296 |
+
base_model_prefix = "model"
|
| 1297 |
+
supports_gradient_checkpointing = True
|
| 1298 |
+
_no_split_modules = ["BailingMoeLinearV2DecoderLayer"]
|
| 1299 |
+
_skip_keys_device_placement = "past_key_values"
|
| 1300 |
+
_supports_flash_attn_2 = True
|
| 1301 |
+
_supports_sdpa = True
|
| 1302 |
+
_supports_cache_class = True
|
| 1303 |
+
|
| 1304 |
+
def _init_weights(self, module):
|
| 1305 |
+
std = self.config.initializer_range
|
| 1306 |
+
if isinstance(module, nn.Linear):
|
| 1307 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 1308 |
+
if module.bias is not None:
|
| 1309 |
+
module.bias.data.zero_()
|
| 1310 |
+
elif isinstance(module, nn.Embedding):
|
| 1311 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 1312 |
+
if module.padding_idx is not None:
|
| 1313 |
+
module.weight.data[module.padding_idx].zero_()
|
| 1314 |
+
|
| 1315 |
+
|
| 1316 |
+
BAILINGMOEV2_INPUTS_DOCSTRING = r"""
|
| 1317 |
+
Args:
|
| 1318 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 1319 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 1320 |
+
it.
|
| 1321 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 1322 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 1323 |
+
[What are input IDs?](../glossary#input-ids)
|
| 1324 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1325 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 1326 |
+
- 1 for tokens that are **not masked**,
|
| 1327 |
+
- 0 for tokens that are **masked**.
|
| 1328 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 1329 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 1330 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 1331 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
| 1332 |
+
`past_key_values`).
|
| 1333 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
| 1334 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
| 1335 |
+
information on the default strategy.
|
| 1336 |
+
- 1 indicates the head is **not masked**,
|
| 1337 |
+
- 0 indicates the head is **masked**.
|
| 1338 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1339 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 1340 |
+
config.n_positions - 1]`.
|
| 1341 |
+
[What are position IDs?](../glossary#position-ids)
|
| 1342 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
| 1343 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
| 1344 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
| 1345 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
| 1346 |
+
Two formats are allowed:
|
| 1347 |
+
- a [`~cache_utils.Cache`] instance;
|
| 1348 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
| 1349 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
| 1350 |
+
cache format.
|
| 1351 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
| 1352 |
+
legacy cache format will be returned.
|
| 1353 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
| 1354 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
| 1355 |
+
of shape `(batch_size, sequence_length)`.
|
| 1356 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 1357 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 1358 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 1359 |
+
model's internal embedding lookup matrix.
|
| 1360 |
+
use_cache (`bool`, *optional*):
|
| 1361 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 1362 |
+
`past_key_values`).
|
| 1363 |
+
output_attentions (`bool`, *optional*):
|
| 1364 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 1365 |
+
tensors for more detail.
|
| 1366 |
+
output_hidden_states (`bool`, *optional*):
|
| 1367 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 1368 |
+
more detail.
|
| 1369 |
+
return_dict (`bool`, *optional*):
|
| 1370 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 1371 |
+
"""
|
| 1372 |
+
|
| 1373 |
+
|
| 1374 |
+
@add_start_docstrings(
|
| 1375 |
+
"The bare BailingMoeV2 Model outputting raw hidden-states without any specific head on top.",
|
| 1376 |
+
BAILINGMOEV2_START_DOCSTRING,
|
| 1377 |
+
)
|
| 1378 |
+
class BailingMoeLinearV2Model(BailingMoeV2PreTrainedModel):
|
| 1379 |
+
"""
|
| 1380 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`BailingMoeLinearV2DecoderLayer`]
|
| 1381 |
+
Args:
|
| 1382 |
+
config: BailingMoeLinearV2Config
|
| 1383 |
+
"""
|
| 1384 |
+
|
| 1385 |
+
def __init__(self, config: BailingMoeLinearV2Config):
|
| 1386 |
+
super().__init__(config)
|
| 1387 |
+
self.padding_idx = config.pad_token_id
|
| 1388 |
+
self.vocab_size = config.vocab_size
|
| 1389 |
+
self.num_nextn_predict_layers = config.num_nextn_predict_layers
|
| 1390 |
+
|
| 1391 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 1392 |
+
self.layers = []
|
| 1393 |
+
for layer_idx in range(config.num_hidden_layers + config.num_nextn_predict_layers):
|
| 1394 |
+
layer_cls = BailingMoeLinearV2DecoderLayer if layer_idx < config.num_hidden_layers else BailingMoeV2MTPLayer
|
| 1395 |
+
self.layers.append(layer_cls(config, layer_idx))
|
| 1396 |
+
|
| 1397 |
+
self.layers = nn.ModuleList(self.layers)
|
| 1398 |
+
|
| 1399 |
+
self._use_sdpa = config._attn_implementation == "sdpa"
|
| 1400 |
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
| 1401 |
+
self.norm = BailingMoeV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 1402 |
+
self.rotary_emb = BailingMoeV2RotaryEmbedding(config=config)
|
| 1403 |
+
self.gradient_checkpointing = False
|
| 1404 |
+
# Initialize weights and apply final processing
|
| 1405 |
+
self.post_init()
|
| 1406 |
+
|
| 1407 |
+
def get_input_embeddings(self):
|
| 1408 |
+
return self.word_embeddings
|
| 1409 |
+
|
| 1410 |
+
def set_input_embeddings(self, value):
|
| 1411 |
+
self.word_embeddings = value
|
| 1412 |
+
|
| 1413 |
+
@add_start_docstrings_to_model_forward(BAILINGMOEV2_INPUTS_DOCSTRING)
|
| 1414 |
+
def forward(
|
| 1415 |
+
self,
|
| 1416 |
+
input_ids: torch.LongTensor = None,
|
| 1417 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1418 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1419 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1420 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1421 |
+
use_cache: Optional[bool] = None,
|
| 1422 |
+
output_attentions: Optional[bool] = None,
|
| 1423 |
+
output_hidden_states: Optional[bool] = None,
|
| 1424 |
+
output_router_logits: Optional[bool] = None,
|
| 1425 |
+
return_dict: Optional[bool] = None,
|
| 1426 |
+
**kwargs,
|
| 1427 |
+
) -> Union[Tuple, MoeV2ModelOutputWithPast]:
|
| 1428 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1429 |
+
output_hidden_states = (
|
| 1430 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1431 |
+
)
|
| 1432 |
+
output_router_logits = (
|
| 1433 |
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
| 1434 |
+
)
|
| 1435 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 1436 |
+
|
| 1437 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1438 |
+
|
| 1439 |
+
# retrieve input_ids and inputs_embeds
|
| 1440 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 1441 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
| 1442 |
+
elif input_ids is not None:
|
| 1443 |
+
batch_size, seq_length = input_ids.shape[:2]
|
| 1444 |
+
elif inputs_embeds is not None:
|
| 1445 |
+
batch_size, seq_length = inputs_embeds.shape[:2]
|
| 1446 |
+
else:
|
| 1447 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 1448 |
+
|
| 1449 |
+
if self.gradient_checkpointing and self.training:
|
| 1450 |
+
if use_cache:
|
| 1451 |
+
logger.warning_once(
|
| 1452 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`transformers."
|
| 1453 |
+
)
|
| 1454 |
+
use_cache = False
|
| 1455 |
+
|
| 1456 |
+
if use_cache and past_key_values is None:
|
| 1457 |
+
past_key_values = DynamicCache()
|
| 1458 |
+
|
| 1459 |
+
if inputs_embeds is None:
|
| 1460 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
| 1461 |
+
|
| 1462 |
+
softmax_attention_layer_id = self.config.layer_group_size - 1
|
| 1463 |
+
past_seen_tokens = past_key_values.get_seq_length(layer_idx=softmax_attention_layer_id) if past_key_values is not None else 0
|
| 1464 |
+
|
| 1465 |
+
if position_ids is None:
|
| 1466 |
+
position_ids = torch.arange(
|
| 1467 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
| 1468 |
+
)
|
| 1469 |
+
position_ids = position_ids.unsqueeze(0)
|
| 1470 |
+
|
| 1471 |
+
if self._use_flash_attention_2:
|
| 1472 |
+
# 2d mask is passed through the layers
|
| 1473 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
| 1474 |
+
elif self._use_sdpa and not output_attentions:
|
| 1475 |
+
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
| 1476 |
+
# the manual implementation that requires a 4D causal mask in all cases.
|
| 1477 |
+
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
| 1478 |
+
attention_mask,
|
| 1479 |
+
(batch_size, seq_length),
|
| 1480 |
+
inputs_embeds,
|
| 1481 |
+
past_seen_tokens,
|
| 1482 |
+
)
|
| 1483 |
+
else:
|
| 1484 |
+
# 4d mask is passed through the layers
|
| 1485 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
| 1486 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_seen_tokens
|
| 1487 |
+
)
|
| 1488 |
+
|
| 1489 |
+
# embed positions
|
| 1490 |
+
hidden_states = inputs_embeds
|
| 1491 |
+
|
| 1492 |
+
# create position embeddings to be shared across the decoder layers
|
| 1493 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
| 1494 |
+
|
| 1495 |
+
# decoder layers
|
| 1496 |
+
all_hidden_states = () if output_hidden_states else None
|
| 1497 |
+
all_self_attns = () if output_attentions else None
|
| 1498 |
+
all_router_logits = () if output_router_logits else None
|
| 1499 |
+
next_decoder_cache = None
|
| 1500 |
+
layers = self.layers[: -self.num_nextn_predict_layers] if self.num_nextn_predict_layers > 0 else self.layers
|
| 1501 |
+
mtp_layers = self.layers[-self.num_nextn_predict_layers :] if self.num_nextn_predict_layers > 0 else None
|
| 1502 |
+
|
| 1503 |
+
for decoder_layer in layers:
|
| 1504 |
+
if output_hidden_states:
|
| 1505 |
+
all_hidden_states += (hidden_states,)
|
| 1506 |
+
|
| 1507 |
+
if self.gradient_checkpointing and self.training:
|
| 1508 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 1509 |
+
decoder_layer.__call__,
|
| 1510 |
+
hidden_states,
|
| 1511 |
+
attention_mask,
|
| 1512 |
+
position_ids,
|
| 1513 |
+
past_key_values,
|
| 1514 |
+
output_attentions,
|
| 1515 |
+
output_router_logits,
|
| 1516 |
+
use_cache,
|
| 1517 |
+
position_embeddings,
|
| 1518 |
+
)
|
| 1519 |
+
else:
|
| 1520 |
+
layer_outputs = decoder_layer(
|
| 1521 |
+
hidden_states,
|
| 1522 |
+
attention_mask=attention_mask,
|
| 1523 |
+
position_ids=position_ids,
|
| 1524 |
+
past_key_value=past_key_values,
|
| 1525 |
+
output_attentions=output_attentions,
|
| 1526 |
+
output_router_logits=output_router_logits,
|
| 1527 |
+
use_cache=use_cache,
|
| 1528 |
+
position_embeddings=position_embeddings,
|
| 1529 |
+
)
|
| 1530 |
+
hidden_states = layer_outputs[0]
|
| 1531 |
+
|
| 1532 |
+
if use_cache:
|
| 1533 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
| 1534 |
+
|
| 1535 |
+
if output_attentions:
|
| 1536 |
+
all_self_attns += (layer_outputs[1],)
|
| 1537 |
+
|
| 1538 |
+
if output_router_logits and layer_outputs[-1] is not None:
|
| 1539 |
+
all_router_logits += (layer_outputs[-1],)
|
| 1540 |
+
|
| 1541 |
+
hidden_states = self.norm(hidden_states)
|
| 1542 |
+
main_hidden_states = hidden_states
|
| 1543 |
+
|
| 1544 |
+
# add hidden states from the last decoder layer
|
| 1545 |
+
if output_hidden_states:
|
| 1546 |
+
all_hidden_states += (main_hidden_states,)
|
| 1547 |
+
|
| 1548 |
+
mtp_hidden_states = None
|
| 1549 |
+
|
| 1550 |
+
if mtp_layers:
|
| 1551 |
+
for decoder_layer in mtp_layers:
|
| 1552 |
+
input_ids, _ = roll_tensor(input_ids, shifts=-1, dims=-1)
|
| 1553 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
| 1554 |
+
|
| 1555 |
+
if self.gradient_checkpointing and self.training:
|
| 1556 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 1557 |
+
decoder_layer.__call__,
|
| 1558 |
+
inputs_embeds,
|
| 1559 |
+
hidden_states,
|
| 1560 |
+
attention_mask,
|
| 1561 |
+
position_ids,
|
| 1562 |
+
past_key_values,
|
| 1563 |
+
output_attentions,
|
| 1564 |
+
output_router_logits,
|
| 1565 |
+
use_cache,
|
| 1566 |
+
position_embeddings,
|
| 1567 |
+
)
|
| 1568 |
+
else:
|
| 1569 |
+
layer_outputs = decoder_layer(
|
| 1570 |
+
inputs_embeds,
|
| 1571 |
+
hidden_states,
|
| 1572 |
+
attention_mask=attention_mask,
|
| 1573 |
+
position_ids=position_ids,
|
| 1574 |
+
past_key_value=past_key_values,
|
| 1575 |
+
output_attentions=output_attentions,
|
| 1576 |
+
output_router_logits=output_router_logits,
|
| 1577 |
+
use_cache=use_cache,
|
| 1578 |
+
position_embeddings=position_embeddings,
|
| 1579 |
+
)
|
| 1580 |
+
if mtp_hidden_states is None:
|
| 1581 |
+
mtp_hidden_states = []
|
| 1582 |
+
hidden_states = layer_outputs[0]
|
| 1583 |
+
mtp_hidden_states.append(hidden_states)
|
| 1584 |
+
|
| 1585 |
+
if output_hidden_states:
|
| 1586 |
+
all_hidden_states += (hidden_states,)
|
| 1587 |
+
|
| 1588 |
+
if use_cache:
|
| 1589 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
| 1590 |
+
|
| 1591 |
+
if output_attentions:
|
| 1592 |
+
all_self_attns += (layer_outputs[1],)
|
| 1593 |
+
|
| 1594 |
+
if output_router_logits and layer_outputs[-1] is not None:
|
| 1595 |
+
all_router_logits += (layer_outputs[-1],)
|
| 1596 |
+
|
| 1597 |
+
next_cache = None
|
| 1598 |
+
if use_cache:
|
| 1599 |
+
next_cache = next_decoder_cache
|
| 1600 |
+
if not return_dict:
|
| 1601 |
+
return tuple(
|
| 1602 |
+
v
|
| 1603 |
+
for v in [main_hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits]
|
| 1604 |
+
if v is not None
|
| 1605 |
+
)
|
| 1606 |
+
return MoeV2ModelOutputWithPast(
|
| 1607 |
+
last_hidden_state=main_hidden_states,
|
| 1608 |
+
past_key_values=next_cache,
|
| 1609 |
+
hidden_states=all_hidden_states,
|
| 1610 |
+
mtp_hidden_states=mtp_hidden_states,
|
| 1611 |
+
attentions=all_self_attns,
|
| 1612 |
+
router_logits=all_router_logits,
|
| 1613 |
+
)
|
| 1614 |
+
|
| 1615 |
+
|
| 1616 |
+
class BailingMoeLinearV2ForCausalLM(BailingMoeV2PreTrainedModel, GenerationMixin):
|
| 1617 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 1618 |
+
|
| 1619 |
+
def __init__(self, config: BailingMoeLinearV2Config):
|
| 1620 |
+
super().__init__(config)
|
| 1621 |
+
self.model = BailingMoeLinearV2Model(config)
|
| 1622 |
+
self.vocab_size = config.vocab_size
|
| 1623 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 1624 |
+
self.num_nextn_predict_layers = config.num_nextn_predict_layers
|
| 1625 |
+
self.mtp_loss_scaling_factor = config.mtp_loss_scaling_factor
|
| 1626 |
+
|
| 1627 |
+
# Initialize weights and apply final processing
|
| 1628 |
+
self.post_init()
|
| 1629 |
+
|
| 1630 |
+
def get_input_embeddings(self):
|
| 1631 |
+
return self.model.word_embeddings
|
| 1632 |
+
|
| 1633 |
+
def set_input_embeddings(self, value):
|
| 1634 |
+
self.model.word_embeddings = value
|
| 1635 |
+
|
| 1636 |
+
def get_output_embeddings(self):
|
| 1637 |
+
return self.lm_head
|
| 1638 |
+
|
| 1639 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1640 |
+
self.lm_head = new_embeddings
|
| 1641 |
+
|
| 1642 |
+
def set_decoder(self, decoder):
|
| 1643 |
+
self.model = decoder
|
| 1644 |
+
|
| 1645 |
+
def get_decoder(self):
|
| 1646 |
+
return self.model
|
| 1647 |
+
|
| 1648 |
+
@add_start_docstrings_to_model_forward(BAILINGMOEV2_INPUTS_DOCSTRING)
|
| 1649 |
+
@replace_return_docstrings(output_type=MoEV2CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
| 1650 |
+
def forward(
|
| 1651 |
+
self,
|
| 1652 |
+
input_ids: torch.LongTensor = None,
|
| 1653 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1654 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1655 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1656 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1657 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1658 |
+
use_cache: Optional[bool] = None,
|
| 1659 |
+
output_attentions: Optional[bool] = None,
|
| 1660 |
+
output_hidden_states: Optional[bool] = None,
|
| 1661 |
+
output_router_logits: Optional[bool] = None,
|
| 1662 |
+
return_dict: Optional[bool] = None,
|
| 1663 |
+
**kwargs,
|
| 1664 |
+
) -> Union[Tuple, MoEV2CausalLMOutputWithPast]:
|
| 1665 |
+
r"""
|
| 1666 |
+
Args:
|
| 1667 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1668 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 1669 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 1670 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 1671 |
+
Returns:
|
| 1672 |
+
Example:
|
| 1673 |
+
```python
|
| 1674 |
+
>>> from transformers import AutoTokenizer
|
| 1675 |
+
>>> model = BailingMoeLinearV2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
| 1676 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
| 1677 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
| 1678 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
| 1679 |
+
>>> # Generate
|
| 1680 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
| 1681 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 1682 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
| 1683 |
+
```"""
|
| 1684 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1685 |
+
output_hidden_states = (
|
| 1686 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1687 |
+
)
|
| 1688 |
+
output_router_logits = (
|
| 1689 |
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
| 1690 |
+
)
|
| 1691 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1692 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 1693 |
+
outputs = self.model(
|
| 1694 |
+
input_ids=input_ids,
|
| 1695 |
+
attention_mask=attention_mask,
|
| 1696 |
+
position_ids=position_ids,
|
| 1697 |
+
past_key_values=past_key_values,
|
| 1698 |
+
inputs_embeds=inputs_embeds,
|
| 1699 |
+
use_cache=use_cache,
|
| 1700 |
+
output_attentions=output_attentions,
|
| 1701 |
+
output_hidden_states=output_hidden_states,
|
| 1702 |
+
output_router_logits=output_router_logits,
|
| 1703 |
+
return_dict=return_dict,
|
| 1704 |
+
**kwargs,
|
| 1705 |
+
)
|
| 1706 |
+
|
| 1707 |
+
loss = None
|
| 1708 |
+
all_mtp_loss = None
|
| 1709 |
+
aux_loss = None
|
| 1710 |
+
hidden_states = outputs[0]
|
| 1711 |
+
logits = self.lm_head(hidden_states)
|
| 1712 |
+
logits = logits.float()
|
| 1713 |
+
|
| 1714 |
+
if labels is not None:
|
| 1715 |
+
loss = self.loss_function(logits, labels, self.config.vocab_size, **kwargs)
|
| 1716 |
+
|
| 1717 |
+
all_mtp_logits = None
|
| 1718 |
+
if self.num_nextn_predict_layers > 0:
|
| 1719 |
+
mtp_hidden_states = outputs.mtp_hidden_states
|
| 1720 |
+
shift_labels_mtp = None
|
| 1721 |
+
for i in range(self.num_nextn_predict_layers):
|
| 1722 |
+
mtp_hidden_states = mtp_hidden_states[i]
|
| 1723 |
+
mtp_logits = self.lm_head(mtp_hidden_states).float()
|
| 1724 |
+
if all_mtp_logits is None:
|
| 1725 |
+
all_mtp_logits = []
|
| 1726 |
+
all_mtp_logits.append(mtp_logits)
|
| 1727 |
+
if labels is not None:
|
| 1728 |
+
if shift_labels_mtp is None:
|
| 1729 |
+
shift_labels_mtp = labels.clone()
|
| 1730 |
+
shift_labels_mtp, _ = roll_tensor(shift_labels_mtp, shifts=-1, dims=-1, fill_value=-100)
|
| 1731 |
+
mtp_logits_ = mtp_logits.view(-1, self.config.vocab_size)
|
| 1732 |
+
mtp_loss = self.loss_function(mtp_logits_, shift_labels_mtp.to(mtp_logits_.device).view(-1), self.config.vocab_size, **kwargs)
|
| 1733 |
+
if loss is not None:
|
| 1734 |
+
loss += self.mtp_loss_scaling_factor * mtp_loss
|
| 1735 |
+
else:
|
| 1736 |
+
loss = self.mtp_loss_scaling_factor * mtp_loss
|
| 1737 |
+
|
| 1738 |
+
if all_mtp_loss is None:
|
| 1739 |
+
all_mtp_loss = []
|
| 1740 |
+
all_mtp_loss.append(mtp_loss)
|
| 1741 |
+
|
| 1742 |
+
if not return_dict:
|
| 1743 |
+
output = (logits,) + outputs[1:]
|
| 1744 |
+
if output_router_logits:
|
| 1745 |
+
output = (aux_loss,) + output
|
| 1746 |
+
return (loss,) + output if loss is not None else output
|
| 1747 |
+
|
| 1748 |
+
return MoEV2CausalLMOutputWithPast(
|
| 1749 |
+
loss=loss,
|
| 1750 |
+
mtp_loss=all_mtp_loss,
|
| 1751 |
+
aux_loss=aux_loss,
|
| 1752 |
+
logits=logits,
|
| 1753 |
+
mtp_logits=all_mtp_logits,
|
| 1754 |
+
past_key_values=outputs.past_key_values,
|
| 1755 |
+
hidden_states=outputs.hidden_states,
|
| 1756 |
+
attentions=outputs.attentions,
|
| 1757 |
+
router_logits=outputs.router_logits,
|
| 1758 |
+
)
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": "<|startoftext|>",
|
| 3 |
+
"cls_token": "[CLS]",
|
| 4 |
+
"eos_token": "<|endoftext|>",
|
| 5 |
+
"gmask_token": "[gMASK]",
|
| 6 |
+
"pad_token": "<|endoftext|>"
|
| 7 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"bos_token": "<|startoftext|>",
|
| 5 |
+
"chat_template": "{% for message in messages %}{% set role = message['role'] | lower %}{% if role == 'user' %}{% set role = 'HUMAN' %}{% endif %}{% set role = role | upper %}{{ '<role>' + role + '</role>' + message['content'] }}{% endfor %}{% if add_generation_prompt %}{{ '<role>ASSISTANT</role><think>' }}{% endif %}",
|
| 6 |
+
"clean_up_tokenization_spaces": false,
|
| 7 |
+
"cls_token": "[CLS]",
|
| 8 |
+
"eos_token": "<|endoftext|>",
|
| 9 |
+
"fast_tokenizer": true,
|
| 10 |
+
"gmask_token": "[gMASK]",
|
| 11 |
+
"merges_file": null,
|
| 12 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 13 |
+
"pad_token": "<|endoftext|>",
|
| 14 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
| 15 |
+
"trust_remote_code": true,
|
| 16 |
+
"vocab_file": null
|
| 17 |
+
}
|