Upload run_evaluate_loco.py
Browse files
scripts/evaluate/run_evaluate_loco.py
ADDED
@@ -0,0 +1,304 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import random
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
import torch
|
6 |
+
import os
|
7 |
+
|
8 |
+
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
|
9 |
+
from sentence_transformers import SentenceTransformer
|
10 |
+
import tqdm
|
11 |
+
import numpy as np
|
12 |
+
import faiss
|
13 |
+
from sklearn.metrics import ndcg_score
|
14 |
+
from os.path import join
|
15 |
+
from sklearn.preprocessing import normalize
|
16 |
+
from transformers import AutoTokenizer, AutoModel
|
17 |
+
|
18 |
+
faiss.omp_set_num_threads(16)
|
19 |
+
|
20 |
+
|
21 |
+
def find_topk_by_vecs(source_vecs: np.ndarray, target_vecs: np.ndarray, topk: int):
|
22 |
+
if topk > len(target_vecs):
|
23 |
+
topk = len(target_vecs)
|
24 |
+
faiss_index = faiss.IndexFlatIP(target_vecs.shape[1])
|
25 |
+
faiss_index.add(target_vecs)
|
26 |
+
|
27 |
+
res_distance, res_index = faiss_index.search(source_vecs, topk)
|
28 |
+
return res_index, res_distance
|
29 |
+
|
30 |
+
|
31 |
+
def get_loco_path_info(q_dir, d_dir):
|
32 |
+
names = []
|
33 |
+
for name in sorted(os.listdir(q_dir)):
|
34 |
+
if name.endswith(".jsonl"):
|
35 |
+
names.append(name)
|
36 |
+
for name in os.listdir(d_dir):
|
37 |
+
if name.endswith(".jsonl"):
|
38 |
+
assert name in names
|
39 |
+
infos = []
|
40 |
+
for name in names:
|
41 |
+
infos.append(["LOCO-V1", name, join(q_dir, name), join(d_dir, name)])
|
42 |
+
infos.sort(key=lambda x: x[1])
|
43 |
+
return infos
|
44 |
+
|
45 |
+
|
46 |
+
def get_loco_data(q_path, d_path):
|
47 |
+
passage_list, query2passage_list = [], {}
|
48 |
+
|
49 |
+
original_doc_id2doc = {}
|
50 |
+
|
51 |
+
with open(d_path, "r", encoding="utf8") as fr:
|
52 |
+
for line in fr:
|
53 |
+
item = json.loads(line)
|
54 |
+
if item["passage"].strip():
|
55 |
+
original_doc_id2doc[item["pid"]] = item["passage"].strip()
|
56 |
+
passage_list.append(item["passage"].strip())
|
57 |
+
|
58 |
+
with open(q_path, "r", encoding="utf8") as fr:
|
59 |
+
for line in fr:
|
60 |
+
item = json.loads(line)
|
61 |
+
if item["query"].strip():
|
62 |
+
query2passage_list[item["query"].strip()] = [
|
63 |
+
original_doc_id2doc[answer_pid]
|
64 |
+
for answer_pid in item["answer_pids"]
|
65 |
+
if answer_pid in original_doc_id2doc
|
66 |
+
]
|
67 |
+
query2passage_list = {k: list(set(v)) for k, v in query2passage_list.items() if list(set(v))}
|
68 |
+
passage_list = list(set(passage_list))
|
69 |
+
passage2id = {passage: idx for idx, passage in enumerate(passage_list)}
|
70 |
+
query2id_list = {k: list(set([passage2id[i] for i in v])) for k, v in query2passage_list.items()}
|
71 |
+
query_list = list(query2id_list.keys())
|
72 |
+
return query_list, passage_list, query2id_list
|
73 |
+
|
74 |
+
|
75 |
+
def get_ndcg_score(query_list, passage_list, query2passage_id_list, topk=10, error_data_save_path: str = None):
|
76 |
+
chunk_id2passage_id = {}
|
77 |
+
q_vecs = model.encode(
|
78 |
+
sentences=query_list,
|
79 |
+
batch_size=batch_size,
|
80 |
+
chunk_size=chunk_size,
|
81 |
+
chunk_overlap=chunk_overlap,
|
82 |
+
max_seq_length=max_seq_length,
|
83 |
+
is_q=True,
|
84 |
+
)
|
85 |
+
p_vecs = model.encode(
|
86 |
+
sentences=passage_list,
|
87 |
+
batch_size=batch_size,
|
88 |
+
chunk_size=chunk_size,
|
89 |
+
chunk_overlap=chunk_overlap,
|
90 |
+
max_seq_length=max_seq_length,
|
91 |
+
is_q=False,
|
92 |
+
)
|
93 |
+
# according query2id_list get labels_list
|
94 |
+
query_id_list = [query2passage_id_list[query] for query in query_list]
|
95 |
+
max_doc = max((len(id_list) for id_list in query_id_list))
|
96 |
+
|
97 |
+
labels = np.array([(id_list * max_doc)[:max_doc] for id_list in query_id_list])
|
98 |
+
if isinstance(p_vecs, list):
|
99 |
+
for idx, vec in enumerate(p_vecs):
|
100 |
+
if multi_vec_strategy == "full_text":
|
101 |
+
p_vecs[idx] = normalize(np.mean(vec[1:2, :], axis=0, keepdims=True), axis=1)
|
102 |
+
elif multi_vec_strategy == "full_text+chunks":
|
103 |
+
n_chunk = (vec.shape[0] - 2) // 2
|
104 |
+
if n_chunk > 0:
|
105 |
+
p_vecs[idx] = np.vstack(
|
106 |
+
(
|
107 |
+
normalize(np.mean(vec[:2, :], axis=0, keepdims=True), axis=1),
|
108 |
+
vec[2:2 + n_chunk, :],
|
109 |
+
)
|
110 |
+
)
|
111 |
+
else:
|
112 |
+
p_vecs[idx] = normalize(np.mean(vec[:2, :], axis=0, keepdims=True), axis=1)
|
113 |
+
p_vecs = np.vstack(p_vecs)
|
114 |
+
|
115 |
+
if isinstance(q_vecs, list):
|
116 |
+
for idx, vec in enumerate(q_vecs):
|
117 |
+
q_vecs[idx] = normalize(np.mean(vec[0:2, :], axis=0, keepdims=True), axis=1)
|
118 |
+
q_vecs = np.vstack(q_vecs)
|
119 |
+
print("q_vecs.shape and dtype", q_vecs.shape, q_vecs.dtype)
|
120 |
+
print("p_vecs.shape and dtype", p_vecs.shape, p_vecs.dtype)
|
121 |
+
# search topk
|
122 |
+
# we calculate ndcg@10
|
123 |
+
topk_index, topk_scores = find_topk_by_vecs(q_vecs, p_vecs, topk * 100)
|
124 |
+
# print("topk_index", topk_index.shape, topk_index)
|
125 |
+
# print("topk_scores", topk_scores.shape, topk_scores)
|
126 |
+
### we may use multi vectors, so we should modify topk_index and topk_scores
|
127 |
+
if chunk_id2passage_id:
|
128 |
+
new_topk_index, new_topk_scores = [], []
|
129 |
+
# print("chunk_id2passage_id")
|
130 |
+
for chunk_ids, chunk_scores in tqdm.tqdm(zip(topk_index, topk_scores),
|
131 |
+
desc="modify topk_index and topk_scores", disable=True):
|
132 |
+
# processed by row
|
133 |
+
row_ids, row_scores, passage_id_set = [], [], set()
|
134 |
+
for idx, chunk_id in enumerate(chunk_ids):
|
135 |
+
passage_id = chunk_id2passage_id[chunk_id]
|
136 |
+
if passage_id not in passage_id_set:
|
137 |
+
passage_id_set.add(passage_id)
|
138 |
+
row_ids.append(passage_id)
|
139 |
+
row_scores.append(chunk_scores[idx])
|
140 |
+
new_topk_index.append(row_ids[:topk])
|
141 |
+
new_topk_scores.append(row_scores[:topk])
|
142 |
+
topk_index = np.array(new_topk_index)
|
143 |
+
# print("topk_index", topk_index)
|
144 |
+
topk_scores = np.array(new_topk_scores)
|
145 |
+
topk_index, topk_scores = topk_index[:, :topk], topk_scores[:, :topk]
|
146 |
+
is_match = (topk_index == labels[:, :1])
|
147 |
+
for idx in range(1, max_doc):
|
148 |
+
# the or operator means that only one positive doc in pred topk, we think it is recalled
|
149 |
+
is_match = is_match | (topk_index == labels[:, idx:idx + 1])
|
150 |
+
|
151 |
+
# compute recall at topk
|
152 |
+
print("is_match.shape", is_match.shape)
|
153 |
+
# recall_at_k = is_match.sum(axis=1).astype(bool).mean()
|
154 |
+
ndcg = ndcg_score(is_match.astype(dtype=np.float32), topk_scores)
|
155 |
+
|
156 |
+
if error_data_save_path:
|
157 |
+
in_top_k = is_match.sum(axis=1).astype(bool)
|
158 |
+
err_data = []
|
159 |
+
for idx, pred_res in enumerate(in_top_k):
|
160 |
+
if not pred_res:
|
161 |
+
query = query_list[idx]
|
162 |
+
label_doc = passage_list[query2passage_id_list[query][0]]
|
163 |
+
pred_doc = passage_list[topk_index[idx][0]]
|
164 |
+
err_data.append([query, label_doc, pred_doc])
|
165 |
+
pd.DataFrame(err_data, columns=["Query", "Label", "Pred"]).to_excel(error_data_save_path, index=False)
|
166 |
+
return float(ndcg)
|
167 |
+
|
168 |
+
|
169 |
+
class ModelWrapper:
|
170 |
+
def __init__(self, model_dir, model_type, max_seq_length):
|
171 |
+
assert model_type in ["dewey", "sentence_transformer"]
|
172 |
+
self.model_type = model_type
|
173 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_dir)
|
174 |
+
if model_type == "dewey":
|
175 |
+
self.model = AutoModel.from_pretrained(
|
176 |
+
model_dir,
|
177 |
+
attn_implementation="flash_attention_2",
|
178 |
+
trust_remote_code=True,
|
179 |
+
).cuda().bfloat16().eval()
|
180 |
+
self.model.tokenizer = self.tokenizer
|
181 |
+
else:
|
182 |
+
self.model = SentenceTransformer(
|
183 |
+
model_dir,
|
184 |
+
trust_remote_code=True,
|
185 |
+
device="cpu",
|
186 |
+
model_kwargs={
|
187 |
+
"torch_dtype": torch.bfloat16, # fp16
|
188 |
+
"attn_implementation": "flash_attention_2"
|
189 |
+
},
|
190 |
+
)
|
191 |
+
self.model.max_seq_length = max_seq_length
|
192 |
+
if "NV-Embed-v2" in model_dir:
|
193 |
+
self.model.tokenizer.padding_side = "right"
|
194 |
+
self.pool = self.model.start_multi_process_pool()
|
195 |
+
|
196 |
+
def encode(
|
197 |
+
self,
|
198 |
+
sentences,
|
199 |
+
batch_size,
|
200 |
+
chunk_size,
|
201 |
+
chunk_overlap,
|
202 |
+
max_seq_length,
|
203 |
+
is_q,
|
204 |
+
):
|
205 |
+
if self.model_type == "dewey":
|
206 |
+
if is_q:
|
207 |
+
prompt = "<|START_INSTRUCTION|>Answer the question<|END_INSTRUCTION|>"
|
208 |
+
else:
|
209 |
+
prompt = "<|START_INSTRUCTION|>Candidate document<|END_INSTRUCTION|>"
|
210 |
+
return self.model.encode(
|
211 |
+
sentences=sentences,
|
212 |
+
batch_size=batch_size,
|
213 |
+
use_cuda=True,
|
214 |
+
show_progress_bar=True,
|
215 |
+
chunk_size=chunk_size,
|
216 |
+
chunk_overlap=chunk_overlap,
|
217 |
+
convert_to_tensor=False,
|
218 |
+
max_seq_length=max_seq_length,
|
219 |
+
normalize_embeddings=True,
|
220 |
+
prompt=prompt,
|
221 |
+
fast_chunk=True,
|
222 |
+
)[0]
|
223 |
+
self.model.max_seq_length = max_seq_length
|
224 |
+
prompt = None
|
225 |
+
if is_q and (
|
226 |
+
"Linq-Embed-Mistral" in model_dir or "e5-mistral-7b-instruct" in model_dir or "SFR-Embedding-Mistral" in model_dir):
|
227 |
+
prompt = PROMPT_E5
|
228 |
+
if is_q and ("NV-Embed-v2" in model_dir):
|
229 |
+
prompt = PROMPT_NV
|
230 |
+
if "chunk_alignment" in model_dir or "dewey" in model_dir:
|
231 |
+
if is_q:
|
232 |
+
prompt = "<|START_INSTRUCTION|>Answer the question<|END_INSTRUCTION|>"
|
233 |
+
else:
|
234 |
+
prompt = "<|START_INSTRUCTION|>Candidate document<|END_INSTRUCTION|>"
|
235 |
+
vecs = self.model.encode_multi_process(
|
236 |
+
add_eos(sentences) if "NV-Embed-v2" in model_dir else sentences,
|
237 |
+
pool=self.pool,
|
238 |
+
show_progress_bar=True,
|
239 |
+
batch_size=batch_size,
|
240 |
+
normalize_embeddings=True,
|
241 |
+
prompt=prompt
|
242 |
+
)
|
243 |
+
return vecs
|
244 |
+
|
245 |
+
|
246 |
+
def add_eos(input_examples):
|
247 |
+
input_examples = [input_example + model.tokenizer.eos_token for input_example in input_examples]
|
248 |
+
return input_examples
|
249 |
+
|
250 |
+
|
251 |
+
PROMPT_BGE = "Represent this sentence for searching relevant passages:"
|
252 |
+
PROMPT_E5 = "Instruct: Given a web search query, retrieve relevant passages that answer the query.\nQuery: "
|
253 |
+
PROMPT_NV = "Instruct: Given a question, retrieve passages that answer the question\nQuery: "
|
254 |
+
if __name__ == "__main__":
|
255 |
+
chunk_size = -1
|
256 |
+
chunk_overlap = 32
|
257 |
+
batch_size = 2
|
258 |
+
max_seq_length = 8 * 1024
|
259 |
+
multi_vec_strategy = "full_text" # full_text; full_text+chunks
|
260 |
+
err_data_save_path = None
|
261 |
+
topk = 10
|
262 |
+
|
263 |
+
model_dir = "infgrad/dewey_en_beta"
|
264 |
+
# model_dir = "/home/zd/public_models/Linq-Embed-Mistral/"
|
265 |
+
# model_dir = "/home/zd/public_models/SFR-Embedding-Mistral"
|
266 |
+
# model_dir = "/home/zd/public_models/e5-mistral-7b-instruct"
|
267 |
+
# model_dir = "/home/zd/public_models/bge-m3"
|
268 |
+
# model_dir = "/home/zd/public_models/gte-modernbert-base"
|
269 |
+
# model_dir = "/home/zd/public_models/NV-Embed-v2"
|
270 |
+
|
271 |
+
# sentence_transformer dewey
|
272 |
+
model_type = "sentence_transformer"
|
273 |
+
## get data info
|
274 |
+
# TODO Please download LOCOV1 data first!
|
275 |
+
data_info = get_loco_path_info(
|
276 |
+
"/home/zd/public_data/LoCoV1-Queries/documents/",
|
277 |
+
"/home/zd/public_data/LoCoV1-Documents/documents/",
|
278 |
+
)
|
279 |
+
|
280 |
+
# load model
|
281 |
+
model = ModelWrapper(model_dir=model_dir, model_type=model_type, max_seq_length=max_seq_length)
|
282 |
+
# model = zd()
|
283 |
+
ndcg_score_list = []
|
284 |
+
for item in data_info:
|
285 |
+
print("\n\n\n\n" + "=" * 20)
|
286 |
+
print(f"evaluate {item[:2]}...")
|
287 |
+
query_list, passage_list, query2passage_id_list = get_loco_data(*item[2:])
|
288 |
+
print("number of all queries", len(query_list))
|
289 |
+
print("number of all passages", len(passage_list))
|
290 |
+
ndcg = get_ndcg_score(query_list, passage_list, query2passage_id_list, topk=topk,
|
291 |
+
error_data_save_path=err_data_save_path)
|
292 |
+
print(f"{ndcg}")
|
293 |
+
ndcg_score_list.append(ndcg)
|
294 |
+
|
295 |
+
for i in data_info:
|
296 |
+
print(i[0])
|
297 |
+
print("\n\n\n")
|
298 |
+
for i in data_info:
|
299 |
+
print(i[1].replace(".jsonl", ""))
|
300 |
+
print("\n\n\n")
|
301 |
+
|
302 |
+
print(os.path.basename(model_dir))
|
303 |
+
for i in ndcg_score_list:
|
304 |
+
print(i)
|