import json import random import pandas as pd import torch import os os.environ["HF_ENDPOINT"] = "https://hf-mirror.com" from sentence_transformers import SentenceTransformer import tqdm import numpy as np import faiss from sklearn.metrics import ndcg_score from os.path import join from sklearn.preprocessing import normalize from transformers import AutoTokenizer, AutoModel faiss.omp_set_num_threads(16) def find_topk_by_vecs(source_vecs: np.ndarray, target_vecs: np.ndarray, topk: int): if topk > len(target_vecs): topk = len(target_vecs) faiss_index = faiss.IndexFlatIP(target_vecs.shape[1]) faiss_index.add(target_vecs) res_distance, res_index = faiss_index.search(source_vecs, topk) return res_index, res_distance def get_loco_path_info(q_dir, d_dir): names = [] for name in sorted(os.listdir(q_dir)): if name.endswith(".jsonl"): names.append(name) for name in os.listdir(d_dir): if name.endswith(".jsonl"): assert name in names infos = [] for name in names: infos.append(["LOCO-V1", name, join(q_dir, name), join(d_dir, name)]) infos.sort(key=lambda x: x[1]) return infos def get_loco_data(q_path, d_path): passage_list, query2passage_list = [], {} original_doc_id2doc = {} with open(d_path, "r", encoding="utf8") as fr: for line in fr: item = json.loads(line) if item["passage"].strip(): original_doc_id2doc[item["pid"]] = item["passage"].strip() passage_list.append(item["passage"].strip()) with open(q_path, "r", encoding="utf8") as fr: for line in fr: item = json.loads(line) if item["query"].strip(): query2passage_list[item["query"].strip()] = [ original_doc_id2doc[answer_pid] for answer_pid in item["answer_pids"] if answer_pid in original_doc_id2doc ] query2passage_list = {k: list(set(v)) for k, v in query2passage_list.items() if list(set(v))} passage_list = list(set(passage_list)) passage2id = {passage: idx for idx, passage in enumerate(passage_list)} query2id_list = {k: list(set([passage2id[i] for i in v])) for k, v in query2passage_list.items()} query_list = list(query2id_list.keys()) return query_list, passage_list, query2id_list def get_ndcg_score(query_list, passage_list, query2passage_id_list, topk=10, error_data_save_path: str = None): chunk_id2passage_id = {} q_vecs = model.encode( sentences=query_list, batch_size=batch_size, chunk_size=chunk_size, chunk_overlap=chunk_overlap, max_seq_length=max_seq_length, is_q=True, ) p_vecs = model.encode( sentences=passage_list, batch_size=batch_size, chunk_size=chunk_size, chunk_overlap=chunk_overlap, max_seq_length=max_seq_length, is_q=False, ) # according query2id_list get labels_list query_id_list = [query2passage_id_list[query] for query in query_list] max_doc = max((len(id_list) for id_list in query_id_list)) labels = np.array([(id_list * max_doc)[:max_doc] for id_list in query_id_list]) if isinstance(p_vecs, list): for idx, vec in enumerate(p_vecs): if multi_vec_strategy == "full_text": p_vecs[idx] = normalize(np.mean(vec[1:2, :], axis=0, keepdims=True), axis=1) elif multi_vec_strategy == "full_text+chunks": n_chunk = (vec.shape[0] - 2) // 2 if n_chunk > 0: p_vecs[idx] = np.vstack( ( normalize(np.mean(vec[:2, :], axis=0, keepdims=True), axis=1), vec[2:2 + n_chunk, :], ) ) else: p_vecs[idx] = normalize(np.mean(vec[:2, :], axis=0, keepdims=True), axis=1) p_vecs = np.vstack(p_vecs) if isinstance(q_vecs, list): for idx, vec in enumerate(q_vecs): q_vecs[idx] = normalize(np.mean(vec[0:2, :], axis=0, keepdims=True), axis=1) q_vecs = np.vstack(q_vecs) print("q_vecs.shape and dtype", q_vecs.shape, q_vecs.dtype) print("p_vecs.shape and dtype", p_vecs.shape, p_vecs.dtype) # search topk # we calculate ndcg@10 topk_index, topk_scores = find_topk_by_vecs(q_vecs, p_vecs, topk * 100) # print("topk_index", topk_index.shape, topk_index) # print("topk_scores", topk_scores.shape, topk_scores) ### we may use multi vectors, so we should modify topk_index and topk_scores if chunk_id2passage_id: new_topk_index, new_topk_scores = [], [] # print("chunk_id2passage_id") for chunk_ids, chunk_scores in tqdm.tqdm(zip(topk_index, topk_scores), desc="modify topk_index and topk_scores", disable=True): # processed by row row_ids, row_scores, passage_id_set = [], [], set() for idx, chunk_id in enumerate(chunk_ids): passage_id = chunk_id2passage_id[chunk_id] if passage_id not in passage_id_set: passage_id_set.add(passage_id) row_ids.append(passage_id) row_scores.append(chunk_scores[idx]) new_topk_index.append(row_ids[:topk]) new_topk_scores.append(row_scores[:topk]) topk_index = np.array(new_topk_index) # print("topk_index", topk_index) topk_scores = np.array(new_topk_scores) topk_index, topk_scores = topk_index[:, :topk], topk_scores[:, :topk] is_match = (topk_index == labels[:, :1]) for idx in range(1, max_doc): # the or operator means that only one positive doc in pred topk, we think it is recalled is_match = is_match | (topk_index == labels[:, idx:idx + 1]) # compute recall at topk print("is_match.shape", is_match.shape) # recall_at_k = is_match.sum(axis=1).astype(bool).mean() ndcg = ndcg_score(is_match.astype(dtype=np.float32), topk_scores) if error_data_save_path: in_top_k = is_match.sum(axis=1).astype(bool) err_data = [] for idx, pred_res in enumerate(in_top_k): if not pred_res: query = query_list[idx] label_doc = passage_list[query2passage_id_list[query][0]] pred_doc = passage_list[topk_index[idx][0]] err_data.append([query, label_doc, pred_doc]) pd.DataFrame(err_data, columns=["Query", "Label", "Pred"]).to_excel(error_data_save_path, index=False) return float(ndcg) class ModelWrapper: def __init__(self, model_dir, model_type, max_seq_length): assert model_type in ["dewey", "sentence_transformer"] self.model_type = model_type self.tokenizer = AutoTokenizer.from_pretrained(model_dir) if model_type == "dewey": self.model = AutoModel.from_pretrained( model_dir, attn_implementation="flash_attention_2", trust_remote_code=True, ).cuda().bfloat16().eval() self.model.tokenizer = self.tokenizer else: self.model = SentenceTransformer( model_dir, trust_remote_code=True, device="cpu", model_kwargs={ "torch_dtype": torch.bfloat16, # fp16 "attn_implementation": "flash_attention_2" }, ) self.model.max_seq_length = max_seq_length if "NV-Embed-v2" in model_dir: self.model.tokenizer.padding_side = "right" self.pool = self.model.start_multi_process_pool() def encode( self, sentences, batch_size, chunk_size, chunk_overlap, max_seq_length, is_q, ): if self.model_type == "dewey": if is_q: prompt = "<|START_INSTRUCTION|>Answer the question<|END_INSTRUCTION|>" else: prompt = "<|START_INSTRUCTION|>Candidate document<|END_INSTRUCTION|>" return self.model.encode( sentences=sentences, batch_size=batch_size, use_cuda=True, show_progress_bar=True, chunk_size=chunk_size, chunk_overlap=chunk_overlap, convert_to_tensor=False, max_seq_length=max_seq_length, normalize_embeddings=True, prompt=prompt, fast_chunk=True, )[0] self.model.max_seq_length = max_seq_length prompt = None if is_q and ( "Linq-Embed-Mistral" in model_dir or "e5-mistral-7b-instruct" in model_dir or "SFR-Embedding-Mistral" in model_dir): prompt = PROMPT_E5 if is_q and ("NV-Embed-v2" in model_dir): prompt = PROMPT_NV if "chunk_alignment" in model_dir or "dewey" in model_dir: if is_q: prompt = "<|START_INSTRUCTION|>Answer the question<|END_INSTRUCTION|>" else: prompt = "<|START_INSTRUCTION|>Candidate document<|END_INSTRUCTION|>" vecs = self.model.encode_multi_process( add_eos(sentences) if "NV-Embed-v2" in model_dir else sentences, pool=self.pool, show_progress_bar=True, batch_size=batch_size, normalize_embeddings=True, prompt=prompt ) return vecs def add_eos(input_examples): input_examples = [input_example + model.tokenizer.eos_token for input_example in input_examples] return input_examples PROMPT_BGE = "Represent this sentence for searching relevant passages:" PROMPT_E5 = "Instruct: Given a web search query, retrieve relevant passages that answer the query.\nQuery: " PROMPT_NV = "Instruct: Given a question, retrieve passages that answer the question\nQuery: " if __name__ == "__main__": chunk_size = -1 chunk_overlap = 32 batch_size = 2 max_seq_length = 8 * 1024 multi_vec_strategy = "full_text" # full_text; full_text+chunks err_data_save_path = None topk = 10 model_dir = "infgrad/dewey_en_beta" # model_dir = "/home/zd/public_models/Linq-Embed-Mistral/" # model_dir = "/home/zd/public_models/SFR-Embedding-Mistral" # model_dir = "/home/zd/public_models/e5-mistral-7b-instruct" # model_dir = "/home/zd/public_models/bge-m3" # model_dir = "/home/zd/public_models/gte-modernbert-base" # model_dir = "/home/zd/public_models/NV-Embed-v2" # sentence_transformer dewey model_type = "sentence_transformer" ## get data info # TODO Please download LOCOV1 data first! data_info = get_loco_path_info( "/home/zd/public_data/LoCoV1-Queries/documents/", "/home/zd/public_data/LoCoV1-Documents/documents/", ) # load model model = ModelWrapper(model_dir=model_dir, model_type=model_type, max_seq_length=max_seq_length) # model = zd() ndcg_score_list = [] for item in data_info: print("\n\n\n\n" + "=" * 20) print(f"evaluate {item[:2]}...") query_list, passage_list, query2passage_id_list = get_loco_data(*item[2:]) print("number of all queries", len(query_list)) print("number of all passages", len(passage_list)) ndcg = get_ndcg_score(query_list, passage_list, query2passage_id_list, topk=topk, error_data_save_path=err_data_save_path) print(f"{ndcg}") ndcg_score_list.append(ndcg) for i in data_info: print(i[0]) print("\n\n\n") for i in data_info: print(i[1].replace(".jsonl", "")) print("\n\n\n") print(os.path.basename(model_dir)) for i in ndcg_score_list: print(i)