File size: 9,961 Bytes
fd2f80b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9e40c2
fd2f80b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d45c3c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd2f80b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d45c3c7
 
 
 
 
 
 
fd2f80b
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
---
library_name: transformers
language:
- ru
license: apache-2.0
base_model: openai/whisper-small
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_17_0
metrics:
- wer
model-index:
- name: Whisper Small ru - slowlydoor
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 17.0
      type: mozilla-foundation/common_voice_17_0
      config: ru
      split: None
      args: 'config: ru, split: test'
    metrics:
    - name: Wer
      type: wer
      value: 16.040464106107944
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Small ru - slowlydoor ([Automatic Speech Recognition](https://github.com/SlowlyDoor/Automatic-Speech-Recognition))

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 17.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2125
- Wer: 16.0405
- Cer: 4.2321
- Ser: 57.5223

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training code

```bash
pip install transformers evaluate soundfile
pip install -q jiwer tensorboard
pip install --upgrade datasets transformers
```

```python
import re
import json
from datasets import load_dataset, DatasetDict, Audio
from transformers import WhisperForConditionalGeneration, WhisperFeatureExtractor, WhisperTokenizer, WhisperProcessor, Seq2SeqTrainingArguments, Seq2SeqTrainer
import os, numpy as np, torch, evaluate, jiwer
from huggingface_hub import login
from dataclasses import dataclass
from typing import Any, Dict, List, Union

login("***")


common_voice = DatasetDict()
common_voice["train"] = load_dataset("mozilla-foundation/common_voice_17_0", "ru", split="train")
common_voice["test"] = load_dataset("mozilla-foundation/common_voice_17_0", "ru", split="test")

common_voice = common_voice.remove_columns(["accent", "age", "client_id", "down_votes", "gender", "locale", "path", "segment", "up_votes"])
common_voice = common_voice.cast_column("audio", Audio(sampling_rate=16000))

feature_extractor = WhisperFeatureExtractor.from_pretrained("openai/whisper-small")
tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-small", language="Russian", task="transcribe")
processor = WhisperProcessor.from_pretrained("openai/whisper-small", language="Russian", task="transcribe")
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
model.config.forced_decoder_ids = None
model.config.suppress_tokens = []
model.config.use_cache = False

def prepare_dataset(batch):
    audio = batch["audio"]

    batch["input_features"] = feature_extractor(
        audio["array"],
        sampling_rate=audio["sampling_rate"]
    ).input_features[0]

    batch["labels"] = tokenizer(batch["sentence"]).input_ids
    return batch

common_voice = common_voice.map(prepare_dataset, remove_columns=common_voice.column_names["train"], num_proc=2 )

common_voice

wer_metric = evaluate.load("wer")
cer_metric = evaluate.load("cer")

def compute_metrics(pred):
    pred_ids = pred.predictions
    label_ids = pred.label_ids

    label_ids[label_ids == -100] = tokenizer.pad_token_id

    pred_str  = tokenizer.batch_decode(pred_ids,  skip_special_tokens=True)
    label_str = tokenizer.batch_decode(label_ids, skip_special_tokens=True)

    pairs = [(ref.strip(), hyp.strip()) for ref, hyp in zip(label_str, pred_str)]
    pairs = [(ref, hyp) for ref, hyp in pairs if len(ref) > 0]

    label_str, pred_str = zip(*pairs)

    wer = 100 * wer_metric.compute(predictions=pred_str, references=label_str)
    cer = 100 * cer_metric.compute(predictions=pred_str, references=label_str)

    ser = 100 * (sum(p.strip() != r.strip() for p, r in zip(pred_str, label_str)) / len(pred_str))

    return {
        "wer":  wer,
        "cer":  cer,
        "ser":  ser
    }

@dataclass
class DataCollatorSpeechSeq2SeqWithPadding:
    processor: Any
    decoder_start_token_id: int

    def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
        input_features = [{"input_features": f["input_features"]} for f in features]
        batch = self.processor.feature_extractor.pad(input_features, return_tensors="pt")

        label_features = [{"input_ids": f["labels"]} for f in features]
        labels_batch = self.processor.tokenizer.pad(label_features, return_tensors="pt")

        labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)

        if (labels[:, 0] == self.decoder_start_token_id).all().cpu().item():
            labels = labels[:, 1:]

        batch["labels"] = labels
        return batch

data_collator = DataCollatorSpeechSeq2SeqWithPadding(
    processor=processor,
    decoder_start_token_id=model.config.decoder_start_token_id,
)

training_args = Seq2SeqTrainingArguments(
    output_dir="/content/drive/MyDrive/models/whisper_small_ru_model_trainer_3ep",
    logging_dir="/content/drive/MyDrive/models/whisper_small_ru_model_trainer_3ep",
    group_by_length=True,
    per_device_train_batch_size=8,
    per_device_eval_batch_size=4,
    eval_strategy="steps",
    logging_strategy="steps",
    save_strategy="steps",
    num_train_epochs=3,
    generation_max_length=170,
    logging_steps=25,
    eval_steps=500,
    save_steps=500,
    fp16=True,
    optim="adamw_torch_fused",
    torch_compile=True,
    gradient_checkpointing=True,
    learning_rate=1e-5,
    report_to=["tensorboard"],
    load_best_model_at_end=True,
    metric_for_best_model="wer",
    greater_is_better=False,
    push_to_hub=False,
    predict_with_generate=True,
)

trainer = Seq2SeqTrainer(
    args=training_args,
    model=model,
    train_dataset=common_voice["train"],
    eval_dataset=common_voice["test"],
    data_collator=data_collator,
    compute_metrics=compute_metrics,
    tokenizer=processor.feature_extractor,
)

trainer.train()

```

### Test result

```python

import os
from transformers import (WhisperProcessor, 
			WhisperForConditionalGeneration, 
			pipeline)
import torch
import torchaudio
import librosa
import numpy as np

MODEL_HUG = "internalhell/whisper_small_ru_model_trainer_3ep"

processor = None
model = None
pipe = None

def get_model_pipe():
	global model, processor, pipe
	if model is None or processor is None:
		processor = WhisperProcessor.from_pretrained(MODEL_HUG, language="russian")
		model = WhisperForConditionalGeneration.from_pretrained(MODEL_HUG)

		model.generation_config.forced_decoder_ids = None
		forced_decoder_ids = processor.get_decoder_prompt_ids(language="ru", task="transcribe")
		model.config.forced_decoder_ids = forced_decoder_ids

		pipe = pipeline(
			"automatic-speech-recognition",
			model=model,
			tokenizer=processor.tokenizer,
			feature_extractor=processor.feature_extractor,
			device=0 if torch.cuda.is_available() else -1,
		)    
		
	return model

def recognize_audio_pipe(audio_path):
    model = get_model_pipe()
    
    waveform, sr = torchaudio.load(audio_path)
    waveform = waveform.mean(dim=0, keepdim=True)  # моно

    if sr != 16000:
        resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=16000)
        waveform = resampler(waveform)
        sr = 16000

    waveform_np = waveform.squeeze(0).numpy()
    return pipe({"array": waveform_np, "sampling_rate": sr})["text"]

print(recognize_audio_pipe("test.wav")) # jast .wav only


```

### Training results

| Training Loss | Epoch  | Step | Cer    | Validation Loss | Ser     | Wer     |
|:-------------:|:------:|:----:|:------:|:---------------:|:-------:|:-------:|
| 0.2206        | 0.1516 | 500  | 5.4963 | 0.2603          | 69.4306 | 21.2669 |
| 0.22          | 0.3032 | 1000 | 5.3823 | 0.2467          | 67.3527 | 20.2971 |
| 0.1901        | 0.4548 | 1500 | 5.1160 | 0.2377          | 66.1766 | 19.5642 |
| 0.1969        | 0.6064 | 2000 | 5.0754 | 0.2273          | 64.3242 | 19.0509 |
| 0.1743        | 0.7580 | 2500 | 4.8523 | 0.2188          | 63.1481 | 18.2286 |
| 0.1747        | 0.9096 | 3000 | 4.8867 | 0.2167          | 62.4032 | 18.0985 |
| 0.077         | 1.0612 | 3500 | 4.5272 | 0.2142          | 60.5998 | 17.2007 |
| 0.0839        | 1.2129 | 4000 | 4.4628 | 0.2126          | 60.8743 | 17.1601 |
| 0.0888        | 1.3645 | 4500 | 4.4864 | 0.2092          | 60.3940 | 17.3529 |
| 0.069         | 1.5161 | 5000 | 4.4667 | 0.2118          | 60.1588 | 17.1578 |
| 0.0609        | 1.6677 | 5500 | 4.4298 | 0.2077          | 59.3355 | 16.8546 |
| 0.0721        | 1.8193 | 6000 | 4.3442 | 0.2060          | 58.6592 | 16.5527 |
| 0.0681        | 1.9709 | 6500 | 4.3284 | 0.2038          | 58.1692 | 16.3575 |
| 0.0322        | 2.1225 | 7000 | 4.2709 | 0.2130          | 57.7771 | 16.2809 |
| 0.0277        | 2.2741 | 7500 | 4.2543 | 0.2151          | 57.4733 | 16.1067 |
| 0.0249        | 2.4257 | 8000 | 4.2513 | 0.2130          | 57.4635 | 16.0741 |
| 0.0234        | 2.5773 | 8500 | 4.2832 | 0.2150          | 57.6693 | 16.2600 |
| 0.0264        | 2.7289 | 9000 | 4.2645 | 0.2145          | 57.6301 | 16.1160 |
| 0.0268        | 2.8805 | 9500 | 4.2321 | 0.2125          | 57.5223 | 16.0405 |



### Framework versions

- Transformers 4.52.4
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1