|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers import AutoConfig |
|
|
|
|
|
class InternS1VisionConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`InternS1VisionModel`]. It is used to instantiate an InternS1VisionModel |
|
model according to the specified arguments, defining the model architecture. |
|
|
|
Args: |
|
hidden_size (`int`, *optional*, defaults to 1024): |
|
Dimensionality of the encoder layers and the pooler layer. |
|
num_hidden_layers (`int`, *optional*, defaults to 24): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 16): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
attention_bias (`bool`, *optional*, defaults to `False`): |
|
Whether to add a bias to the queries, keys and values. |
|
use_qk_norm (`bool`, *optional*, defaults to `False`): |
|
Whether to apply normalization to the queries and keys before the attention operation. |
|
intermediate_size (`int`, *optional*, defaults to 4096): |
|
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, |
|
`"relu"`, `"selu"` and `"gelu_new"` are supported. |
|
hidden_dropout_prob (`float`, *optional*, defaults to 0.0): |
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
Dropout probability for attention weights. |
|
projection_dropout (`float`, *optional*, defaults to 0.0): |
|
Dropout probability for the projection layer. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
norm_type (`str`, *optional*, defaults to `"layer_norm"`): |
|
The type of normalization to use in the encoder. Can be `"layer_norm"` or `"rms_norm"`. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-06): |
|
The epsilon used by the layer normalization layers. |
|
image_size (`int` or `list[int]`, *optional*, defaults to `[448, 448]`): |
|
The size (resolution) of each image. |
|
patch_size (`int` or `list[int]`, *optional*, defaults to `[14, 14]`): |
|
The size (resolution) of each patch. |
|
num_channels (`int`, *optional*, defaults to 3): |
|
The number of input channels. |
|
use_mask_token (`bool`, *optional*, defaults to `False`): |
|
Whether to use a mask token for masked image modeling. |
|
use_absolute_position_embeddings (`bool`, *optional*, defaults to `True`): |
|
Whether to use BERT-style absolute position embeddings. |
|
layer_scale_init_value (`float`, *optional*, defaults to 0.1): |
|
Scale to use in the self-attention layers. 0.1 for base, 1e-5 for large. Set 0 to disable layer scale. |
|
use_mean_pooling (`bool`, *optional*, defaults to `True`): |
|
Whether to mean pool the final hidden states of the patches instead of using the final hidden state of the |
|
CLS token, before applying the classification head. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import InternS1VisionConfig, InternS1VisionModel |
|
|
|
>>> # Initializing a InternS1VisionModel |
|
>>> configuration = InternS1VisionConfig() |
|
|
|
>>> # Initializing a model (with random weights) from configuration |
|
>>> model = InternS1VisionModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "interns1_vision" |
|
base_config_key = "vision_config" |
|
|
|
def __init__( |
|
self, |
|
hidden_size=1024, |
|
num_hidden_layers=24, |
|
num_attention_heads=16, |
|
attention_bias=False, |
|
use_qk_norm=False, |
|
intermediate_size=4096, |
|
hidden_act="gelu", |
|
hidden_dropout_prob=0.0, |
|
attention_dropout=0.0, |
|
projection_dropout=0.0, |
|
initializer_range=0.02, |
|
norm_type="layer_norm", |
|
layer_norm_eps=1e-06, |
|
image_size=[448, 448], |
|
patch_size=[14, 14], |
|
num_channels=3, |
|
use_mask_token=False, |
|
use_absolute_position_embeddings=True, |
|
layer_scale_init_value=0.1, |
|
use_mean_pooling=True, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
|
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.attention_bias = attention_bias |
|
self.use_qk_norm = use_qk_norm |
|
self.intermediate_size = intermediate_size |
|
self.hidden_act = hidden_act |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.attention_dropout = attention_dropout |
|
self.projection_dropout = projection_dropout |
|
self.initializer_range = initializer_range |
|
self.norm_type = norm_type |
|
self.layer_norm_eps = layer_norm_eps |
|
|
|
image_size = image_size if isinstance(image_size, (list, tuple)) else (image_size, image_size) |
|
patch_size = patch_size if isinstance(patch_size, (list, tuple)) else (patch_size, patch_size) |
|
self.image_size = image_size |
|
self.patch_size = patch_size |
|
|
|
self.num_channels = num_channels |
|
self.use_mask_token = use_mask_token |
|
self.use_absolute_position_embeddings = use_absolute_position_embeddings |
|
self.layer_scale_init_value = layer_scale_init_value |
|
self.use_mean_pooling = use_mean_pooling |
|
|
|
|
|
class InternS1Config(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`InternS1ForConditionalGeneration`]. It is used to instantiate a |
|
InternS1 model according to the specified arguments, defining the model architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vision_config (`Union[AutoConfig, dict]`, *optional*, defaults to `InternVisonConfig`): |
|
The config object or dictionary of the vision backbone. |
|
text_config (`Union[AutoConfig, dict]`, *optional*, defaults to `Qwen2Config`): |
|
The config object or dictionary of the text backbone. |
|
image_token_id (`int`, *optional*, defaults to 151667): |
|
The image token index to encode the image prompt. |
|
image_seq_length (`int`, *optional*, defaults to 256): |
|
Number of image tokens to use per image patch. |
|
downsample_ratio (`float`, *optional*, defaults to 0.5): |
|
Factor by which to downsample the image. |
|
projector_hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): |
|
The non-linear activation function (function or string) in the projector. |
|
vision_feature_layer (`int`, *optional*, defaults to -1): |
|
The index of the layer to use as the image features. |
|
vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`): |
|
The feature selection strategy used to select the vision feature from the vision backbone. |
|
Can be one of `"default"` or `"full"`. |
|
|
|
```python |
|
>>> from transformers import InternS1ForConditionalGeneration, InternS1Config |
|
|
|
>>> # Initializing a InternS1 style configuration |
|
>>> configuration = InternS1Config() |
|
|
|
>>> # Initializing a model (with random weights) from configuration |
|
>>> model = InternS1ForConditionalGeneration(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "interns1" |
|
sub_configs = {"text_config": AutoConfig, "vision_config": InternS1VisionConfig} |
|
|
|
def __init__( |
|
self, |
|
vision_config=None, |
|
text_config=None, |
|
image_token_id=151667, |
|
image_seq_length=256, |
|
downsample_ratio=0.5, |
|
projector_hidden_act="gelu", |
|
vision_feature_layer=-1, |
|
vision_feature_select_strategy="default", |
|
**kwargs, |
|
): |
|
from transformers import CONFIG_MAPPING |
|
|
|
self.image_token_id = image_token_id |
|
self.image_seq_length = image_seq_length |
|
self.downsample_ratio = downsample_ratio |
|
self.projector_hidden_act = projector_hidden_act |
|
self.vision_feature_layer = vision_feature_layer |
|
self.vision_feature_select_strategy = vision_feature_select_strategy |
|
|
|
if isinstance(vision_config, dict): |
|
self.vision_config = InternS1VisionConfig(**vision_config) |
|
elif isinstance(vision_config, InternS1VisionConfig): |
|
self.vision_config = vision_config |
|
elif vision_config is None: |
|
self.vision_config = InternS1VisionConfig() |
|
|
|
if isinstance(text_config, dict): |
|
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "qwen2" |
|
text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config) |
|
elif text_config is None: |
|
text_config = CONFIG_MAPPING["qwen2"]() |
|
|
|
self.text_config = text_config |
|
|
|
super().__init__(**kwargs) |
|
|
|
|
|
__all__ = ["InternS1VisionConfig", "InternS1Config"] |
|
|