yuhangzang nielsr HF Staff commited on
Commit
113064a
·
verified ·
1 Parent(s): c35bb3a

Improve model card: Add pipeline tag, library name, tags, and citation (#1)

Browse files

- Improve model card: Add pipeline tag, library name, tags, and citation (2aa1ff1ac1b0f714c39077e3d3d56099f9ae8b3e)


Co-authored-by: Niels Rogge <[email protected]>

Files changed (1) hide show
  1. README.md +58 -5
README.md CHANGED
@@ -1,9 +1,16 @@
1
  ---
2
- license: mit
3
- datasets:
4
- - TIGER-Lab/ViRL39K
5
  base_model:
6
  - Qwen/Qwen2.5-VL-7B-Instruct
 
 
 
 
 
 
 
 
 
 
7
  ---
8
 
9
  <p align="center">
@@ -106,7 +113,53 @@ CUDA_VISIBLE_DEVICES=0,1,2,3 vllm serve "$MODEL_PATH" \
106
  ```
107
 
108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
109
  ## ✒️Citation
 
 
 
 
 
 
 
110
  ```
111
- TBD
112
- ```
 
 
 
 
 
 
1
  ---
 
 
 
2
  base_model:
3
  - Qwen/Qwen2.5-VL-7B-Instruct
4
+ datasets:
5
+ - TIGER-Lab/ViRL39K
6
+ license: mit
7
+ library_name: transformers
8
+ pipeline_tag: video-text-to-text
9
+ tags:
10
+ - lvlm
11
+ - reasoning
12
+ - multimodal
13
+ - qwen
14
  ---
15
 
16
  <p align="center">
 
113
  ```
114
 
115
 
116
+ ## Training
117
+
118
+ ### Spark Training
119
+ After downloading the dataset, you can start training using the following example bash script. Our bash scripts are in ```/Spark/Lmm_XC/XC/scripts/spark_training```
120
+ You need to modify the dataset paths and model paths to your own locations.
121
+ ```
122
+ export WORKSPACE_DIR="/fs-computility/....../Lmm_XC" # Path to project root directory
123
+ export DATASET_PATH="/fs-computility/....../infer_data_ViRL_19k.json" # Path to your dataset
124
+ export PRETRAIN_MODEL_PATH="/fs-computility/....../Qwen2.5-VL-7B-Instruct" # Path to pretrained model
125
+ export WANDB_PROJECT="Observation" # Name for this project
126
+ export MODEL_CPK_NAME="Qwen2.5-VL-7B-GRPO-virl-19k-iar-reflection-hyb-diverse-bs64-e2" # Name for this training run
127
+ export LOG_PATH='/fs-computility/....../Qwen2.5-VL-7B-GRPO-virl-19k-iar-reflection-hyb-diverse-bs64-e2.txt' #Log file save path
128
+
129
+
130
+ export WANDB_API_KEY="......"
131
+ export SAVE_PATH="/fs-computility/....../${WANDB_PROJECT}/${MODEL_CPK_NAME}" # Absolute path to save everything about this training run
132
+ export CKPT_PATH="${SAVE_PATH}/ckpt" # Path to save checkpoints
133
+ export FINAL_CKPT_PATH="${SAVE_PATH}/final_ckpt" # Path to save final checkpoints
134
+ export TIMESTAMP=$(date +%Y%m%d_%H%M%S) # Timestamp
135
+ export CUR_LOG_DIR="${SAVE_PATH}/training_logs/${TIMESTAMP}" # Path to save current run logs
136
+ export LOG_DIR="${SAVE_PATH}/tb_logs"
137
+ ```
138
+ ⏰ Attention:
139
+ ```
140
+ export DEV_MODE=0 # Set to 1 for debug mode on single dev machine
141
+ ```
142
+
143
+ ## Evaluation
144
+ The integrated multimodal mathematics dataset can be downloaded from 🤗<a href="https://huggingface.co/datasets/internlm/Spark-Data">datasets</a> and evaluated using the scripts provided in the `Evaluation` folder. The evaluation results will be stored, and accuracy can subsequently be computed with the `calculate_acc.py` file.
145
+ ```
146
+ bash ./Evaluation/eval_spark_vl_7b.sh
147
+ python calculate_acc.py --result_path ./your_result_path.json
148
+ ```
149
+
150
  ## ✒️Citation
151
+ ```bibtex
152
+ @article{liu2025spark,
153
+ title={SPARK: Synergistic Policy And Reward Co-Evolving Framework},
154
+ author={Ziyu Liu and Yuhang Zang and Shengyuan Ding and Yuhang Cao and Xiaoyi Dong and Haodong Duan and Dahua Lin and Jiaqi Wang},
155
+ journal={arXiv preprint arXiv:2509.22624},
156
+ year={2025}
157
+ }
158
  ```
159
+
160
+ ## 📄 License
161
+ ![Code License](https://img.shields.io/badge/Code%20License-Apache_2.0-green.svg) ![Data License](https://img.shields.io/badge/Data%20License-CC%20By%20NC%204.0-red.svg) **Usage and License Notices**: The data and code are intended and licensed for research use only.
162
+ License: Attribution-NonCommercial 4.0 International It should abide by the policy of OpenAI: https://openai.com/policies/terms-of-use
163
+
164
+ ## Acknowledgement
165
+ We sincerely thank projects <a href="https://github.com/TideDra/lmm-r1">lmm-r1</a> and <a href="https://github.com/OpenRLHF/OpenRLHF">OpenRLHF</a> for providing their open-source resources.