DLight1551
commited on
Commit
•
24df943
1
Parent(s):
887d1ca
add new model
Browse files- README.md +84 -0
- added_tokens.json +8 -0
- build_mlp.py +207 -0
- config.json +33 -0
- configuration_internlm_xcomposer2.py +150 -0
- example.webp +0 -0
- generation_config.json +9 -0
- ixc_utils.py +42 -0
- logo.png +0 -0
- logo_en.png +0 -0
- modeling_internlm2.py +990 -0
- modeling_internlm_xcomposer2.py +538 -0
- pytorch_model-00001-of-00002.bin +3 -0
- pytorch_model-00002-of-00002.bin +3 -0
- pytorch_model.bin.index.json +949 -0
- special_tokens_map.json +38 -0
- tokenization_internlm2.py +236 -0
- tokenizer.model +3 -0
- tokenizer_config.json +99 -0
- zero_to_fp32.py +587 -0
README.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
pipeline_tag: visual-question-answering
|
4 |
+
---
|
5 |
+
|
6 |
+
|
7 |
+
<p align="center">
|
8 |
+
<img src="logo_en.png" width="400"/>
|
9 |
+
<p>
|
10 |
+
|
11 |
+
<p align="center">
|
12 |
+
<b><font size="6">InternLM-XComposer2-4KHD</font></b>
|
13 |
+
<p>
|
14 |
+
|
15 |
+
<div align="center">
|
16 |
+
|
17 |
+
[💻Github Repo](https://github.com/InternLM/InternLM-XComposer)
|
18 |
+
|
19 |
+
[Paper](https://arxiv.org/abs/2401.16420)
|
20 |
+
|
21 |
+
</div>
|
22 |
+
|
23 |
+
**InternLM-XComposer2-4KHD** is a general vision-language large model (VLLM) based on [InternLM2](https://github.com/InternLM/InternLM), with the capability of 4K resolution image understanding.
|
24 |
+
|
25 |
+
### Import from Transformers
|
26 |
+
To load the InternLM-XComposer2-4KHD model using Transformers, use the following code:
|
27 |
+
```python
|
28 |
+
import torch
|
29 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
30 |
+
ckpt_path = "internlm/internlm-xcomposer2-4khd-7b"
|
31 |
+
tokenizer = AutoTokenizer.from_pretrained(ckpt_path, trust_remote_code=True).cuda()
|
32 |
+
# Set `torch_dtype=torch.floatb16` to load model in bfloat16, otherwise it will be loaded as float32 and might cause OOM Error.
|
33 |
+
model = AutoModelForCausalLM.from_pretrained(ckpt_path, torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
|
34 |
+
model = model.eval()
|
35 |
+
```
|
36 |
+
|
37 |
+
## Quickstart
|
38 |
+
We provide a simple example to show how to use InternLM-XComposer with 🤗 Transformers.
|
39 |
+
```python
|
40 |
+
import torch
|
41 |
+
from transformers import AutoModel, AutoTokenizer
|
42 |
+
|
43 |
+
torch.set_grad_enabled(False)
|
44 |
+
|
45 |
+
# init model and tokenizer
|
46 |
+
model = AutoModel.from_pretrained('internlm/internlm-xcomposer2-4khd-7b', torch_dtype=torch.bfloat16, trust_remote_code=True).cuda().eval()
|
47 |
+
tokenizer = AutoTokenizer.from_pretrained('internlm/internlm-xcomposer2-4khd-7b', trust_remote_code=True)
|
48 |
+
|
49 |
+
###############
|
50 |
+
# First Round
|
51 |
+
###############
|
52 |
+
|
53 |
+
query1 = '<ImageHere>Illustrate the fine details present in the image'
|
54 |
+
image = './example.webp'
|
55 |
+
with torch.cuda.amp.autocast():
|
56 |
+
response, his = model.chat(tokenizer, query=query, image=image, hd_num=55, history=[], do_sample=False, num_beams=3)
|
57 |
+
print(response)
|
58 |
+
# The image is a vibrant and colorful infographic that showcases 7 graphic design trends that will dominate in 2021. The infographic is divided into 7 sections, each representing a different trend.
|
59 |
+
# Starting from the top, the first section focuses on "Muted Color Palettes", highlighting the use of muted colors in design.
|
60 |
+
# The second section delves into "Simple Data Visualizations", emphasizing the importance of easy-to-understand data visualizations.
|
61 |
+
# The third section introduces "Geometric Shapes Everywhere", showcasing the use of geometric shapes in design.
|
62 |
+
# The fourth section discusses "Flat Icons and Illustrations", explaining how flat icons and illustrations are being used in design.
|
63 |
+
# The fifth section is dedicated to "Classic Serif Fonts", illustrating the resurgence of classic serif fonts in design.
|
64 |
+
# The sixth section explores "Social Media Slide Decks", illustrating how slide decks are being used on social media.
|
65 |
+
# Finally, the seventh section focuses on "Text Heavy Videos", illustrating the trend of using text-heavy videos in design.
|
66 |
+
# Each section is filled with relevant images and text, providing a comprehensive overview of the 7 graphic design trends that will dominate in 2021.
|
67 |
+
|
68 |
+
###############
|
69 |
+
# Second Round
|
70 |
+
###############
|
71 |
+
query1 = 'what is the detailed explanation of the third part.'
|
72 |
+
with torch.cuda.amp.autocast():
|
73 |
+
response, _ = model.chat(tokenizer, query=query, image=image, hd_num=55, history=his, do_sample=False, num_beams=3)
|
74 |
+
print(response)
|
75 |
+
# The third part of the infographic is about "Geometric Shapes Everywhere". It explains that last year, designers used a lot of
|
76 |
+
# flowing and abstract shapes in their designs. However, this year, they have been replaced with rigid, hard-edged geometric
|
77 |
+
# shapes and patterns. The hard edges of a geometric shape create a great contrast against muted colors.
|
78 |
+
|
79 |
+
|
80 |
+
|
81 |
+
```
|
82 |
+
|
83 |
+
### Open Source License
|
84 |
+
The code is licensed under Apache-2.0, while model weights are fully open for academic research and also allow free commercial usage. To apply for a commercial license, please fill in the application form (English)/申请表(中文). For other questions or collaborations, please contact [email protected].
|
added_tokens.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|action_end|>": 92547,
|
3 |
+
"<|action_start|>": 92546,
|
4 |
+
"<|im_end|>": 92545,
|
5 |
+
"<|im_start|>": 92544,
|
6 |
+
"<|interpreter|>": 92548,
|
7 |
+
"<|plugin|>": 92549
|
8 |
+
}
|
build_mlp.py
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import re
|
4 |
+
import math
|
5 |
+
from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig
|
6 |
+
|
7 |
+
|
8 |
+
def build_vision_tower():
|
9 |
+
vision_tower = 'openai/clip-vit-large-patch14-336'
|
10 |
+
return CLIPVisionTower(vision_tower)
|
11 |
+
|
12 |
+
|
13 |
+
def build_vision_projector():
|
14 |
+
projector_type = 'mlp2x_gelu'
|
15 |
+
mm_hidden_size = 4096
|
16 |
+
mid_hidden_size = 4096
|
17 |
+
hidden_size = 4096
|
18 |
+
|
19 |
+
mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
|
20 |
+
if mlp_gelu_match:
|
21 |
+
mlp_depth = int(mlp_gelu_match.group(1))
|
22 |
+
modules = [nn.Linear(mm_hidden_size, mid_hidden_size)]
|
23 |
+
for _ in range(1, mlp_depth):
|
24 |
+
modules.append(nn.GELU())
|
25 |
+
modules.append(nn.Linear(mid_hidden_size, mid_hidden_size))
|
26 |
+
|
27 |
+
return nn.Sequential(*modules)
|
28 |
+
|
29 |
+
if projector_type == 'identity':
|
30 |
+
return IdentityMap()
|
31 |
+
|
32 |
+
raise ValueError(f'Unknown projector type: {projector_type}')
|
33 |
+
|
34 |
+
class IdentityMap(nn.Module):
|
35 |
+
def __init__(self):
|
36 |
+
super().__init__()
|
37 |
+
|
38 |
+
def forward(self, x, *args, **kwargs):
|
39 |
+
return x
|
40 |
+
|
41 |
+
@property
|
42 |
+
def config(self):
|
43 |
+
return {"mm_projector_type": 'identity'}
|
44 |
+
|
45 |
+
|
46 |
+
class CLIPVisionTower(nn.Module):
|
47 |
+
def __init__(self, vision_tower):
|
48 |
+
super().__init__()
|
49 |
+
|
50 |
+
self.is_loaded = False
|
51 |
+
|
52 |
+
self.vision_tower_name = vision_tower
|
53 |
+
self.select_layer = -1
|
54 |
+
self.select_feature = 'patch'
|
55 |
+
self.load_model()
|
56 |
+
|
57 |
+
def load_model(self):
|
58 |
+
self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name)
|
59 |
+
self.vision_tower.requires_grad_(False)
|
60 |
+
|
61 |
+
self.is_loaded = True
|
62 |
+
|
63 |
+
def resize_pos(self):
|
64 |
+
print ('Dummy Resized')
|
65 |
+
|
66 |
+
def feature_select(self, image_forward_outs):
|
67 |
+
image_features = image_forward_outs.hidden_states[self.select_layer]
|
68 |
+
if self.select_feature == 'patch':
|
69 |
+
image_features = image_features[:, 1:]
|
70 |
+
elif self.select_feature == 'cls_patch':
|
71 |
+
image_features = image_features
|
72 |
+
else:
|
73 |
+
raise ValueError(f'Unexpected select feature: {self.select_feature}')
|
74 |
+
return image_features
|
75 |
+
|
76 |
+
def forward(self, images, glb_GN, sub_GN):
|
77 |
+
if not self.is_loaded:
|
78 |
+
self.load_model()
|
79 |
+
assert type(images) is list
|
80 |
+
shapes = []
|
81 |
+
input_imgs = []
|
82 |
+
for img in images:
|
83 |
+
_, C, H, W = img.shape
|
84 |
+
shapes.append([H//336, W//336])
|
85 |
+
sub_img = img.reshape(1,3,H//336,336,W//336,336).permute(0,2,4,1,3,5).reshape(-1,3,336,336).contiguous()
|
86 |
+
glb_img = torch.nn.functional.interpolate(img.float(), size=(336,336), mode='bicubic',).to(sub_img.dtype)
|
87 |
+
input_imgs.append(glb_img)
|
88 |
+
input_imgs.append(sub_img)
|
89 |
+
input_imgs = torch.cat(input_imgs, dim=0)
|
90 |
+
|
91 |
+
image_forward_outs = self.vision_tower(input_imgs.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
|
92 |
+
image_features = self.feature_select(image_forward_outs).to(input_imgs.dtype) ### B*?, N, C
|
93 |
+
_, N, C = image_features.shape
|
94 |
+
H = int(math.sqrt(N))
|
95 |
+
assert N == 24 ** 2
|
96 |
+
|
97 |
+
output_imgs = []
|
98 |
+
output_len = []
|
99 |
+
for [h, w] in shapes:
|
100 |
+
B_ = h*w
|
101 |
+
glb_img = image_features[:1] ### 1, N, C
|
102 |
+
glb_img = glb_img.reshape(1,H,H,C).reshape(1,H//2,2,H//2,2,C).contiguous().permute(0,1,3,2,4,5).reshape(1,H//2,H//2,4*C).contiguous()
|
103 |
+
temp_glb_GN = sub_GN.repeat(1, H//2, 1, 1)
|
104 |
+
glb_img = torch.cat([glb_img, temp_glb_GN], dim=2).reshape(1,-1,4*C)
|
105 |
+
|
106 |
+
sub_img = image_features[1:1+B_] ### ?, N, C
|
107 |
+
sub_img = sub_img.reshape(B_,H,H,C).reshape(B_,H//2,2,H//2,2,C).contiguous().permute(0,1,3,2,4,5).reshape(B_,-1,4*C).contiguous()
|
108 |
+
sub_img = sub_img.reshape(1, h, w, 12, 12, -1).permute(0,1,3,2,4,5).reshape(1,h*12,w*12,4*C)
|
109 |
+
temp_sub_GN = sub_GN.repeat(1, h*12, 1, 1)
|
110 |
+
sub_img = torch.cat([sub_img, temp_sub_GN], dim=2).reshape(1,-1,4*C)
|
111 |
+
|
112 |
+
output_imgs.append(torch.cat([glb_img, glb_GN, sub_img], dim=1))
|
113 |
+
temp_len = int((h*w+1)*144 + 1 + (h+1)*12)
|
114 |
+
assert temp_len == output_imgs[-1].shape[1]
|
115 |
+
output_len.append(temp_len)
|
116 |
+
|
117 |
+
image_features = image_features[1+h*w:]
|
118 |
+
|
119 |
+
output_imgs = torch.cat(output_imgs, dim=1)
|
120 |
+
|
121 |
+
return output_imgs, output_len
|
122 |
+
|
123 |
+
@property
|
124 |
+
def dummy_feature(self):
|
125 |
+
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
|
126 |
+
|
127 |
+
@property
|
128 |
+
def dtype(self):
|
129 |
+
return self.vision_tower.dtype
|
130 |
+
|
131 |
+
@property
|
132 |
+
def device(self):
|
133 |
+
return self.vision_tower.device
|
134 |
+
|
135 |
+
@property
|
136 |
+
def config(self):
|
137 |
+
if self.is_loaded:
|
138 |
+
return self.vision_tower.config
|
139 |
+
else:
|
140 |
+
return self.cfg_only
|
141 |
+
|
142 |
+
@property
|
143 |
+
def hidden_size(self):
|
144 |
+
return self.config.hidden_size
|
145 |
+
|
146 |
+
@property
|
147 |
+
def num_patches(self):
|
148 |
+
return (self.config.image_size // self.config.patch_size) ** 2
|
149 |
+
|
150 |
+
class PLoRA(nn.Linear):
|
151 |
+
def __init__(self,
|
152 |
+
in_features: int,
|
153 |
+
out_features: int,
|
154 |
+
bias: bool = True,
|
155 |
+
device=None,
|
156 |
+
dtype=None,
|
157 |
+
lora_r=8,
|
158 |
+
lora_alpha=16,
|
159 |
+
lora_dropout=0.05,
|
160 |
+
lora_len=0,
|
161 |
+
**kwargs) -> None:
|
162 |
+
super().__init__(in_features, out_features, bias, device, dtype)
|
163 |
+
self.lora_r = lora_r
|
164 |
+
self.lora_alpha = lora_alpha
|
165 |
+
self.lora_len = lora_len
|
166 |
+
if lora_dropout > 0.:
|
167 |
+
self.lora_dropout = nn.Dropout(p=lora_dropout)
|
168 |
+
else:
|
169 |
+
self.lora_dropout = lambda x: x
|
170 |
+
self.lora_scaling = self.lora_alpha / self.lora_r
|
171 |
+
|
172 |
+
self.Plora_A = nn.Linear(in_features,
|
173 |
+
self.lora_r,
|
174 |
+
bias=False,
|
175 |
+
device=device,
|
176 |
+
dtype=dtype)
|
177 |
+
self.Plora_B = nn.Linear(self.lora_r,
|
178 |
+
out_features,
|
179 |
+
bias=False,
|
180 |
+
device=device,
|
181 |
+
dtype=dtype)
|
182 |
+
|
183 |
+
self.reset_parameters()
|
184 |
+
|
185 |
+
def reset_parameters(self):
|
186 |
+
if hasattr(self, 'lora_A'):
|
187 |
+
# initialize A the same way as the default for nn.Linear and B to zero
|
188 |
+
nn.init.kaiming_uniform_(self.lora_A.weight, a=math.sqrt(5))
|
189 |
+
nn.init.zeros_(self.lora_B.weight)
|
190 |
+
#print ("lora weight init {} {}".format(torch.mean(self.lora_A.weight), torch.mean(self.lora_B.weight)))
|
191 |
+
|
192 |
+
def forward(self, x, im_mask=None):
|
193 |
+
B, N, C = x.shape
|
194 |
+
x = x.reshape(-1, C)
|
195 |
+
im_mask = im_mask.view(-1)
|
196 |
+
res = super().forward(x)
|
197 |
+
if im_mask is not None:
|
198 |
+
if torch.sum(im_mask) > 0:
|
199 |
+
part_x = x[im_mask]
|
200 |
+
res[im_mask] += self.Plora_B(self.Plora_A(
|
201 |
+
self.lora_dropout(part_x))) * self.lora_scaling
|
202 |
+
else:
|
203 |
+
part_x = x[:1]
|
204 |
+
res[:1] += self.Plora_B(self.Plora_A(
|
205 |
+
self.lora_dropout(part_x))) * 0
|
206 |
+
|
207 |
+
return res.reshape(B, N, -1)
|
config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"InternLM2ForCausalLM"
|
4 |
+
],
|
5 |
+
"attn_implementation": "flash_attention_2",
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_internlm_xcomposer2.InternLMXcomposer2Config",
|
8 |
+
"AutoModel": "modeling_internlm_xcomposer2.InternLMXComposer2ForCausalLM",
|
9 |
+
"AutoModelForCausalLM": "modeling_internlm_xcomposer2.InternLMXComposer2ForCausalLM"
|
10 |
+
},
|
11 |
+
"bias": false,
|
12 |
+
"bos_token_id": 1,
|
13 |
+
"eos_token_id": 2,
|
14 |
+
"hidden_act": "silu",
|
15 |
+
"hidden_size": 4096,
|
16 |
+
"initializer_range": 0.02,
|
17 |
+
"intermediate_size": 14336,
|
18 |
+
"max_length": 16384,
|
19 |
+
"max_position_embeddings": 32768,
|
20 |
+
"model_type": "internlmxcomposer2",
|
21 |
+
"num_attention_heads": 32,
|
22 |
+
"num_hidden_layers": 32,
|
23 |
+
"num_key_value_heads": 8,
|
24 |
+
"pad_token_id": 2,
|
25 |
+
"rms_norm_eps": 1e-05,
|
26 |
+
"rope_scaling": null,
|
27 |
+
"rope_theta": 1000000,
|
28 |
+
"tie_word_embeddings": false,
|
29 |
+
"torch_dtype": "bfloat16",
|
30 |
+
"transformers_version": "4.33.1",
|
31 |
+
"use_cache": false,
|
32 |
+
"vocab_size": 92544
|
33 |
+
}
|
configuration_internlm_xcomposer2.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on transformers/src/transformers/models/llama/configuration_llama.py
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
""" InternLM2 model configuration"""
|
18 |
+
|
19 |
+
from transformers.configuration_utils import PretrainedConfig
|
20 |
+
from transformers.utils import logging
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
25 |
+
|
26 |
+
|
27 |
+
class InternLMXcomposer2Config(PretrainedConfig):
|
28 |
+
r"""
|
29 |
+
This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
|
30 |
+
an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
|
31 |
+
configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
|
32 |
+
|
33 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
34 |
+
documentation from [`PretrainedConfig`] for more information.
|
35 |
+
|
36 |
+
|
37 |
+
Args:
|
38 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
39 |
+
Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
|
40 |
+
`inputs_ids` passed when calling [`InternLM2Model`]
|
41 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
42 |
+
Dimension of the hidden representations.
|
43 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
44 |
+
Dimension of the MLP representations.
|
45 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
46 |
+
Number of hidden layers in the Transformer encoder.
|
47 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
48 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
49 |
+
num_key_value_heads (`int`, *optional*):
|
50 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
51 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
52 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
53 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
54 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
55 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
56 |
+
`num_attention_heads`.
|
57 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
58 |
+
The non-linear activation function (function or string) in the decoder.
|
59 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
60 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
61 |
+
just in case (e.g., 512 or 1024 or 2048).
|
62 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
63 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
64 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-12):
|
65 |
+
The epsilon used by the rms normalization layers.
|
66 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
67 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
68 |
+
relevant if `config.is_decoder=True`.
|
69 |
+
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
70 |
+
Whether to tie weight embeddings
|
71 |
+
Example:
|
72 |
+
|
73 |
+
"""
|
74 |
+
model_type = "internlm2"
|
75 |
+
_auto_class = "AutoConfig"
|
76 |
+
|
77 |
+
def __init__( # pylint: disable=W0102
|
78 |
+
self,
|
79 |
+
vocab_size=103168,
|
80 |
+
hidden_size=4096,
|
81 |
+
intermediate_size=11008,
|
82 |
+
num_hidden_layers=32,
|
83 |
+
num_attention_heads=32,
|
84 |
+
num_key_value_heads=None,
|
85 |
+
hidden_act="silu",
|
86 |
+
max_position_embeddings=2048,
|
87 |
+
initializer_range=0.02,
|
88 |
+
rms_norm_eps=1e-6,
|
89 |
+
use_cache=True,
|
90 |
+
pad_token_id=0,
|
91 |
+
bos_token_id=1,
|
92 |
+
eos_token_id=2,
|
93 |
+
tie_word_embeddings=False,
|
94 |
+
bias=True,
|
95 |
+
rope_theta=10000,
|
96 |
+
rope_scaling=None,
|
97 |
+
attn_implementation="eager",
|
98 |
+
**kwargs,
|
99 |
+
):
|
100 |
+
self.vocab_size = vocab_size
|
101 |
+
self.max_position_embeddings = max_position_embeddings
|
102 |
+
self.hidden_size = hidden_size
|
103 |
+
self.intermediate_size = intermediate_size
|
104 |
+
self.num_hidden_layers = num_hidden_layers
|
105 |
+
self.num_attention_heads = num_attention_heads
|
106 |
+
self.bias = bias
|
107 |
+
|
108 |
+
if num_key_value_heads is None:
|
109 |
+
num_key_value_heads = num_attention_heads
|
110 |
+
self.num_key_value_heads = num_key_value_heads
|
111 |
+
|
112 |
+
self.hidden_act = hidden_act
|
113 |
+
self.initializer_range = initializer_range
|
114 |
+
self.rms_norm_eps = rms_norm_eps
|
115 |
+
self.use_cache = use_cache
|
116 |
+
self.rope_theta = rope_theta
|
117 |
+
self.rope_scaling = rope_scaling
|
118 |
+
self._rope_scaling_validation()
|
119 |
+
|
120 |
+
self.attn_implementation = attn_implementation
|
121 |
+
if self.attn_implementation is None:
|
122 |
+
self.attn_implementation = "eager"
|
123 |
+
super().__init__(
|
124 |
+
pad_token_id=pad_token_id,
|
125 |
+
bos_token_id=bos_token_id,
|
126 |
+
eos_token_id=eos_token_id,
|
127 |
+
tie_word_embeddings=tie_word_embeddings,
|
128 |
+
**kwargs,
|
129 |
+
)
|
130 |
+
|
131 |
+
def _rope_scaling_validation(self):
|
132 |
+
"""
|
133 |
+
Validate the `rope_scaling` configuration.
|
134 |
+
"""
|
135 |
+
if self.rope_scaling is None:
|
136 |
+
return
|
137 |
+
|
138 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
139 |
+
raise ValueError(
|
140 |
+
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
141 |
+
f"got {self.rope_scaling}"
|
142 |
+
)
|
143 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
144 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
145 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
146 |
+
raise ValueError(
|
147 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
148 |
+
)
|
149 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
|
150 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
|
example.webp
ADDED
generation_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"max_length": 4480,
|
6 |
+
"pad_token_id": 2,
|
7 |
+
"transformers_version": "4.33.1",
|
8 |
+
"use_cache": false
|
9 |
+
}
|
ixc_utils.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import torchvision
|
4 |
+
from PIL import Image
|
5 |
+
from torchvision.transforms.functional import InterpolationMode
|
6 |
+
import torchvision.transforms as transforms
|
7 |
+
|
8 |
+
def padding_336(b):
|
9 |
+
width, height = b.size
|
10 |
+
tar = int(np.ceil(height / 336) * 336)
|
11 |
+
top_padding = int((tar - height)/2)
|
12 |
+
bottom_padding = tar - height - top_padding
|
13 |
+
left_padding = 0
|
14 |
+
right_padding = 0
|
15 |
+
b = transforms.functional.pad(b, [left_padding, top_padding, right_padding, bottom_padding], fill=[255,255,255])
|
16 |
+
|
17 |
+
return b
|
18 |
+
|
19 |
+
def HD_transform(img, hd_num=16):
|
20 |
+
width, height = img.size
|
21 |
+
trans = False
|
22 |
+
if width < height:
|
23 |
+
img = img.transpose(Image.TRANSPOSE)
|
24 |
+
trans = True
|
25 |
+
width, height = img.size
|
26 |
+
ratio = (width/ height)
|
27 |
+
scale = 1
|
28 |
+
while scale*np.ceil(scale/ratio) <= hd_num:
|
29 |
+
scale += 1
|
30 |
+
scale -= 1
|
31 |
+
new_w = int(scale * 336)
|
32 |
+
new_h = int(new_w / ratio)
|
33 |
+
|
34 |
+
img = transforms.functional.resize(img, [new_h, new_w],)
|
35 |
+
img = padding_336(img)
|
36 |
+
width, height = img.size
|
37 |
+
if trans:
|
38 |
+
img = img.transpose(Image.TRANSPOSE)
|
39 |
+
|
40 |
+
return img
|
41 |
+
|
42 |
+
|
logo.png
ADDED
logo_en.png
ADDED
modeling_internlm2.py
ADDED
@@ -0,0 +1,990 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# This code is based on transformers/src/transformers/models/llama/modeling_llama.py
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" PyTorch InternLM2 model."""
|
17 |
+
import math
|
18 |
+
import queue
|
19 |
+
import threading
|
20 |
+
import warnings
|
21 |
+
import copy
|
22 |
+
import numpy as np
|
23 |
+
from typing import List, Optional, Tuple, Union
|
24 |
+
from torchvision import transforms
|
25 |
+
from torchvision.transforms.functional import InterpolationMode
|
26 |
+
from PIL import Image
|
27 |
+
|
28 |
+
import torch
|
29 |
+
import torch.nn.functional as F
|
30 |
+
import torch.utils.checkpoint
|
31 |
+
from einops import rearrange
|
32 |
+
from torch import nn
|
33 |
+
from transformers.activations import ACT2FN
|
34 |
+
from transformers.modeling_outputs import (
|
35 |
+
BaseModelOutputWithPast,
|
36 |
+
CausalLMOutputWithPast,
|
37 |
+
SequenceClassifierOutputWithPast,
|
38 |
+
)
|
39 |
+
from transformers.modeling_utils import PreTrainedModel
|
40 |
+
from transformers.utils import (
|
41 |
+
add_start_docstrings,
|
42 |
+
add_start_docstrings_to_model_forward,
|
43 |
+
logging,
|
44 |
+
replace_return_docstrings,
|
45 |
+
)
|
46 |
+
|
47 |
+
try:
|
48 |
+
from transformers.generation.streamers import BaseStreamer
|
49 |
+
except: # noqa # pylint: disable=bare-except
|
50 |
+
BaseStreamer = None
|
51 |
+
|
52 |
+
from .build_mlp import PLoRA
|
53 |
+
from .configuration_internlm_xcomposer2 import InternLMXcomposer2Config as InternLM2Config
|
54 |
+
|
55 |
+
logger = logging.get_logger(__name__)
|
56 |
+
|
57 |
+
_CONFIG_FOR_DOC = "InternLM2Config"
|
58 |
+
|
59 |
+
flash_attn_func, flash_attn_varlen_func = None, None
|
60 |
+
pad_input, index_first_axis, unpad_input = None, None, None
|
61 |
+
def _import_flash_attn():
|
62 |
+
global flash_attn_func, flash_attn_varlen_func
|
63 |
+
global pad_input, index_first_axis, unpad_input
|
64 |
+
try:
|
65 |
+
from flash_attn import flash_attn_func as _flash_attn_func, flash_attn_varlen_func as _flash_attn_varlen_func
|
66 |
+
from flash_attn.bert_padding import pad_input as _pad_input, index_first_axis as _index_first_axis, unpad_input as _unpad_input
|
67 |
+
flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
|
68 |
+
pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
|
69 |
+
except ImportError:
|
70 |
+
raise ImportError("flash_attn is not installed.")
|
71 |
+
|
72 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
73 |
+
def _get_unpad_data(attention_mask):
|
74 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
75 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
76 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
77 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
78 |
+
return (
|
79 |
+
indices,
|
80 |
+
cu_seqlens,
|
81 |
+
max_seqlen_in_batch,
|
82 |
+
)
|
83 |
+
|
84 |
+
|
85 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
86 |
+
def _make_causal_mask(
|
87 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
88 |
+
):
|
89 |
+
"""
|
90 |
+
Make causal mask used for bi-directional self-attention.
|
91 |
+
"""
|
92 |
+
bsz, tgt_len = input_ids_shape
|
93 |
+
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
|
94 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
95 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
96 |
+
mask = mask.to(dtype)
|
97 |
+
|
98 |
+
if past_key_values_length > 0:
|
99 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
100 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
101 |
+
|
102 |
+
|
103 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
104 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
105 |
+
"""
|
106 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
107 |
+
"""
|
108 |
+
bsz, src_len = mask.size()
|
109 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
110 |
+
|
111 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
112 |
+
|
113 |
+
inverted_mask = 1.0 - expanded_mask
|
114 |
+
|
115 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
116 |
+
|
117 |
+
|
118 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->InternLM2
|
119 |
+
class InternLM2RMSNorm(nn.Module):
|
120 |
+
def __init__(self, hidden_size, eps=1e-6):
|
121 |
+
"""
|
122 |
+
InternLM2RMSNorm is equivalent to T5LayerNorm
|
123 |
+
"""
|
124 |
+
super().__init__()
|
125 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
126 |
+
self.variance_epsilon = eps
|
127 |
+
|
128 |
+
def forward(self, hidden_states):
|
129 |
+
input_dtype = hidden_states.dtype
|
130 |
+
hidden_states = hidden_states.to(torch.float32)
|
131 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
132 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
133 |
+
return self.weight * hidden_states.to(input_dtype)
|
134 |
+
|
135 |
+
|
136 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaRotaryEmbedding with Llama->InternLM2
|
137 |
+
class InternLM2RotaryEmbedding(nn.Module):
|
138 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
139 |
+
super().__init__()
|
140 |
+
|
141 |
+
self.dim = dim
|
142 |
+
self.max_position_embeddings = max_position_embeddings
|
143 |
+
self.base = base
|
144 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
145 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
146 |
+
|
147 |
+
# Build here to make `torch.jit.trace` work.
|
148 |
+
self._set_cos_sin_cache(
|
149 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
150 |
+
)
|
151 |
+
|
152 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
153 |
+
self.max_seq_len_cached = seq_len
|
154 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
155 |
+
|
156 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
157 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
158 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
159 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
160 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
161 |
+
|
162 |
+
def forward(self, x, seq_len=None):
|
163 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
164 |
+
if seq_len > self.max_seq_len_cached:
|
165 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.float32)
|
166 |
+
|
167 |
+
return (
|
168 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
169 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
170 |
+
)
|
171 |
+
|
172 |
+
|
173 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->InternLM2
|
174 |
+
class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
|
175 |
+
"""InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
176 |
+
|
177 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
178 |
+
self.scaling_factor = scaling_factor
|
179 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
180 |
+
|
181 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
182 |
+
self.max_seq_len_cached = seq_len
|
183 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
184 |
+
t = t / self.scaling_factor
|
185 |
+
|
186 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
187 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
188 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
189 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
190 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
191 |
+
|
192 |
+
|
193 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->InternLM2
|
194 |
+
class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
|
195 |
+
"""InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
|
196 |
+
Credits to the Reddit users /u/bloc97 and /u/emozilla.
|
197 |
+
"""
|
198 |
+
|
199 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
200 |
+
self.scaling_factor = scaling_factor
|
201 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
202 |
+
|
203 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
204 |
+
self.max_seq_len_cached = seq_len
|
205 |
+
|
206 |
+
if seq_len > self.max_position_embeddings:
|
207 |
+
base = self.base * (
|
208 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
209 |
+
) ** (self.dim / (self.dim - 2))
|
210 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
211 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
212 |
+
|
213 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
214 |
+
|
215 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
216 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
217 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
218 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
219 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
220 |
+
|
221 |
+
|
222 |
+
# Copied from transformers.model.llama.modeling_llama.rotate_half
|
223 |
+
def rotate_half(x):
|
224 |
+
"""Rotates half the hidden dims of the input."""
|
225 |
+
x1 = x[..., : x.shape[-1] // 2]
|
226 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
227 |
+
return torch.cat((-x2, x1), dim=-1)
|
228 |
+
|
229 |
+
|
230 |
+
# Copied from transformers.model.llama.modeling_llama.apply_rotary_pos_emb
|
231 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
232 |
+
"""Applies Rotary Position Embedding to the query and key tensors."""
|
233 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
234 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
235 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
236 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
237 |
+
return q_embed, k_embed
|
238 |
+
|
239 |
+
|
240 |
+
class InternLM2MLP(nn.Module):
|
241 |
+
def __init__(self, config):
|
242 |
+
super().__init__()
|
243 |
+
self.config = config
|
244 |
+
self.hidden_size = config.hidden_size
|
245 |
+
self.intermediate_size = config.intermediate_size
|
246 |
+
#self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
247 |
+
#self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
248 |
+
#self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
249 |
+
|
250 |
+
self.w1 = PLoRA(self.hidden_size, self.intermediate_size, bias=False,
|
251 |
+
lora_r=256, lora_alpha=256, lora_len=1225)
|
252 |
+
self.w3 = PLoRA(self.hidden_size, self.intermediate_size, bias=False,
|
253 |
+
lora_r=256, lora_alpha=256, lora_len=1225)
|
254 |
+
self.w2 = PLoRA(self.intermediate_size, self.hidden_size, bias=False,
|
255 |
+
lora_r=256, lora_alpha=256, lora_len=1225)
|
256 |
+
|
257 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
258 |
+
|
259 |
+
def forward(self, x, im_mask):
|
260 |
+
down_proj = self.w2(self.act_fn(self.w1(x, im_mask)) * self.w3(x, im_mask), im_mask)
|
261 |
+
|
262 |
+
return down_proj
|
263 |
+
|
264 |
+
|
265 |
+
# Copied from transformers.model.llama.modeling_llama.repeat_kv
|
266 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
267 |
+
"""
|
268 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
269 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
270 |
+
"""
|
271 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
272 |
+
if n_rep == 1:
|
273 |
+
return hidden_states
|
274 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
275 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
276 |
+
|
277 |
+
|
278 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaAttention
|
279 |
+
class InternLM2Attention(nn.Module):
|
280 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
281 |
+
|
282 |
+
def __init__(self, config: InternLM2Config):
|
283 |
+
super().__init__()
|
284 |
+
self.config = config
|
285 |
+
self.hidden_size = config.hidden_size
|
286 |
+
self.num_heads = config.num_attention_heads
|
287 |
+
self.head_dim = self.hidden_size // self.num_heads
|
288 |
+
self.num_key_value_heads = config.num_key_value_heads
|
289 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
290 |
+
self.max_position_embeddings = config.max_position_embeddings
|
291 |
+
self.is_causal = True
|
292 |
+
|
293 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
294 |
+
raise ValueError(
|
295 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
296 |
+
f" and `num_heads`: {self.num_heads})."
|
297 |
+
)
|
298 |
+
|
299 |
+
#self.wqkv = nn.Linear(
|
300 |
+
self.wqkv = PLoRA(
|
301 |
+
self.hidden_size,
|
302 |
+
(self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
|
303 |
+
bias=config.bias,
|
304 |
+
)
|
305 |
+
|
306 |
+
#self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
|
307 |
+
self.wo = PLoRA(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias,
|
308 |
+
lora_r=256, lora_alpha=256, lora_len=1225)
|
309 |
+
self._init_rope()
|
310 |
+
|
311 |
+
def _init_rope(self):
|
312 |
+
if self.config.rope_scaling is None:
|
313 |
+
self.rotary_emb = InternLM2RotaryEmbedding(
|
314 |
+
self.head_dim,
|
315 |
+
max_position_embeddings=self.max_position_embeddings,
|
316 |
+
base=self.config.rope_theta,
|
317 |
+
)
|
318 |
+
else:
|
319 |
+
scaling_type = self.config.rope_scaling["type"]
|
320 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
321 |
+
if scaling_type == "dynamic":
|
322 |
+
self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
|
323 |
+
self.head_dim,
|
324 |
+
max_position_embeddings=self.max_position_embeddings,
|
325 |
+
base=self.config.rope_theta,
|
326 |
+
scaling_factor=scaling_factor,
|
327 |
+
)
|
328 |
+
elif scaling_type == "linear":
|
329 |
+
self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
|
330 |
+
self.head_dim,
|
331 |
+
max_position_embeddings=self.max_position_embeddings,
|
332 |
+
base=self.config.rope_theta,
|
333 |
+
scaling_factor=scaling_factor,
|
334 |
+
)
|
335 |
+
else:
|
336 |
+
raise ValueError("Currently we only support rotary embedding's type being 'dynamic' or 'linear'.")
|
337 |
+
return self.rotary_emb
|
338 |
+
|
339 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
340 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
341 |
+
|
342 |
+
def forward(
|
343 |
+
self,
|
344 |
+
hidden_states: torch.Tensor,
|
345 |
+
attention_mask: Optional[torch.Tensor] = None,
|
346 |
+
position_ids: Optional[torch.LongTensor] = None,
|
347 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
348 |
+
output_attentions: bool = False,
|
349 |
+
use_cache: bool = False,
|
350 |
+
im_mask: Optional[Tuple[torch.Tensor]] = None,
|
351 |
+
**kwargs,
|
352 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
353 |
+
if "padding_mask" in kwargs:
|
354 |
+
warnings.warn(
|
355 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. "
|
356 |
+
"Please make sure use `attention_mask` instead.`"
|
357 |
+
)
|
358 |
+
|
359 |
+
bsz, q_len, _ = hidden_states.size()
|
360 |
+
|
361 |
+
qkv_states = self.wqkv(hidden_states, im_mask)
|
362 |
+
|
363 |
+
qkv_states = rearrange(
|
364 |
+
qkv_states,
|
365 |
+
"b q (h gs d) -> b q h gs d",
|
366 |
+
gs=2 + self.num_key_value_groups,
|
367 |
+
d=self.head_dim,
|
368 |
+
)
|
369 |
+
|
370 |
+
query_states = qkv_states[..., : self.num_key_value_groups, :]
|
371 |
+
query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d")
|
372 |
+
key_states = qkv_states[..., -2, :]
|
373 |
+
value_states = qkv_states[..., -1, :]
|
374 |
+
|
375 |
+
query_states = query_states.transpose(1, 2)
|
376 |
+
key_states = key_states.transpose(1, 2)
|
377 |
+
value_states = value_states.transpose(1, 2)
|
378 |
+
|
379 |
+
kv_seq_len = key_states.shape[-2]
|
380 |
+
if past_key_value is not None:
|
381 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
382 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
383 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
384 |
+
|
385 |
+
if past_key_value is not None:
|
386 |
+
# reuse k, v, self_attention
|
387 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
388 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
389 |
+
|
390 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
391 |
+
|
392 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
393 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
394 |
+
|
395 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
396 |
+
|
397 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
398 |
+
raise ValueError(
|
399 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
400 |
+
f" {attn_weights.size()}"
|
401 |
+
)
|
402 |
+
|
403 |
+
if attention_mask is not None:
|
404 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
405 |
+
raise ValueError(
|
406 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
407 |
+
)
|
408 |
+
attn_weights = attn_weights + attention_mask
|
409 |
+
|
410 |
+
# upcast attention to fp32
|
411 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
412 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
413 |
+
|
414 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
415 |
+
raise ValueError(
|
416 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
417 |
+
f" {attn_output.size()}"
|
418 |
+
)
|
419 |
+
|
420 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
421 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
422 |
+
|
423 |
+
attn_output = self.wo(attn_output, im_mask)
|
424 |
+
|
425 |
+
if not output_attentions:
|
426 |
+
attn_weights = None
|
427 |
+
|
428 |
+
return attn_output, attn_weights, past_key_value
|
429 |
+
|
430 |
+
|
431 |
+
# Modified from transformers.model.llama.modeling_llama.InternLM2FlashAttention2
|
432 |
+
class InternLM2FlashAttention2(InternLM2Attention):
|
433 |
+
"""
|
434 |
+
InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
|
435 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
436 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
437 |
+
"""
|
438 |
+
|
439 |
+
def forward(
|
440 |
+
self,
|
441 |
+
hidden_states: torch.Tensor,
|
442 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
443 |
+
position_ids: Optional[torch.LongTensor] = None,
|
444 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
445 |
+
output_attentions: bool = False,
|
446 |
+
use_cache: bool = False,
|
447 |
+
im_mask: Optional[Tuple[torch.Tensor]] = None,
|
448 |
+
**kwargs,
|
449 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
450 |
+
# InternLM2FlashAttention2 attention does not support output_attentions
|
451 |
+
if "padding_mask" in kwargs:
|
452 |
+
warnings.warn(
|
453 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. "
|
454 |
+
"Please make sure use `attention_mask` instead.`"
|
455 |
+
)
|
456 |
+
|
457 |
+
# overwrite attention_mask with padding_mask
|
458 |
+
attention_mask = kwargs.pop("padding_mask")
|
459 |
+
|
460 |
+
output_attentions = False
|
461 |
+
|
462 |
+
bsz, q_len, _ = hidden_states.size()
|
463 |
+
|
464 |
+
qkv_states = self.wqkv(hidden_states, im_mask)
|
465 |
+
|
466 |
+
qkv_states = rearrange(
|
467 |
+
qkv_states,
|
468 |
+
"b q (h gs d) -> b q h gs d",
|
469 |
+
gs=2 + self.num_key_value_groups,
|
470 |
+
d=self.head_dim,
|
471 |
+
)
|
472 |
+
|
473 |
+
query_states = qkv_states[..., : self.num_key_value_groups, :]
|
474 |
+
query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d")
|
475 |
+
key_states = qkv_states[..., -2, :]
|
476 |
+
value_states = qkv_states[..., -1, :]
|
477 |
+
|
478 |
+
query_states = query_states.transpose(1, 2)
|
479 |
+
key_states = key_states.transpose(1, 2)
|
480 |
+
value_states = value_states.transpose(1, 2)
|
481 |
+
|
482 |
+
kv_seq_len = key_states.shape[-2]
|
483 |
+
if past_key_value is not None:
|
484 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
485 |
+
|
486 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
487 |
+
|
488 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
489 |
+
|
490 |
+
if past_key_value is not None:
|
491 |
+
# reuse k, v, self_attention
|
492 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
493 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
494 |
+
|
495 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
496 |
+
|
497 |
+
query_states = query_states.transpose(1, 2)
|
498 |
+
key_states = key_states.transpose(1, 2)
|
499 |
+
value_states = value_states.transpose(1, 2)
|
500 |
+
|
501 |
+
attn_output = self._flash_attention_forward(
|
502 |
+
query_states, key_states, value_states, attention_mask, q_len
|
503 |
+
)
|
504 |
+
|
505 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
506 |
+
attn_output = self.wo(attn_output, im_mask)
|
507 |
+
|
508 |
+
if not output_attentions:
|
509 |
+
attn_weights = None
|
510 |
+
|
511 |
+
return attn_output, attn_weights, past_key_value
|
512 |
+
|
513 |
+
def _flash_attention_forward(
|
514 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
515 |
+
):
|
516 |
+
"""
|
517 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
518 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
519 |
+
|
520 |
+
Args:
|
521 |
+
query_states (`torch.Tensor`):
|
522 |
+
Input query states to be passed to Flash Attention API
|
523 |
+
key_states (`torch.Tensor`):
|
524 |
+
Input key states to be passed to Flash Attention API
|
525 |
+
value_states (`torch.Tensor`):
|
526 |
+
Input value states to be passed to Flash Attention API
|
527 |
+
attention_mask (`torch.Tensor`):
|
528 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
529 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
530 |
+
dropout (`int`, *optional*):
|
531 |
+
Attention dropout
|
532 |
+
softmax_scale (`float`, *optional*):
|
533 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
534 |
+
"""
|
535 |
+
# Contains at least one padding token in the sequence
|
536 |
+
causal = self.is_causal and query_length != 1
|
537 |
+
if attention_mask is not None:
|
538 |
+
batch_size = query_states.shape[0]
|
539 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input(
|
540 |
+
query_states, key_states, value_states, attention_mask, query_length
|
541 |
+
)
|
542 |
+
|
543 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
544 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
545 |
+
|
546 |
+
attn_output_unpad = flash_attn_varlen_func(
|
547 |
+
query_states,
|
548 |
+
key_states,
|
549 |
+
value_states,
|
550 |
+
cu_seqlens_q=cu_seqlens_q,
|
551 |
+
cu_seqlens_k=cu_seqlens_k,
|
552 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
553 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
554 |
+
dropout_p=dropout,
|
555 |
+
softmax_scale=softmax_scale,
|
556 |
+
causal=causal,
|
557 |
+
)
|
558 |
+
|
559 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
560 |
+
else:
|
561 |
+
attn_output = flash_attn_func(
|
562 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
563 |
+
)
|
564 |
+
|
565 |
+
return attn_output
|
566 |
+
|
567 |
+
def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
568 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
569 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
570 |
+
|
571 |
+
key_layer = index_first_axis(
|
572 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
573 |
+
)
|
574 |
+
value_layer = index_first_axis(
|
575 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
576 |
+
)
|
577 |
+
|
578 |
+
if query_length == kv_seq_len:
|
579 |
+
query_layer = index_first_axis(
|
580 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
581 |
+
)
|
582 |
+
cu_seqlens_q = cu_seqlens_k
|
583 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
584 |
+
indices_q = indices_k
|
585 |
+
elif query_length == 1:
|
586 |
+
max_seqlen_in_batch_q = 1
|
587 |
+
cu_seqlens_q = torch.arange(
|
588 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
589 |
+
) # There is a memcpy here, that is very bad.
|
590 |
+
indices_q = cu_seqlens_q[:-1]
|
591 |
+
query_layer = query_layer.squeeze(1)
|
592 |
+
else:
|
593 |
+
# The -q_len: slice assumes left padding.
|
594 |
+
attention_mask = attention_mask[:, -query_length:]
|
595 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
596 |
+
|
597 |
+
return (
|
598 |
+
query_layer,
|
599 |
+
key_layer,
|
600 |
+
value_layer,
|
601 |
+
indices_q.to(torch.int64),
|
602 |
+
(cu_seqlens_q, cu_seqlens_k),
|
603 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
604 |
+
)
|
605 |
+
|
606 |
+
INTERNLM2_ATTENTION_CLASSES = {
|
607 |
+
"eager": InternLM2Attention,
|
608 |
+
"flash_attention_2": InternLM2FlashAttention2,
|
609 |
+
}
|
610 |
+
|
611 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaDecoderLayer
|
612 |
+
class InternLM2DecoderLayer(nn.Module):
|
613 |
+
def __init__(self, config: InternLM2Config):
|
614 |
+
super().__init__()
|
615 |
+
self.hidden_size = config.hidden_size
|
616 |
+
|
617 |
+
self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config)
|
618 |
+
|
619 |
+
self.feed_forward = InternLM2MLP(config)
|
620 |
+
self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
621 |
+
self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
622 |
+
|
623 |
+
def forward(
|
624 |
+
self,
|
625 |
+
hidden_states: torch.Tensor,
|
626 |
+
attention_mask: Optional[torch.Tensor] = None,
|
627 |
+
position_ids: Optional[torch.LongTensor] = None,
|
628 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
629 |
+
output_attentions: Optional[bool] = False,
|
630 |
+
use_cache: Optional[bool] = False,
|
631 |
+
im_mask: Optional[Tuple[torch.Tensor]] = None,
|
632 |
+
**kwargs,
|
633 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
634 |
+
"""
|
635 |
+
Args:
|
636 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
637 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
638 |
+
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
639 |
+
query_sequence_length, key_sequence_length)` if default attention is used.
|
640 |
+
output_attentions (`bool`, *optional*):
|
641 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
642 |
+
returned tensors for more detail.
|
643 |
+
use_cache (`bool`, *optional*):
|
644 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
645 |
+
(see `past_key_values`).
|
646 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
647 |
+
"""
|
648 |
+
if "padding_mask" in kwargs:
|
649 |
+
warnings.warn(
|
650 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. "
|
651 |
+
"Please make sure use `attention_mask` instead.`"
|
652 |
+
)
|
653 |
+
|
654 |
+
residual = hidden_states
|
655 |
+
|
656 |
+
hidden_states = self.attention_norm(hidden_states)
|
657 |
+
|
658 |
+
# Self Attention
|
659 |
+
hidden_states, self_attn_weights, present_key_value = self.attention(
|
660 |
+
hidden_states=hidden_states,
|
661 |
+
attention_mask=attention_mask,
|
662 |
+
position_ids=position_ids,
|
663 |
+
past_key_value=past_key_value,
|
664 |
+
output_attentions=output_attentions,
|
665 |
+
use_cache=use_cache,
|
666 |
+
im_mask=im_mask,
|
667 |
+
**kwargs,
|
668 |
+
)
|
669 |
+
hidden_states = residual + hidden_states
|
670 |
+
|
671 |
+
# Fully Connected
|
672 |
+
residual = hidden_states
|
673 |
+
hidden_states = self.ffn_norm(hidden_states)
|
674 |
+
hidden_states = self.feed_forward(hidden_states, im_mask)
|
675 |
+
hidden_states = residual + hidden_states
|
676 |
+
|
677 |
+
outputs = (hidden_states,)
|
678 |
+
|
679 |
+
if output_attentions:
|
680 |
+
outputs += (self_attn_weights,)
|
681 |
+
|
682 |
+
if use_cache:
|
683 |
+
outputs += (present_key_value,)
|
684 |
+
|
685 |
+
return outputs
|
686 |
+
|
687 |
+
|
688 |
+
InternLM2_START_DOCSTRING = r"""
|
689 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
690 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
691 |
+
etc.)
|
692 |
+
|
693 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
694 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
695 |
+
and behavior.
|
696 |
+
|
697 |
+
Parameters:
|
698 |
+
config ([`InternLM2Config`]):
|
699 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
700 |
+
load the weights associated with the model, only the configuration. Check out the
|
701 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
702 |
+
"""
|
703 |
+
|
704 |
+
|
705 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->InternLM2
|
706 |
+
@add_start_docstrings(
|
707 |
+
"The bare InternLM2 Model outputting raw hidden-states without any specific head on top.",
|
708 |
+
InternLM2_START_DOCSTRING,
|
709 |
+
)
|
710 |
+
class InternLM2PreTrainedModel(PreTrainedModel):
|
711 |
+
config_class = InternLM2Config
|
712 |
+
base_model_prefix = "model"
|
713 |
+
supports_gradient_checkpointing = True
|
714 |
+
_no_split_modules = ["InternLM2DecoderLayer"]
|
715 |
+
_skip_keys_device_placement = "past_key_values"
|
716 |
+
|
717 |
+
def _init_weights(self, module):
|
718 |
+
std = self.config.initializer_range
|
719 |
+
if isinstance(module, nn.Linear):
|
720 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
721 |
+
if module.bias is not None:
|
722 |
+
module.bias.data.zero_()
|
723 |
+
elif isinstance(module, nn.Embedding):
|
724 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
725 |
+
if module.padding_idx is not None:
|
726 |
+
module.weight.data[module.padding_idx].zero_()
|
727 |
+
|
728 |
+
|
729 |
+
InternLM2_INPUTS_DOCSTRING = r"""
|
730 |
+
Args:
|
731 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
732 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
733 |
+
it.
|
734 |
+
|
735 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
736 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
737 |
+
|
738 |
+
[What are input IDs?](../glossary#input-ids)
|
739 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
740 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
741 |
+
|
742 |
+
- 1 for tokens that are **not masked**,
|
743 |
+
- 0 for tokens that are **masked**.
|
744 |
+
|
745 |
+
[What are attention masks?](../glossary#attention-mask)
|
746 |
+
|
747 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
748 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
749 |
+
|
750 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
751 |
+
`past_key_values`).
|
752 |
+
|
753 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
754 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
755 |
+
information on the default strategy.
|
756 |
+
|
757 |
+
- 1 indicates the head is **not masked**,
|
758 |
+
- 0 indicates the head is **masked**.
|
759 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
760 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
761 |
+
config.n_positions - 1]`.
|
762 |
+
|
763 |
+
[What are position IDs?](../glossary#position-ids)
|
764 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
|
765 |
+
when `config.use_cache=True`):
|
766 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
767 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
768 |
+
`(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.
|
769 |
+
|
770 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
771 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
772 |
+
|
773 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
774 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
775 |
+
of shape `(batch_size, sequence_length)`.
|
776 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
777 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
778 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
779 |
+
model's internal embedding lookup matrix.
|
780 |
+
use_cache (`bool`, *optional*):
|
781 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
782 |
+
`past_key_values`).
|
783 |
+
output_attentions (`bool`, *optional*):
|
784 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
785 |
+
tensors for more detail.
|
786 |
+
output_hidden_states (`bool`, *optional*):
|
787 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
788 |
+
more detail.
|
789 |
+
return_dict (`bool`, *optional*):
|
790 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
791 |
+
"""
|
792 |
+
|
793 |
+
|
794 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaModel
|
795 |
+
@add_start_docstrings(
|
796 |
+
"The bare InternLM2 Model outputting raw hidden-states without any specific head on top.",
|
797 |
+
InternLM2_START_DOCSTRING,
|
798 |
+
)
|
799 |
+
class InternLM2Model(InternLM2PreTrainedModel):
|
800 |
+
"""
|
801 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`]
|
802 |
+
|
803 |
+
Args:
|
804 |
+
config: InternLM2Config
|
805 |
+
"""
|
806 |
+
|
807 |
+
_auto_class = "AutoModel"
|
808 |
+
|
809 |
+
def __init__(self, config: InternLM2Config):
|
810 |
+
super().__init__(config)
|
811 |
+
self.padding_idx = config.pad_token_id
|
812 |
+
self.vocab_size = config.vocab_size
|
813 |
+
self.config = config
|
814 |
+
|
815 |
+
self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
816 |
+
|
817 |
+
self.layers = nn.ModuleList([InternLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
818 |
+
self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
819 |
+
|
820 |
+
self.gradient_checkpointing = False
|
821 |
+
# Initialize weights and apply final processing
|
822 |
+
self.post_init()
|
823 |
+
|
824 |
+
def get_input_embeddings(self):
|
825 |
+
return self.tok_embeddings
|
826 |
+
|
827 |
+
def set_input_embeddings(self, value):
|
828 |
+
self.tok_embeddings = value
|
829 |
+
|
830 |
+
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
831 |
+
# create causal mask
|
832 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
833 |
+
combined_attention_mask = None
|
834 |
+
if input_shape[-1] > 1:
|
835 |
+
combined_attention_mask = _make_causal_mask(
|
836 |
+
input_shape,
|
837 |
+
inputs_embeds.dtype,
|
838 |
+
device=inputs_embeds.device,
|
839 |
+
past_key_values_length=past_key_values_length,
|
840 |
+
)
|
841 |
+
|
842 |
+
if attention_mask is not None:
|
843 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
844 |
+
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
845 |
+
inputs_embeds.device
|
846 |
+
)
|
847 |
+
combined_attention_mask = (
|
848 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
849 |
+
)
|
850 |
+
|
851 |
+
return combined_attention_mask
|
852 |
+
|
853 |
+
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
|
854 |
+
def forward(
|
855 |
+
self,
|
856 |
+
input_ids: torch.LongTensor = None,
|
857 |
+
attention_mask: Optional[torch.Tensor] = None,
|
858 |
+
position_ids: Optional[torch.LongTensor] = None,
|
859 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
860 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
861 |
+
use_cache: Optional[bool] = None,
|
862 |
+
output_attentions: Optional[bool] = None,
|
863 |
+
output_hidden_states: Optional[bool] = None,
|
864 |
+
return_dict: Optional[bool] = None,
|
865 |
+
**kwargs
|
866 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
867 |
+
|
868 |
+
im_mask = kwargs.get('im_mask', None)
|
869 |
+
|
870 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
871 |
+
output_hidden_states = (
|
872 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
873 |
+
)
|
874 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
875 |
+
|
876 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
877 |
+
|
878 |
+
if self.config.attn_implementation == "flash_attention_2":
|
879 |
+
_import_flash_attn()
|
880 |
+
|
881 |
+
# retrieve input_ids and inputs_embeds
|
882 |
+
if input_ids is not None and inputs_embeds is not None:
|
883 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
884 |
+
elif input_ids is not None:
|
885 |
+
batch_size, seq_length = input_ids.shape[:2]
|
886 |
+
elif inputs_embeds is not None:
|
887 |
+
batch_size, seq_length = inputs_embeds.shape[:2]
|
888 |
+
else:
|
889 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
890 |
+
|
891 |
+
seq_length_with_past = seq_length
|
892 |
+
past_key_values_length = 0
|
893 |
+
if past_key_values is not None:
|
894 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
895 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
896 |
+
|
897 |
+
if position_ids is None:
|
898 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
899 |
+
position_ids = torch.arange(
|
900 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
901 |
+
)
|
902 |
+
position_ids = position_ids.unsqueeze(0)
|
903 |
+
|
904 |
+
if inputs_embeds is None:
|
905 |
+
inputs_embeds = self.tok_embeddings(input_ids)
|
906 |
+
im_mask = torch.zeros(inputs_embeds.shape[:2]).to(inputs_embeds.device).bool()
|
907 |
+
|
908 |
+
if self.config.attn_implementation == "flash_attention_2":
|
909 |
+
# 2d mask is passed through the layers
|
910 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
911 |
+
else:
|
912 |
+
if attention_mask is None:
|
913 |
+
attention_mask = torch.ones(
|
914 |
+
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
915 |
+
)
|
916 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
917 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
918 |
+
)
|
919 |
+
|
920 |
+
# embed positions
|
921 |
+
hidden_states = inputs_embeds
|
922 |
+
|
923 |
+
if self.gradient_checkpointing and self.training:
|
924 |
+
if use_cache:
|
925 |
+
logger.warning_once(
|
926 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
927 |
+
)
|
928 |
+
use_cache = False
|
929 |
+
|
930 |
+
# decoder layers
|
931 |
+
all_hidden_states = () if output_hidden_states else None
|
932 |
+
all_self_attns = () if output_attentions else None
|
933 |
+
next_decoder_cache = () if use_cache else None
|
934 |
+
|
935 |
+
for idx, decoder_layer in enumerate(self.layers):
|
936 |
+
if output_hidden_states:
|
937 |
+
all_hidden_states += (hidden_states,)
|
938 |
+
|
939 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
940 |
+
|
941 |
+
if self.gradient_checkpointing and self.training:
|
942 |
+
|
943 |
+
def create_custom_forward(module):
|
944 |
+
def custom_forward(*inputs):
|
945 |
+
# None for past_key_value
|
946 |
+
return module(*inputs, output_attentions, None, im_mask)
|
947 |
+
|
948 |
+
return custom_forward
|
949 |
+
|
950 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
951 |
+
create_custom_forward(decoder_layer),
|
952 |
+
hidden_states,
|
953 |
+
attention_mask,
|
954 |
+
position_ids,
|
955 |
+
None,
|
956 |
+
)
|
957 |
+
else:
|
958 |
+
layer_outputs = decoder_layer(
|
959 |
+
hidden_states,
|
960 |
+
attention_mask=attention_mask,
|
961 |
+
position_ids=position_ids,
|
962 |
+
past_key_value=past_key_value,
|
963 |
+
output_attentions=output_attentions,
|
964 |
+
use_cache=use_cache,
|
965 |
+
im_mask=im_mask,
|
966 |
+
)
|
967 |
+
|
968 |
+
hidden_states = layer_outputs[0]
|
969 |
+
|
970 |
+
if use_cache:
|
971 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
972 |
+
|
973 |
+
if output_attentions:
|
974 |
+
all_self_attns += (layer_outputs[1],)
|
975 |
+
|
976 |
+
hidden_states = self.norm(hidden_states)
|
977 |
+
|
978 |
+
# add hidden states from the last decoder layer
|
979 |
+
if output_hidden_states:
|
980 |
+
all_hidden_states += (hidden_states,)
|
981 |
+
|
982 |
+
next_cache = next_decoder_cache if use_cache else None
|
983 |
+
if not return_dict:
|
984 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
985 |
+
return BaseModelOutputWithPast(
|
986 |
+
last_hidden_state=hidden_states,
|
987 |
+
past_key_values=next_cache,
|
988 |
+
hidden_states=all_hidden_states,
|
989 |
+
attentions=all_self_attns,
|
990 |
+
)
|
modeling_internlm_xcomposer2.py
ADDED
@@ -0,0 +1,538 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# This code is based on transformers/src/transformers/models/llama/modeling_llama.py
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
"""PyTorch InternLMXComposer2 model."""
|
18 |
+
import copy
|
19 |
+
import queue
|
20 |
+
import threading
|
21 |
+
from typing import List, Optional, Tuple, Union
|
22 |
+
|
23 |
+
import torch
|
24 |
+
import torch.utils.checkpoint
|
25 |
+
from PIL import Image
|
26 |
+
from torch import nn
|
27 |
+
from torch.nn import CrossEntropyLoss
|
28 |
+
from torchvision import transforms
|
29 |
+
from torchvision.transforms.functional import InterpolationMode
|
30 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
31 |
+
from transformers.utils import (add_start_docstrings_to_model_forward,
|
32 |
+
replace_return_docstrings)
|
33 |
+
|
34 |
+
try:
|
35 |
+
from transformers.generation.streamers import BaseStreamer
|
36 |
+
except: # noqa # pylint: disable=bare-except
|
37 |
+
BaseStreamer = None
|
38 |
+
|
39 |
+
from .build_mlp import build_vision_projector, build_vision_tower
|
40 |
+
from .ixc_utils import HD_transform
|
41 |
+
from .configuration_internlm_xcomposer2 import InternLMXcomposer2Config
|
42 |
+
from .modeling_internlm2 import (InternLM2_INPUTS_DOCSTRING, InternLM2Model,
|
43 |
+
InternLM2PreTrainedModel)
|
44 |
+
|
45 |
+
_CONFIG_FOR_DOC = 'InternLMXcomposer2Config'
|
46 |
+
|
47 |
+
|
48 |
+
class InternLMXComposer2ForCausalLM(InternLM2PreTrainedModel):
|
49 |
+
_auto_class = 'AutoModelForCausalLM'
|
50 |
+
|
51 |
+
_tied_weights_keys = ['output.weight']
|
52 |
+
|
53 |
+
def __init__(self, config):
|
54 |
+
super().__init__(config)
|
55 |
+
self.model = InternLM2Model(config)
|
56 |
+
self.vocab_size = config.vocab_size
|
57 |
+
self.output = nn.Linear(
|
58 |
+
config.hidden_size, config.vocab_size, bias=False)
|
59 |
+
self.tokenizer = None
|
60 |
+
|
61 |
+
self.max_length = config.max_length
|
62 |
+
print(f'Set max length to {self.max_length}')
|
63 |
+
# Initialize weights and apply final processing
|
64 |
+
self.post_init()
|
65 |
+
self.plora_glb_GN = nn.Parameter(torch.zeros([1, 1, 4096]))
|
66 |
+
self.plora_sub_GN = nn.Parameter(torch.zeros([1, 1, 1, 4096]))
|
67 |
+
|
68 |
+
self.vit = build_vision_tower()
|
69 |
+
self.vision_proj = build_vision_projector()
|
70 |
+
|
71 |
+
self.vis_processor = transforms.Compose([
|
72 |
+
transforms.ToTensor(),
|
73 |
+
transforms.Normalize((0.48145466, 0.4578275, 0.40821073),
|
74 |
+
(0.26862954, 0.26130258, 0.27577711)),
|
75 |
+
])
|
76 |
+
|
77 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
78 |
+
if isinstance(module, InternLM2Model):
|
79 |
+
module.gradient_checkpointing = value
|
80 |
+
if value:
|
81 |
+
self.vit.vision_tower.vision_model.encoder.gradient_checkpointing = value
|
82 |
+
|
83 |
+
def get_input_embeddings(self):
|
84 |
+
return self.model.tok_embeddings
|
85 |
+
|
86 |
+
def set_input_embeddings(self, value):
|
87 |
+
self.model.tok_embeddings = value
|
88 |
+
|
89 |
+
def get_output_embeddings(self):
|
90 |
+
return self.output
|
91 |
+
|
92 |
+
def set_output_embeddings(self, new_embeddings):
|
93 |
+
self.output = new_embeddings
|
94 |
+
|
95 |
+
def set_decoder(self, decoder):
|
96 |
+
self.model = decoder
|
97 |
+
|
98 |
+
def get_decoder(self):
|
99 |
+
return self.model
|
100 |
+
|
101 |
+
def encode_text(self, text, add_special_tokens=False):
|
102 |
+
token = self.tokenizer(
|
103 |
+
text, return_tensors='pt',
|
104 |
+
add_special_tokens=add_special_tokens).input_ids.to(self.device)
|
105 |
+
embs = self.model.tok_embeddings(token)
|
106 |
+
return embs
|
107 |
+
|
108 |
+
def encode_img(self, image, hd_num=25):
|
109 |
+
if image is None:
|
110 |
+
return None
|
111 |
+
if isinstance(image, str):
|
112 |
+
image = Image.open(image).convert('RGB')
|
113 |
+
image = HD_transform(image, hd_num = hd_num)
|
114 |
+
image = self.vis_processor(image).unsqueeze(0).to(self.device)
|
115 |
+
|
116 |
+
img_embeds, atts_img, img_target = self.img2emb(image)
|
117 |
+
return img_embeds
|
118 |
+
|
119 |
+
def img2emb(self, image):
|
120 |
+
img_embeds, img_split = self.vit([image],
|
121 |
+
self.plora_glb_GN, self.plora_sub_GN)
|
122 |
+
if len(img_split) > 1:
|
123 |
+
print ('Batch Size >1 is not supported.')
|
124 |
+
assert 0
|
125 |
+
print (img_embeds.shape)
|
126 |
+
img_embeds = self.vision_proj(img_embeds)
|
127 |
+
atts_img = torch.ones(
|
128 |
+
img_embeds.size()[:-1], dtype=torch.long).to(img_embeds.device)
|
129 |
+
|
130 |
+
img_target = torch.ones(
|
131 |
+
img_embeds.size()[:2], dtype=torch.long).to(
|
132 |
+
img_embeds.device) * -100
|
133 |
+
|
134 |
+
return img_embeds, atts_img, img_target
|
135 |
+
|
136 |
+
def prompt_wrap(self, img_embeds, prompt):
|
137 |
+
batch_size = img_embeds.shape[0]
|
138 |
+
p_before, p_after = prompt.split('<ImageHere>')
|
139 |
+
p_before_tokens = self.tokenizer(
|
140 |
+
p_before, return_tensors='pt',
|
141 |
+
add_special_tokens=True).to(img_embeds.device)
|
142 |
+
|
143 |
+
p_before_embeds = self.model.tok_embeddings(
|
144 |
+
p_before_tokens.input_ids).expand(batch_size, -1, -1)
|
145 |
+
wrapped_img_embeds = torch.cat([p_before_embeds, img_embeds], dim=1)
|
146 |
+
|
147 |
+
wrapped_atts_img = torch.ones(
|
148 |
+
wrapped_img_embeds.size()[:-1],
|
149 |
+
dtype=torch.long).to(img_embeds.device)
|
150 |
+
|
151 |
+
wrapped_target = torch.ones(
|
152 |
+
batch_size, wrapped_img_embeds.shape[1], dtype=torch.long).to(
|
153 |
+
img_embeds.device) * -100
|
154 |
+
|
155 |
+
return wrapped_img_embeds, wrapped_atts_img, wrapped_target
|
156 |
+
|
157 |
+
def text2emb(self, text, add_special=False):
|
158 |
+
to_regress_tokens = self.tokenizer(
|
159 |
+
text,
|
160 |
+
return_tensors='pt',
|
161 |
+
padding='longest',
|
162 |
+
truncation=True,
|
163 |
+
max_length=self.max_length,
|
164 |
+
add_special_tokens=add_special).to(self.device)
|
165 |
+
|
166 |
+
targets = self.mask_human_targets(to_regress_tokens.input_ids)
|
167 |
+
targets = targets.to(self.device)
|
168 |
+
return to_regress_tokens, targets
|
169 |
+
|
170 |
+
def interleav_wrap_chat(self, tokenizer, query, image, history, meta_instruction):
|
171 |
+
prompt = ''
|
172 |
+
if meta_instruction:
|
173 |
+
prompt += f"""[UNUSED_TOKEN_146]system\n{meta_instruction}[UNUSED_TOKEN_145]\n"""
|
174 |
+
for record in history:
|
175 |
+
prompt += f"""[UNUSED_TOKEN_146]user\n{record[0]}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n{record[1]}[UNUSED_TOKEN_145]\n"""
|
176 |
+
prompt += f"""[UNUSED_TOKEN_146]user\n{query}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n"""
|
177 |
+
|
178 |
+
im_len = image.shape[1]
|
179 |
+
image_nums = len(image)
|
180 |
+
parts = prompt.split('<ImageHere>')
|
181 |
+
wrap_embeds, wrap_im_mask = [], []
|
182 |
+
temp_len = 0
|
183 |
+
|
184 |
+
if len(parts) != image_nums + 1:
|
185 |
+
raise ValueError('Invalid <ImageHere> prompt format.')
|
186 |
+
|
187 |
+
for idx, part in enumerate(parts):
|
188 |
+
if len(part) > 0:
|
189 |
+
part_tokens = tokenizer(part, return_tensors='pt').to(self.device)
|
190 |
+
part_embeds = self.model.tok_embeddings(
|
191 |
+
part_tokens.input_ids)
|
192 |
+
wrap_embeds.append(part_embeds)
|
193 |
+
wrap_im_mask.append(torch.zeros(part_embeds.shape[:2]))
|
194 |
+
temp_len += part_embeds.shape[1]
|
195 |
+
if idx < image_nums:
|
196 |
+
wrap_embeds.append(image[idx].unsqueeze(0))
|
197 |
+
wrap_im_mask.append(torch.ones(1, image[idx].shape[0]))
|
198 |
+
temp_len += im_len
|
199 |
+
|
200 |
+
if temp_len > self.max_length:
|
201 |
+
break
|
202 |
+
|
203 |
+
wrap_embeds = torch.cat(wrap_embeds, dim=1)
|
204 |
+
wrap_im_mask = torch.cat(wrap_im_mask, dim=1)
|
205 |
+
wrap_embeds = wrap_embeds[:, :self.max_length].to(self.device)
|
206 |
+
wrap_im_mask = wrap_im_mask[:, :self.max_length].to(self.device).bool()
|
207 |
+
inputs = {
|
208 |
+
'inputs_embeds': wrap_embeds
|
209 |
+
}
|
210 |
+
return inputs, wrap_im_mask
|
211 |
+
|
212 |
+
def interleav_wrap(self, img_list, text_list):
|
213 |
+
wrap_embeds_list, wrap_atts_list = [], []
|
214 |
+
wrap_target_list, wrap_im_mask_list = [], []
|
215 |
+
|
216 |
+
for image, text in zip(img_list, text_list):
|
217 |
+
img_embeds, atts_img, img_target = self.img2emb(image)
|
218 |
+
text = text[0]
|
219 |
+
parts = text.split('<ImageHere>')
|
220 |
+
wrap_tokens, wrap_embeds, wrap_atts, wrap_im_mask = [], [], [], []
|
221 |
+
temp_len = 0
|
222 |
+
image_nums, im_len = img_embeds.shape[:2]
|
223 |
+
need_bos = True
|
224 |
+
for idx, part in enumerate(parts):
|
225 |
+
if len(part) > 0:
|
226 |
+
part_tokens = self.tokenizer(
|
227 |
+
part,
|
228 |
+
return_tensors='pt',
|
229 |
+
padding='longest',
|
230 |
+
add_special_tokens=need_bos).to(self.device)
|
231 |
+
if need_bos:
|
232 |
+
need_bos = False
|
233 |
+
wrap_tokens.append(part_tokens.input_ids)
|
234 |
+
part_embeds = self.model.tok_embeddings(
|
235 |
+
part_tokens.input_ids)
|
236 |
+
wrap_embeds.append(part_embeds)
|
237 |
+
wrap_atts.append(part_tokens.attention_mask)
|
238 |
+
wrap_im_mask.append(
|
239 |
+
torch.zeros(part_embeds.shape[:2]).to(self.device))
|
240 |
+
|
241 |
+
temp_len += part_embeds.shape[1]
|
242 |
+
if idx < image_nums:
|
243 |
+
wrap_tokens.append(img_target[idx].unsqueeze(0))
|
244 |
+
wrap_embeds.append(img_embeds[idx].unsqueeze(0))
|
245 |
+
wrap_atts.append(atts_img[idx].unsqueeze(0))
|
246 |
+
wrap_im_mask.append(
|
247 |
+
torch.ones_like(atts_img[idx].unsqueeze(0)))
|
248 |
+
|
249 |
+
temp_len += im_len
|
250 |
+
if temp_len > self.max_length:
|
251 |
+
break
|
252 |
+
|
253 |
+
wrap_tokens = torch.cat(wrap_tokens, dim=1)
|
254 |
+
wrap_embeds = torch.cat(wrap_embeds, dim=1)
|
255 |
+
wrap_atts = torch.cat(wrap_atts, dim=1)
|
256 |
+
wrap_im_mask = torch.cat(wrap_im_mask, dim=1)
|
257 |
+
|
258 |
+
wrap_target = self.mask_human_targets(wrap_tokens).to(self.device)
|
259 |
+
|
260 |
+
wrap_embeds = wrap_embeds[:, :self.max_length].to(self.device)
|
261 |
+
wrap_atts = wrap_atts[:, :self.max_length].to(self.device)
|
262 |
+
wrap_target = wrap_target[:, :self.max_length].to(self.device)
|
263 |
+
wrap_im_mask = wrap_im_mask[:, :self.max_length].to(self.device)
|
264 |
+
|
265 |
+
wrap_embeds_list.append(wrap_embeds)
|
266 |
+
wrap_atts_list.append(wrap_atts)
|
267 |
+
wrap_target_list.append(wrap_target)
|
268 |
+
wrap_im_mask_list.append(wrap_im_mask)
|
269 |
+
|
270 |
+
wrap_embeds = torch.cat(wrap_embeds_list)
|
271 |
+
wrap_atts = torch.cat(wrap_atts_list)
|
272 |
+
wrap_target = torch.cat(wrap_target_list)
|
273 |
+
wrap_im_mask = torch.cat(wrap_im_mask_list)
|
274 |
+
return wrap_embeds, wrap_atts, wrap_target, wrap_im_mask
|
275 |
+
|
276 |
+
def mask_human_targets(self, input_ids, pure=False):
|
277 |
+
target_batch = []
|
278 |
+
for bs in range(input_ids.shape[0]):
|
279 |
+
ids = input_ids[bs]
|
280 |
+
targets = copy.deepcopy(ids)
|
281 |
+
end_count = 0
|
282 |
+
last_eoa = 0
|
283 |
+
for i, temp_id in enumerate(ids):
|
284 |
+
if temp_id == 92542:
|
285 |
+
if end_count % 2 == 0:
|
286 |
+
targets[last_eoa:i + 6] = -100
|
287 |
+
else:
|
288 |
+
last_eoa = i + 1
|
289 |
+
end_count += 1
|
290 |
+
# # eos and following pad
|
291 |
+
elif temp_id == 2:
|
292 |
+
# loss on eos, but not on pad
|
293 |
+
targets[i + 1:] = -100
|
294 |
+
break
|
295 |
+
# trunction, end at last question
|
296 |
+
if temp_id != 2 and end_count % 2 == 0:
|
297 |
+
# mask all after the last answer
|
298 |
+
targets[last_eoa + 1:] = -100
|
299 |
+
target_batch.append(targets.unsqueeze(0))
|
300 |
+
target_batch = torch.cat(target_batch, dim=0)
|
301 |
+
return target_batch
|
302 |
+
|
303 |
+
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
|
304 |
+
@replace_return_docstrings(
|
305 |
+
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
306 |
+
def forward(self,
|
307 |
+
input_ids: torch.LongTensor = None,
|
308 |
+
attention_mask: Optional[torch.Tensor] = None,
|
309 |
+
position_ids: Optional[torch.LongTensor] = None,
|
310 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
311 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
312 |
+
labels: Optional[torch.LongTensor] = None,
|
313 |
+
use_cache: Optional[bool] = None,
|
314 |
+
output_attentions: Optional[bool] = None,
|
315 |
+
output_hidden_states: Optional[bool] = None,
|
316 |
+
return_dict: Optional[bool] = None,
|
317 |
+
**kwargs) -> Union[Tuple, CausalLMOutputWithPast]:
|
318 |
+
r"""
|
319 |
+
Args:
|
320 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
321 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
322 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
323 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
324 |
+
Returns:
|
325 |
+
"""
|
326 |
+
|
327 |
+
samples = kwargs.get('samples', None)
|
328 |
+
if samples:
|
329 |
+
if samples['data_type'][0] == 'text':
|
330 |
+
has_img = False
|
331 |
+
elif samples['data_type'][0] == 'multi':
|
332 |
+
has_img = True
|
333 |
+
else:
|
334 |
+
raise NotImplementedError
|
335 |
+
|
336 |
+
# encode text
|
337 |
+
text = samples['text_input']
|
338 |
+
# encode image
|
339 |
+
if has_img:
|
340 |
+
image = samples['image']
|
341 |
+
to_regress_embeds, attention_mask, targets, im_mask = self.interleav_wrap(
|
342 |
+
image, text)
|
343 |
+
else:
|
344 |
+
to_regress_tokens, targets = self.text2emb(
|
345 |
+
text, add_special=True)
|
346 |
+
to_regress_embeds = self.model.tok_embeddings(
|
347 |
+
to_regress_tokens.input_ids)
|
348 |
+
attention_mask = to_regress_tokens.attention_mask
|
349 |
+
im_mask = torch.zeros(to_regress_embeds.shape[:2]).cuda()
|
350 |
+
|
351 |
+
inputs_embeds = to_regress_embeds[:, :self.max_length]
|
352 |
+
attention_mask = attention_mask[:, :self.max_length]
|
353 |
+
targets = targets[:, :self.max_length]
|
354 |
+
im_mask = im_mask[:, :self.max_length].bool()
|
355 |
+
labels = targets
|
356 |
+
else:
|
357 |
+
im_mask = kwargs.get('im_mask', None)
|
358 |
+
if im_mask is None and inputs_embeds is not None:
|
359 |
+
im_mask = torch.zeros(inputs_embeds.shape[:2]).to(
|
360 |
+
inputs_embeds.device)
|
361 |
+
im_mask = im_mask.bool()
|
362 |
+
|
363 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
364 |
+
output_hidden_states = (
|
365 |
+
output_hidden_states if output_hidden_states is not None else
|
366 |
+
self.config.output_hidden_states)
|
367 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
368 |
+
|
369 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
370 |
+
outputs = self.model(
|
371 |
+
input_ids=input_ids,
|
372 |
+
attention_mask=attention_mask,
|
373 |
+
position_ids=position_ids,
|
374 |
+
past_key_values=past_key_values,
|
375 |
+
inputs_embeds=inputs_embeds,
|
376 |
+
use_cache=use_cache,
|
377 |
+
output_attentions=output_attentions,
|
378 |
+
output_hidden_states=output_hidden_states,
|
379 |
+
return_dict=return_dict,
|
380 |
+
im_mask=im_mask,
|
381 |
+
)
|
382 |
+
|
383 |
+
hidden_states = outputs[0]
|
384 |
+
logits = self.output(hidden_states)
|
385 |
+
logits = logits.float()
|
386 |
+
|
387 |
+
loss = None
|
388 |
+
if labels is not None:
|
389 |
+
# Shift so that tokens < n predict n
|
390 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
391 |
+
shift_labels = labels[..., 1:].contiguous()
|
392 |
+
# Flatten the tokens
|
393 |
+
loss_fct = CrossEntropyLoss()
|
394 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
395 |
+
shift_labels = shift_labels.view(-1)
|
396 |
+
# Enable model parallelism
|
397 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
398 |
+
loss = loss_fct(shift_logits, shift_labels)
|
399 |
+
|
400 |
+
if not return_dict:
|
401 |
+
output = (logits, ) + outputs[1:]
|
402 |
+
return (loss, ) + output if loss is not None else output
|
403 |
+
|
404 |
+
return CausalLMOutputWithPast(
|
405 |
+
loss=loss,
|
406 |
+
logits=logits,
|
407 |
+
past_key_values=outputs.past_key_values,
|
408 |
+
hidden_states=outputs.hidden_states,
|
409 |
+
attentions=outputs.attentions,
|
410 |
+
)
|
411 |
+
|
412 |
+
def prepare_inputs_for_generation(self,
|
413 |
+
input_ids,
|
414 |
+
past_key_values=None,
|
415 |
+
attention_mask=None,
|
416 |
+
inputs_embeds=None,
|
417 |
+
im_mask=None,
|
418 |
+
**kwargs):
|
419 |
+
if past_key_values is not None:
|
420 |
+
past_length = past_key_values[0][0].shape[2]
|
421 |
+
|
422 |
+
# Some generation methods already pass only the last input ID
|
423 |
+
if input_ids.shape[1] > past_length:
|
424 |
+
remove_prefix_length = past_length
|
425 |
+
else:
|
426 |
+
# Default to old behavior: keep only final ID
|
427 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
428 |
+
|
429 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
430 |
+
|
431 |
+
position_ids = kwargs.get('position_ids', None)
|
432 |
+
if attention_mask is not None and position_ids is None:
|
433 |
+
# create position_ids on the fly for batch generation
|
434 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
435 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
436 |
+
if past_key_values:
|
437 |
+
position_ids = position_ids[:, -input_ids.shape[1]:]
|
438 |
+
|
439 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
440 |
+
if inputs_embeds is not None and past_key_values is None:
|
441 |
+
model_inputs = {'inputs_embeds': inputs_embeds}
|
442 |
+
else:
|
443 |
+
model_inputs = {'input_ids': input_ids}
|
444 |
+
|
445 |
+
im_mask = im_mask
|
446 |
+
|
447 |
+
model_inputs.update({
|
448 |
+
'position_ids': position_ids,
|
449 |
+
'past_key_values': past_key_values,
|
450 |
+
'use_cache': kwargs.get('use_cache'),
|
451 |
+
'attention_mask': attention_mask,
|
452 |
+
'im_mask': im_mask,
|
453 |
+
})
|
454 |
+
return model_inputs
|
455 |
+
|
456 |
+
@staticmethod
|
457 |
+
def _reorder_cache(past_key_values, beam_idx):
|
458 |
+
reordered_past = ()
|
459 |
+
for layer_past in past_key_values:
|
460 |
+
reordered_past += (tuple(
|
461 |
+
past_state.index_select(0, beam_idx.to(past_state.device))
|
462 |
+
for past_state in layer_past), )
|
463 |
+
return reordered_past
|
464 |
+
|
465 |
+
def build_inputs(self,
|
466 |
+
tokenizer,
|
467 |
+
query: str,
|
468 |
+
history: List[Tuple[str, str]] = [],
|
469 |
+
meta_instruction=''):
|
470 |
+
prompt = ''
|
471 |
+
if meta_instruction:
|
472 |
+
prompt += f"""<s>[UNUSED_TOKEN_146]system\n{meta_instruction}[UNUSED_TOKEN_145]\n"""
|
473 |
+
else:
|
474 |
+
prompt += '<s>'
|
475 |
+
for record in history:
|
476 |
+
prompt += f"""[UNUSED_TOKEN_146]user\n{record[0]}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n{record[1]}[UNUSED_TOKEN_145]\n"""
|
477 |
+
prompt += f"""[UNUSED_TOKEN_146]user\n{query}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n"""
|
478 |
+
return tokenizer([prompt], return_tensors='pt')
|
479 |
+
|
480 |
+
@torch.no_grad()
|
481 |
+
def chat(
|
482 |
+
self,
|
483 |
+
tokenizer,
|
484 |
+
query: str,
|
485 |
+
image: torch.Tensor = None,
|
486 |
+
hd_num: int = 25,
|
487 |
+
history: List[Tuple[str, str]] = [],
|
488 |
+
streamer: Optional[BaseStreamer] = None,
|
489 |
+
max_new_tokens: int = 1024,
|
490 |
+
do_sample: bool = True,
|
491 |
+
num_beams: int = 1,
|
492 |
+
temperature: float = 1.0,
|
493 |
+
top_p: float = 0.8,
|
494 |
+
repetition_penalty: float=1.005,
|
495 |
+
meta_instruction:
|
496 |
+
str = 'You are an AI assistant whose name is InternLM-XComposer (浦语·灵笔).\n'
|
497 |
+
'- InternLM-XComposer (浦语·灵笔) is a multi-modality conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n'
|
498 |
+
'- InternLM-XComposer (浦语·灵笔) can understand and communicate fluently in the language chosen by the user such as English and 中文.\n'
|
499 |
+
'- InternLM-XComposer (浦语·灵笔) is capable of comprehending and articulating responses effectively based on the provided image.',
|
500 |
+
**kwargs,
|
501 |
+
):
|
502 |
+
if image is None:
|
503 |
+
inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
|
504 |
+
im_mask = torch.zeros(inputs['input_ids'].shape[:2]).cuda().bool()
|
505 |
+
else:
|
506 |
+
image = self.encode_img(image, hd_num=hd_num)
|
507 |
+
inputs, im_mask = self.interleav_wrap_chat(tokenizer, query, image, history, meta_instruction)
|
508 |
+
inputs = {
|
509 |
+
k: v.to(self.device)
|
510 |
+
for k, v in inputs.items() if torch.is_tensor(v)
|
511 |
+
}
|
512 |
+
# also add end-of-assistant token in eos token id to avoid unnecessary generation
|
513 |
+
eos_token_id = [
|
514 |
+
tokenizer.eos_token_id,
|
515 |
+
tokenizer.convert_tokens_to_ids(['[UNUSED_TOKEN_145]'])[0]
|
516 |
+
]
|
517 |
+
outputs = self.generate(
|
518 |
+
**inputs,
|
519 |
+
streamer=streamer,
|
520 |
+
max_new_tokens=max_new_tokens,
|
521 |
+
num_beams=num_beams,
|
522 |
+
do_sample=do_sample,
|
523 |
+
temperature=temperature,
|
524 |
+
top_p=top_p,
|
525 |
+
eos_token_id=eos_token_id,
|
526 |
+
repetition_penalty=repetition_penalty,
|
527 |
+
im_mask=im_mask,
|
528 |
+
**kwargs,
|
529 |
+
)
|
530 |
+
if image is None:
|
531 |
+
outputs = outputs[0].cpu().tolist()[len(inputs['input_ids'][0]):]
|
532 |
+
else:
|
533 |
+
outputs = outputs[0].cpu().tolist()
|
534 |
+
response = tokenizer.decode(outputs, skip_special_tokens=True)
|
535 |
+
response = response.split('[UNUSED_TOKEN_145]')[0]
|
536 |
+
history = history + [(query, response)]
|
537 |
+
return response, history
|
538 |
+
|
pytorch_model-00001-of-00002.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6abd1d58daddd44d0a808cd10b4aee925724f700f876b20318958cfa269396df
|
3 |
+
size 9999796735
|
pytorch_model-00002-of-00002.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e021e0caa1ef38c36f0343cc3250eef1092b856847f562ac5ad39100f1e81128
|
3 |
+
size 7195541729
|
pytorch_model.bin.index.json
ADDED
@@ -0,0 +1,949 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 17194999808
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"model.layers.0.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
7 |
+
"model.layers.0.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
8 |
+
"model.layers.0.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
|
9 |
+
"model.layers.0.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
10 |
+
"model.layers.0.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
11 |
+
"model.layers.0.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
12 |
+
"model.layers.0.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
|
13 |
+
"model.layers.0.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
14 |
+
"model.layers.0.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
15 |
+
"model.layers.0.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
|
16 |
+
"model.layers.0.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
17 |
+
"model.layers.0.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
18 |
+
"model.layers.0.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
|
19 |
+
"model.layers.0.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
20 |
+
"model.layers.0.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
21 |
+
"model.layers.0.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
|
22 |
+
"model.layers.0.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
|
23 |
+
"model.layers.1.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
24 |
+
"model.layers.1.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
25 |
+
"model.layers.1.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
|
26 |
+
"model.layers.1.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
27 |
+
"model.layers.1.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
28 |
+
"model.layers.1.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
29 |
+
"model.layers.1.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
|
30 |
+
"model.layers.1.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
31 |
+
"model.layers.1.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
32 |
+
"model.layers.1.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
|
33 |
+
"model.layers.1.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
34 |
+
"model.layers.1.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
35 |
+
"model.layers.1.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
|
36 |
+
"model.layers.1.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
37 |
+
"model.layers.1.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
38 |
+
"model.layers.1.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
|
39 |
+
"model.layers.1.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
|
40 |
+
"model.layers.10.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
41 |
+
"model.layers.10.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
42 |
+
"model.layers.10.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
|
43 |
+
"model.layers.10.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
44 |
+
"model.layers.10.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
45 |
+
"model.layers.10.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
46 |
+
"model.layers.10.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
|
47 |
+
"model.layers.10.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
48 |
+
"model.layers.10.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
49 |
+
"model.layers.10.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
|
50 |
+
"model.layers.10.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
51 |
+
"model.layers.10.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
52 |
+
"model.layers.10.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
|
53 |
+
"model.layers.10.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
54 |
+
"model.layers.10.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
55 |
+
"model.layers.10.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
|
56 |
+
"model.layers.10.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
|
57 |
+
"model.layers.11.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
58 |
+
"model.layers.11.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
59 |
+
"model.layers.11.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
|
60 |
+
"model.layers.11.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
61 |
+
"model.layers.11.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
62 |
+
"model.layers.11.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
63 |
+
"model.layers.11.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
|
64 |
+
"model.layers.11.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
65 |
+
"model.layers.11.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
66 |
+
"model.layers.11.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
|
67 |
+
"model.layers.11.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
68 |
+
"model.layers.11.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
69 |
+
"model.layers.11.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
|
70 |
+
"model.layers.11.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
71 |
+
"model.layers.11.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
72 |
+
"model.layers.11.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
|
73 |
+
"model.layers.11.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
|
74 |
+
"model.layers.12.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
75 |
+
"model.layers.12.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
76 |
+
"model.layers.12.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
|
77 |
+
"model.layers.12.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
78 |
+
"model.layers.12.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
79 |
+
"model.layers.12.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
80 |
+
"model.layers.12.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
|
81 |
+
"model.layers.12.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
82 |
+
"model.layers.12.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
83 |
+
"model.layers.12.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
|
84 |
+
"model.layers.12.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
85 |
+
"model.layers.12.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
86 |
+
"model.layers.12.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
|
87 |
+
"model.layers.12.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
88 |
+
"model.layers.12.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
89 |
+
"model.layers.12.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
|
90 |
+
"model.layers.12.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
|
91 |
+
"model.layers.13.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
92 |
+
"model.layers.13.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
93 |
+
"model.layers.13.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
|
94 |
+
"model.layers.13.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
95 |
+
"model.layers.13.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
96 |
+
"model.layers.13.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
97 |
+
"model.layers.13.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
|
98 |
+
"model.layers.13.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
99 |
+
"model.layers.13.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
100 |
+
"model.layers.13.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
|
101 |
+
"model.layers.13.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
102 |
+
"model.layers.13.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
103 |
+
"model.layers.13.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
|
104 |
+
"model.layers.13.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
105 |
+
"model.layers.13.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
106 |
+
"model.layers.13.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
|
107 |
+
"model.layers.13.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
|
108 |
+
"model.layers.14.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
109 |
+
"model.layers.14.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
110 |
+
"model.layers.14.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
|
111 |
+
"model.layers.14.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
112 |
+
"model.layers.14.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
113 |
+
"model.layers.14.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
114 |
+
"model.layers.14.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
|
115 |
+
"model.layers.14.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
116 |
+
"model.layers.14.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
117 |
+
"model.layers.14.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
|
118 |
+
"model.layers.14.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
119 |
+
"model.layers.14.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
120 |
+
"model.layers.14.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
|
121 |
+
"model.layers.14.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
122 |
+
"model.layers.14.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
123 |
+
"model.layers.14.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
|
124 |
+
"model.layers.14.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
|
125 |
+
"model.layers.15.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
126 |
+
"model.layers.15.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
127 |
+
"model.layers.15.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
|
128 |
+
"model.layers.15.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
129 |
+
"model.layers.15.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
130 |
+
"model.layers.15.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
131 |
+
"model.layers.15.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
|
132 |
+
"model.layers.15.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
133 |
+
"model.layers.15.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
134 |
+
"model.layers.15.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
|
135 |
+
"model.layers.15.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
136 |
+
"model.layers.15.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
137 |
+
"model.layers.15.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
|
138 |
+
"model.layers.15.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
139 |
+
"model.layers.15.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
140 |
+
"model.layers.15.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
|
141 |
+
"model.layers.15.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
|
142 |
+
"model.layers.16.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
143 |
+
"model.layers.16.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
144 |
+
"model.layers.16.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
|
145 |
+
"model.layers.16.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
146 |
+
"model.layers.16.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
147 |
+
"model.layers.16.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
148 |
+
"model.layers.16.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
|
149 |
+
"model.layers.16.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
150 |
+
"model.layers.16.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
151 |
+
"model.layers.16.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
|
152 |
+
"model.layers.16.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
153 |
+
"model.layers.16.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
154 |
+
"model.layers.16.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
|
155 |
+
"model.layers.16.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
156 |
+
"model.layers.16.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
157 |
+
"model.layers.16.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
|
158 |
+
"model.layers.16.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
|
159 |
+
"model.layers.17.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
160 |
+
"model.layers.17.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
161 |
+
"model.layers.17.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
|
162 |
+
"model.layers.17.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
163 |
+
"model.layers.17.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
164 |
+
"model.layers.17.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
165 |
+
"model.layers.17.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
|
166 |
+
"model.layers.17.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
167 |
+
"model.layers.17.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
168 |
+
"model.layers.17.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
|
169 |
+
"model.layers.17.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
170 |
+
"model.layers.17.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
171 |
+
"model.layers.17.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
|
172 |
+
"model.layers.17.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
173 |
+
"model.layers.17.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
174 |
+
"model.layers.17.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
|
175 |
+
"model.layers.17.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
|
176 |
+
"model.layers.18.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
177 |
+
"model.layers.18.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
178 |
+
"model.layers.18.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
|
179 |
+
"model.layers.18.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
180 |
+
"model.layers.18.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
181 |
+
"model.layers.18.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
182 |
+
"model.layers.18.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
|
183 |
+
"model.layers.18.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
184 |
+
"model.layers.18.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
185 |
+
"model.layers.18.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
|
186 |
+
"model.layers.18.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
187 |
+
"model.layers.18.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
188 |
+
"model.layers.18.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
|
189 |
+
"model.layers.18.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
190 |
+
"model.layers.18.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
191 |
+
"model.layers.18.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
|
192 |
+
"model.layers.18.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
|
193 |
+
"model.layers.19.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
194 |
+
"model.layers.19.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
195 |
+
"model.layers.19.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
|
196 |
+
"model.layers.19.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
197 |
+
"model.layers.19.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
198 |
+
"model.layers.19.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
199 |
+
"model.layers.19.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
|
200 |
+
"model.layers.19.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
201 |
+
"model.layers.19.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
202 |
+
"model.layers.19.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
|
203 |
+
"model.layers.19.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
204 |
+
"model.layers.19.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
205 |
+
"model.layers.19.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
|
206 |
+
"model.layers.19.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
207 |
+
"model.layers.19.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
208 |
+
"model.layers.19.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
|
209 |
+
"model.layers.19.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
|
210 |
+
"model.layers.2.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
211 |
+
"model.layers.2.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
212 |
+
"model.layers.2.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
|
213 |
+
"model.layers.2.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
214 |
+
"model.layers.2.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
215 |
+
"model.layers.2.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
216 |
+
"model.layers.2.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
|
217 |
+
"model.layers.2.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
218 |
+
"model.layers.2.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
219 |
+
"model.layers.2.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
|
220 |
+
"model.layers.2.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
221 |
+
"model.layers.2.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
222 |
+
"model.layers.2.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
|
223 |
+
"model.layers.2.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
224 |
+
"model.layers.2.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
225 |
+
"model.layers.2.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
|
226 |
+
"model.layers.2.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
|
227 |
+
"model.layers.20.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
228 |
+
"model.layers.20.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
229 |
+
"model.layers.20.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
|
230 |
+
"model.layers.20.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
231 |
+
"model.layers.20.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
232 |
+
"model.layers.20.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
|
233 |
+
"model.layers.20.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
|
234 |
+
"model.layers.20.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
235 |
+
"model.layers.20.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
236 |
+
"model.layers.20.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
|
237 |
+
"model.layers.20.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
238 |
+
"model.layers.20.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
239 |
+
"model.layers.20.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
|
240 |
+
"model.layers.20.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
241 |
+
"model.layers.20.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
242 |
+
"model.layers.20.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
|
243 |
+
"model.layers.20.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
|
244 |
+
"model.layers.21.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
245 |
+
"model.layers.21.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
246 |
+
"model.layers.21.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
|
247 |
+
"model.layers.21.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
248 |
+
"model.layers.21.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
249 |
+
"model.layers.21.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
|
250 |
+
"model.layers.21.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
|
251 |
+
"model.layers.21.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
252 |
+
"model.layers.21.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
253 |
+
"model.layers.21.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
|
254 |
+
"model.layers.21.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
255 |
+
"model.layers.21.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
256 |
+
"model.layers.21.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
|
257 |
+
"model.layers.21.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
258 |
+
"model.layers.21.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
259 |
+
"model.layers.21.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
|
260 |
+
"model.layers.21.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
|
261 |
+
"model.layers.22.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
262 |
+
"model.layers.22.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
263 |
+
"model.layers.22.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
|
264 |
+
"model.layers.22.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
265 |
+
"model.layers.22.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
266 |
+
"model.layers.22.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
|
267 |
+
"model.layers.22.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
|
268 |
+
"model.layers.22.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
269 |
+
"model.layers.22.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
270 |
+
"model.layers.22.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
|
271 |
+
"model.layers.22.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
272 |
+
"model.layers.22.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
273 |
+
"model.layers.22.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
|
274 |
+
"model.layers.22.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
275 |
+
"model.layers.22.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
276 |
+
"model.layers.22.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
|
277 |
+
"model.layers.22.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
|
278 |
+
"model.layers.23.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
279 |
+
"model.layers.23.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
280 |
+
"model.layers.23.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
|
281 |
+
"model.layers.23.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
282 |
+
"model.layers.23.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
283 |
+
"model.layers.23.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
|
284 |
+
"model.layers.23.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
|
285 |
+
"model.layers.23.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
286 |
+
"model.layers.23.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
287 |
+
"model.layers.23.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
|
288 |
+
"model.layers.23.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
289 |
+
"model.layers.23.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
290 |
+
"model.layers.23.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
|
291 |
+
"model.layers.23.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
292 |
+
"model.layers.23.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
293 |
+
"model.layers.23.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
|
294 |
+
"model.layers.23.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
|
295 |
+
"model.layers.24.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
296 |
+
"model.layers.24.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
297 |
+
"model.layers.24.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
|
298 |
+
"model.layers.24.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
299 |
+
"model.layers.24.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
300 |
+
"model.layers.24.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
|
301 |
+
"model.layers.24.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
|
302 |
+
"model.layers.24.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
303 |
+
"model.layers.24.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
304 |
+
"model.layers.24.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
|
305 |
+
"model.layers.24.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
306 |
+
"model.layers.24.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
307 |
+
"model.layers.24.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
|
308 |
+
"model.layers.24.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
309 |
+
"model.layers.24.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
310 |
+
"model.layers.24.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
|
311 |
+
"model.layers.24.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
|
312 |
+
"model.layers.25.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
313 |
+
"model.layers.25.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
314 |
+
"model.layers.25.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
|
315 |
+
"model.layers.25.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
316 |
+
"model.layers.25.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
317 |
+
"model.layers.25.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
|
318 |
+
"model.layers.25.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
|
319 |
+
"model.layers.25.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
320 |
+
"model.layers.25.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
321 |
+
"model.layers.25.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
|
322 |
+
"model.layers.25.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
323 |
+
"model.layers.25.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
324 |
+
"model.layers.25.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
|
325 |
+
"model.layers.25.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
326 |
+
"model.layers.25.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
327 |
+
"model.layers.25.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
|
328 |
+
"model.layers.25.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
|
329 |
+
"model.layers.26.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
330 |
+
"model.layers.26.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
331 |
+
"model.layers.26.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
|
332 |
+
"model.layers.26.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
333 |
+
"model.layers.26.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
334 |
+
"model.layers.26.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
|
335 |
+
"model.layers.26.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
|
336 |
+
"model.layers.26.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
337 |
+
"model.layers.26.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
338 |
+
"model.layers.26.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
|
339 |
+
"model.layers.26.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
340 |
+
"model.layers.26.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
341 |
+
"model.layers.26.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
|
342 |
+
"model.layers.26.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
343 |
+
"model.layers.26.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
344 |
+
"model.layers.26.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
|
345 |
+
"model.layers.26.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
|
346 |
+
"model.layers.27.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
347 |
+
"model.layers.27.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
348 |
+
"model.layers.27.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
|
349 |
+
"model.layers.27.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
350 |
+
"model.layers.27.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
351 |
+
"model.layers.27.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
|
352 |
+
"model.layers.27.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
|
353 |
+
"model.layers.27.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
354 |
+
"model.layers.27.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
355 |
+
"model.layers.27.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
|
356 |
+
"model.layers.27.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
357 |
+
"model.layers.27.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
358 |
+
"model.layers.27.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
|
359 |
+
"model.layers.27.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
360 |
+
"model.layers.27.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
361 |
+
"model.layers.27.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
|
362 |
+
"model.layers.27.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
|
363 |
+
"model.layers.28.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
364 |
+
"model.layers.28.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
365 |
+
"model.layers.28.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
|
366 |
+
"model.layers.28.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
367 |
+
"model.layers.28.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
368 |
+
"model.layers.28.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
|
369 |
+
"model.layers.28.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
|
370 |
+
"model.layers.28.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
371 |
+
"model.layers.28.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
372 |
+
"model.layers.28.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
|
373 |
+
"model.layers.28.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
374 |
+
"model.layers.28.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
375 |
+
"model.layers.28.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
|
376 |
+
"model.layers.28.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
377 |
+
"model.layers.28.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
378 |
+
"model.layers.28.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
|
379 |
+
"model.layers.28.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
|
380 |
+
"model.layers.29.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
381 |
+
"model.layers.29.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
382 |
+
"model.layers.29.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
|
383 |
+
"model.layers.29.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
384 |
+
"model.layers.29.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
385 |
+
"model.layers.29.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
|
386 |
+
"model.layers.29.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
|
387 |
+
"model.layers.29.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
388 |
+
"model.layers.29.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
389 |
+
"model.layers.29.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
|
390 |
+
"model.layers.29.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
391 |
+
"model.layers.29.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
392 |
+
"model.layers.29.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
|
393 |
+
"model.layers.29.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
394 |
+
"model.layers.29.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
395 |
+
"model.layers.29.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
|
396 |
+
"model.layers.29.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
|
397 |
+
"model.layers.3.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
398 |
+
"model.layers.3.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
399 |
+
"model.layers.3.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
|
400 |
+
"model.layers.3.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
401 |
+
"model.layers.3.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
402 |
+
"model.layers.3.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
403 |
+
"model.layers.3.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
|
404 |
+
"model.layers.3.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
405 |
+
"model.layers.3.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
406 |
+
"model.layers.3.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
|
407 |
+
"model.layers.3.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
408 |
+
"model.layers.3.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
409 |
+
"model.layers.3.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
|
410 |
+
"model.layers.3.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
411 |
+
"model.layers.3.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
412 |
+
"model.layers.3.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
|
413 |
+
"model.layers.3.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
|
414 |
+
"model.layers.30.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
415 |
+
"model.layers.30.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
416 |
+
"model.layers.30.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
|
417 |
+
"model.layers.30.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
418 |
+
"model.layers.30.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
419 |
+
"model.layers.30.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
|
420 |
+
"model.layers.30.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
|
421 |
+
"model.layers.30.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
422 |
+
"model.layers.30.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
423 |
+
"model.layers.30.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
|
424 |
+
"model.layers.30.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
425 |
+
"model.layers.30.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
426 |
+
"model.layers.30.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
|
427 |
+
"model.layers.30.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
428 |
+
"model.layers.30.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
429 |
+
"model.layers.30.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
|
430 |
+
"model.layers.30.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
|
431 |
+
"model.layers.31.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
432 |
+
"model.layers.31.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
433 |
+
"model.layers.31.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
|
434 |
+
"model.layers.31.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
435 |
+
"model.layers.31.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
436 |
+
"model.layers.31.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
|
437 |
+
"model.layers.31.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
|
438 |
+
"model.layers.31.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
439 |
+
"model.layers.31.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
440 |
+
"model.layers.31.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
|
441 |
+
"model.layers.31.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
442 |
+
"model.layers.31.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
443 |
+
"model.layers.31.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
|
444 |
+
"model.layers.31.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
|
445 |
+
"model.layers.31.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
|
446 |
+
"model.layers.31.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
|
447 |
+
"model.layers.31.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
|
448 |
+
"model.layers.4.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
449 |
+
"model.layers.4.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
450 |
+
"model.layers.4.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
|
451 |
+
"model.layers.4.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
452 |
+
"model.layers.4.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
453 |
+
"model.layers.4.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
454 |
+
"model.layers.4.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
|
455 |
+
"model.layers.4.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
456 |
+
"model.layers.4.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
457 |
+
"model.layers.4.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
|
458 |
+
"model.layers.4.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
459 |
+
"model.layers.4.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
460 |
+
"model.layers.4.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
|
461 |
+
"model.layers.4.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
462 |
+
"model.layers.4.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
463 |
+
"model.layers.4.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
|
464 |
+
"model.layers.4.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
|
465 |
+
"model.layers.5.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
466 |
+
"model.layers.5.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
467 |
+
"model.layers.5.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
|
468 |
+
"model.layers.5.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
469 |
+
"model.layers.5.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
470 |
+
"model.layers.5.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
471 |
+
"model.layers.5.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
|
472 |
+
"model.layers.5.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
473 |
+
"model.layers.5.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
474 |
+
"model.layers.5.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
|
475 |
+
"model.layers.5.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
476 |
+
"model.layers.5.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
477 |
+
"model.layers.5.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
|
478 |
+
"model.layers.5.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
479 |
+
"model.layers.5.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
480 |
+
"model.layers.5.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
|
481 |
+
"model.layers.5.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
|
482 |
+
"model.layers.6.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
483 |
+
"model.layers.6.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
484 |
+
"model.layers.6.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
|
485 |
+
"model.layers.6.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
486 |
+
"model.layers.6.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
487 |
+
"model.layers.6.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
488 |
+
"model.layers.6.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
|
489 |
+
"model.layers.6.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
490 |
+
"model.layers.6.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
491 |
+
"model.layers.6.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
|
492 |
+
"model.layers.6.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
493 |
+
"model.layers.6.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
494 |
+
"model.layers.6.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
|
495 |
+
"model.layers.6.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
496 |
+
"model.layers.6.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
497 |
+
"model.layers.6.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
|
498 |
+
"model.layers.6.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
|
499 |
+
"model.layers.7.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
500 |
+
"model.layers.7.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
501 |
+
"model.layers.7.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
|
502 |
+
"model.layers.7.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
503 |
+
"model.layers.7.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
504 |
+
"model.layers.7.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
505 |
+
"model.layers.7.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
|
506 |
+
"model.layers.7.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
507 |
+
"model.layers.7.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
508 |
+
"model.layers.7.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
|
509 |
+
"model.layers.7.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
510 |
+
"model.layers.7.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
511 |
+
"model.layers.7.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
|
512 |
+
"model.layers.7.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
513 |
+
"model.layers.7.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
514 |
+
"model.layers.7.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
|
515 |
+
"model.layers.7.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
|
516 |
+
"model.layers.8.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
517 |
+
"model.layers.8.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
518 |
+
"model.layers.8.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
|
519 |
+
"model.layers.8.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
520 |
+
"model.layers.8.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
521 |
+
"model.layers.8.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
522 |
+
"model.layers.8.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
|
523 |
+
"model.layers.8.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
524 |
+
"model.layers.8.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
525 |
+
"model.layers.8.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
|
526 |
+
"model.layers.8.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
527 |
+
"model.layers.8.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
528 |
+
"model.layers.8.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
|
529 |
+
"model.layers.8.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
530 |
+
"model.layers.8.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
531 |
+
"model.layers.8.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
|
532 |
+
"model.layers.8.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
|
533 |
+
"model.layers.9.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
534 |
+
"model.layers.9.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
535 |
+
"model.layers.9.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
|
536 |
+
"model.layers.9.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
537 |
+
"model.layers.9.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
538 |
+
"model.layers.9.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
|
539 |
+
"model.layers.9.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
|
540 |
+
"model.layers.9.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
541 |
+
"model.layers.9.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
542 |
+
"model.layers.9.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
|
543 |
+
"model.layers.9.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
544 |
+
"model.layers.9.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
545 |
+
"model.layers.9.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
|
546 |
+
"model.layers.9.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
|
547 |
+
"model.layers.9.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
|
548 |
+
"model.layers.9.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
|
549 |
+
"model.layers.9.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
|
550 |
+
"model.norm.weight": "pytorch_model-00002-of-00002.bin",
|
551 |
+
"model.tok_embeddings.weight": "pytorch_model-00001-of-00002.bin",
|
552 |
+
"output.weight": "pytorch_model-00002-of-00002.bin",
|
553 |
+
"plora_glb_GN": "pytorch_model-00001-of-00002.bin",
|
554 |
+
"plora_sub_GN": "pytorch_model-00001-of-00002.bin",
|
555 |
+
"vision_proj.0.bias": "pytorch_model-00002-of-00002.bin",
|
556 |
+
"vision_proj.0.weight": "pytorch_model-00002-of-00002.bin",
|
557 |
+
"vision_proj.2.bias": "pytorch_model-00002-of-00002.bin",
|
558 |
+
"vision_proj.2.weight": "pytorch_model-00002-of-00002.bin",
|
559 |
+
"vit.vision_tower.vision_model.embeddings.class_embedding": "pytorch_model-00002-of-00002.bin",
|
560 |
+
"vit.vision_tower.vision_model.embeddings.patch_embedding.weight": "pytorch_model-00002-of-00002.bin",
|
561 |
+
"vit.vision_tower.vision_model.embeddings.position_embedding.weight": "pytorch_model-00002-of-00002.bin",
|
562 |
+
"vit.vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
|
563 |
+
"vit.vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
|
564 |
+
"vit.vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
|
565 |
+
"vit.vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
|
566 |
+
"vit.vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
567 |
+
"vit.vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
568 |
+
"vit.vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
569 |
+
"vit.vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
570 |
+
"vit.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
|
571 |
+
"vit.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
572 |
+
"vit.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
|
573 |
+
"vit.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
574 |
+
"vit.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
|
575 |
+
"vit.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
576 |
+
"vit.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
|
577 |
+
"vit.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
578 |
+
"vit.vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
|
579 |
+
"vit.vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
|
580 |
+
"vit.vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
|
581 |
+
"vit.vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
|
582 |
+
"vit.vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
583 |
+
"vit.vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
584 |
+
"vit.vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
585 |
+
"vit.vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
586 |
+
"vit.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
|
587 |
+
"vit.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
588 |
+
"vit.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
|
589 |
+
"vit.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
590 |
+
"vit.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
|
591 |
+
"vit.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
592 |
+
"vit.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
|
593 |
+
"vit.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
594 |
+
"vit.vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
|
595 |
+
"vit.vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
|
596 |
+
"vit.vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
|
597 |
+
"vit.vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
|
598 |
+
"vit.vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
599 |
+
"vit.vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
600 |
+
"vit.vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
601 |
+
"vit.vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
602 |
+
"vit.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
|
603 |
+
"vit.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
604 |
+
"vit.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
|
605 |
+
"vit.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
606 |
+
"vit.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
|
607 |
+
"vit.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
608 |
+
"vit.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
|
609 |
+
"vit.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
610 |
+
"vit.vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
|
611 |
+
"vit.vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
|
612 |
+
"vit.vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
|
613 |
+
"vit.vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
|
614 |
+
"vit.vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
615 |
+
"vit.vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
616 |
+
"vit.vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
617 |
+
"vit.vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
618 |
+
"vit.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
|
619 |
+
"vit.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
620 |
+
"vit.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
|
621 |
+
"vit.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
622 |
+
"vit.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
|
623 |
+
"vit.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
624 |
+
"vit.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
|
625 |
+
"vit.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
626 |
+
"vit.vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
|
627 |
+
"vit.vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
|
628 |
+
"vit.vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
|
629 |
+
"vit.vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
|
630 |
+
"vit.vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
631 |
+
"vit.vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
632 |
+
"vit.vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
633 |
+
"vit.vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
634 |
+
"vit.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
|
635 |
+
"vit.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
636 |
+
"vit.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
|
637 |
+
"vit.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
638 |
+
"vit.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
|
639 |
+
"vit.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
640 |
+
"vit.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
|
641 |
+
"vit.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
642 |
+
"vit.vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
|
643 |
+
"vit.vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
|
644 |
+
"vit.vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
|
645 |
+
"vit.vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
|
646 |
+
"vit.vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
647 |
+
"vit.vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
648 |
+
"vit.vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
649 |
+
"vit.vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
650 |
+
"vit.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
|
651 |
+
"vit.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
652 |
+
"vit.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
|
653 |
+
"vit.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
654 |
+
"vit.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
|
655 |
+
"vit.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
656 |
+
"vit.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
|
657 |
+
"vit.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
658 |
+
"vit.vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
|
659 |
+
"vit.vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
|
660 |
+
"vit.vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
|
661 |
+
"vit.vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
|
662 |
+
"vit.vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
663 |
+
"vit.vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
664 |
+
"vit.vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
665 |
+
"vit.vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
666 |
+
"vit.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
|
667 |
+
"vit.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
668 |
+
"vit.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
|
669 |
+
"vit.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
670 |
+
"vit.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
|
671 |
+
"vit.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
672 |
+
"vit.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
|
673 |
+
"vit.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
674 |
+
"vit.vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
|
675 |
+
"vit.vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
|
676 |
+
"vit.vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
|
677 |
+
"vit.vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
|
678 |
+
"vit.vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
679 |
+
"vit.vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
680 |
+
"vit.vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
681 |
+
"vit.vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
682 |
+
"vit.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
|
683 |
+
"vit.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
684 |
+
"vit.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
|
685 |
+
"vit.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
686 |
+
"vit.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
|
687 |
+
"vit.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
688 |
+
"vit.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
|
689 |
+
"vit.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
690 |
+
"vit.vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
|
691 |
+
"vit.vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
|
692 |
+
"vit.vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
|
693 |
+
"vit.vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
|
694 |
+
"vit.vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
695 |
+
"vit.vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
696 |
+
"vit.vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
697 |
+
"vit.vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
698 |
+
"vit.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
|
699 |
+
"vit.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
700 |
+
"vit.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
|
701 |
+
"vit.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
702 |
+
"vit.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
|
703 |
+
"vit.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
704 |
+
"vit.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
|
705 |
+
"vit.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
706 |
+
"vit.vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
|
707 |
+
"vit.vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
|
708 |
+
"vit.vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
|
709 |
+
"vit.vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
|
710 |
+
"vit.vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
711 |
+
"vit.vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
712 |
+
"vit.vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
713 |
+
"vit.vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
714 |
+
"vit.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
|
715 |
+
"vit.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
716 |
+
"vit.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
|
717 |
+
"vit.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
718 |
+
"vit.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
|
719 |
+
"vit.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
720 |
+
"vit.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
|
721 |
+
"vit.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
722 |
+
"vit.vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
|
723 |
+
"vit.vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
|
724 |
+
"vit.vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
|
725 |
+
"vit.vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
|
726 |
+
"vit.vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
727 |
+
"vit.vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
728 |
+
"vit.vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
729 |
+
"vit.vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
730 |
+
"vit.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
|
731 |
+
"vit.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
732 |
+
"vit.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
|
733 |
+
"vit.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
734 |
+
"vit.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
|
735 |
+
"vit.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
736 |
+
"vit.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
|
737 |
+
"vit.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
738 |
+
"vit.vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
|
739 |
+
"vit.vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
|
740 |
+
"vit.vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
|
741 |
+
"vit.vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
|
742 |
+
"vit.vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
743 |
+
"vit.vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
744 |
+
"vit.vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
745 |
+
"vit.vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
746 |
+
"vit.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
|
747 |
+
"vit.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
748 |
+
"vit.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
|
749 |
+
"vit.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
750 |
+
"vit.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
|
751 |
+
"vit.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
752 |
+
"vit.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
|
753 |
+
"vit.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
754 |
+
"vit.vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
|
755 |
+
"vit.vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
|
756 |
+
"vit.vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
|
757 |
+
"vit.vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
|
758 |
+
"vit.vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
759 |
+
"vit.vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
760 |
+
"vit.vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
761 |
+
"vit.vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
762 |
+
"vit.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
|
763 |
+
"vit.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
764 |
+
"vit.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
|
765 |
+
"vit.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
766 |
+
"vit.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
|
767 |
+
"vit.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
768 |
+
"vit.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
|
769 |
+
"vit.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
770 |
+
"vit.vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
|
771 |
+
"vit.vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
|
772 |
+
"vit.vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
|
773 |
+
"vit.vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
|
774 |
+
"vit.vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
775 |
+
"vit.vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
776 |
+
"vit.vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
777 |
+
"vit.vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
778 |
+
"vit.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
|
779 |
+
"vit.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
780 |
+
"vit.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
|
781 |
+
"vit.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
782 |
+
"vit.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
|
783 |
+
"vit.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
784 |
+
"vit.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
|
785 |
+
"vit.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
786 |
+
"vit.vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
|
787 |
+
"vit.vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
|
788 |
+
"vit.vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
|
789 |
+
"vit.vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
|
790 |
+
"vit.vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
791 |
+
"vit.vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
792 |
+
"vit.vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
793 |
+
"vit.vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
794 |
+
"vit.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
|
795 |
+
"vit.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
796 |
+
"vit.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
|
797 |
+
"vit.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
798 |
+
"vit.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
|
799 |
+
"vit.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
800 |
+
"vit.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
|
801 |
+
"vit.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
802 |
+
"vit.vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
|
803 |
+
"vit.vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
|
804 |
+
"vit.vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
|
805 |
+
"vit.vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
|
806 |
+
"vit.vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
807 |
+
"vit.vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
808 |
+
"vit.vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
809 |
+
"vit.vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
810 |
+
"vit.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
|
811 |
+
"vit.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
812 |
+
"vit.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
|
813 |
+
"vit.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
814 |
+
"vit.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
|
815 |
+
"vit.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
816 |
+
"vit.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
|
817 |
+
"vit.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
818 |
+
"vit.vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
|
819 |
+
"vit.vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
|
820 |
+
"vit.vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
|
821 |
+
"vit.vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
|
822 |
+
"vit.vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
823 |
+
"vit.vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
824 |
+
"vit.vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
825 |
+
"vit.vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
826 |
+
"vit.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
|
827 |
+
"vit.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
828 |
+
"vit.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
|
829 |
+
"vit.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
830 |
+
"vit.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
|
831 |
+
"vit.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
832 |
+
"vit.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
|
833 |
+
"vit.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
834 |
+
"vit.vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
|
835 |
+
"vit.vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
|
836 |
+
"vit.vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
|
837 |
+
"vit.vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
|
838 |
+
"vit.vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
839 |
+
"vit.vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
840 |
+
"vit.vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
841 |
+
"vit.vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
842 |
+
"vit.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
|
843 |
+
"vit.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
844 |
+
"vit.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
|
845 |
+
"vit.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
846 |
+
"vit.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
|
847 |
+
"vit.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
848 |
+
"vit.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
|
849 |
+
"vit.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
850 |
+
"vit.vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
|
851 |
+
"vit.vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
|
852 |
+
"vit.vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
|
853 |
+
"vit.vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
|
854 |
+
"vit.vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
855 |
+
"vit.vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
856 |
+
"vit.vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
857 |
+
"vit.vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
858 |
+
"vit.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
|
859 |
+
"vit.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
860 |
+
"vit.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
|
861 |
+
"vit.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
862 |
+
"vit.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
|
863 |
+
"vit.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
864 |
+
"vit.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
|
865 |
+
"vit.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
866 |
+
"vit.vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
|
867 |
+
"vit.vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
|
868 |
+
"vit.vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
|
869 |
+
"vit.vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
|
870 |
+
"vit.vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
871 |
+
"vit.vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
872 |
+
"vit.vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
873 |
+
"vit.vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
874 |
+
"vit.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
|
875 |
+
"vit.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
876 |
+
"vit.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
|
877 |
+
"vit.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
878 |
+
"vit.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
|
879 |
+
"vit.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
880 |
+
"vit.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
|
881 |
+
"vit.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
882 |
+
"vit.vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
|
883 |
+
"vit.vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
|
884 |
+
"vit.vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
|
885 |
+
"vit.vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
|
886 |
+
"vit.vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
887 |
+
"vit.vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
888 |
+
"vit.vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
889 |
+
"vit.vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
890 |
+
"vit.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
|
891 |
+
"vit.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
892 |
+
"vit.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
|
893 |
+
"vit.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
894 |
+
"vit.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
|
895 |
+
"vit.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
896 |
+
"vit.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
|
897 |
+
"vit.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
898 |
+
"vit.vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
|
899 |
+
"vit.vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
|
900 |
+
"vit.vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
|
901 |
+
"vit.vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
|
902 |
+
"vit.vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
903 |
+
"vit.vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
904 |
+
"vit.vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
905 |
+
"vit.vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
906 |
+
"vit.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
|
907 |
+
"vit.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
908 |
+
"vit.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
|
909 |
+
"vit.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
910 |
+
"vit.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
|
911 |
+
"vit.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
912 |
+
"vit.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
|
913 |
+
"vit.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
914 |
+
"vit.vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
|
915 |
+
"vit.vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
|
916 |
+
"vit.vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
|
917 |
+
"vit.vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
|
918 |
+
"vit.vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
919 |
+
"vit.vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
920 |
+
"vit.vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
921 |
+
"vit.vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
922 |
+
"vit.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
|
923 |
+
"vit.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
924 |
+
"vit.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
|
925 |
+
"vit.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
926 |
+
"vit.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
|
927 |
+
"vit.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
928 |
+
"vit.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
|
929 |
+
"vit.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
930 |
+
"vit.vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
|
931 |
+
"vit.vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
|
932 |
+
"vit.vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
|
933 |
+
"vit.vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
|
934 |
+
"vit.vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
935 |
+
"vit.vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
936 |
+
"vit.vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
937 |
+
"vit.vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
938 |
+
"vit.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
|
939 |
+
"vit.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
940 |
+
"vit.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
|
941 |
+
"vit.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
942 |
+
"vit.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
|
943 |
+
"vit.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
944 |
+
"vit.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
|
945 |
+
"vit.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
946 |
+
"vit.vision_tower.vision_model.pre_layrnorm.bias": "pytorch_model-00002-of-00002.bin",
|
947 |
+
"vit.vision_tower.vision_model.pre_layrnorm.weight": "pytorch_model-00002-of-00002.bin"
|
948 |
+
}
|
949 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|action_start|>",
|
6 |
+
"<|action_end|>",
|
7 |
+
"<|interpreter|>",
|
8 |
+
"<|plugin|>"
|
9 |
+
],
|
10 |
+
"bos_token": {
|
11 |
+
"content": "<s>",
|
12 |
+
"lstrip": false,
|
13 |
+
"normalized": false,
|
14 |
+
"rstrip": false,
|
15 |
+
"single_word": false
|
16 |
+
},
|
17 |
+
"eos_token": {
|
18 |
+
"content": "</s>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "</s>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
},
|
31 |
+
"unk_token": {
|
32 |
+
"content": "<unk>",
|
33 |
+
"lstrip": false,
|
34 |
+
"normalized": false,
|
35 |
+
"rstrip": false,
|
36 |
+
"single_word": false
|
37 |
+
}
|
38 |
+
}
|
tokenization_internlm2.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on transformers/src/transformers/models/llama/tokenization_llama.py
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
|
18 |
+
"""Tokenization classes for InternLM."""
|
19 |
+
import os
|
20 |
+
from shutil import copyfile
|
21 |
+
from typing import Any, Dict, List, Optional, Tuple
|
22 |
+
|
23 |
+
import sentencepiece as spm
|
24 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
25 |
+
from transformers.utils import logging
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
|
30 |
+
|
31 |
+
PRETRAINED_VOCAB_FILES_MAP = {}
|
32 |
+
|
33 |
+
|
34 |
+
# Modified from transformers.model.llama.tokenization_llama.LlamaTokenizer
|
35 |
+
class InternLM2Tokenizer(PreTrainedTokenizer):
|
36 |
+
"""
|
37 |
+
Construct a InternLM2 tokenizer. Based on byte-level Byte-Pair-Encoding.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
vocab_file (`str`):
|
41 |
+
Path to the vocabulary file.
|
42 |
+
"""
|
43 |
+
|
44 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
45 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
46 |
+
model_input_names = ["input_ids", "attention_mask"]
|
47 |
+
_auto_class = "AutoTokenizer"
|
48 |
+
|
49 |
+
def __init__(
|
50 |
+
self,
|
51 |
+
vocab_file,
|
52 |
+
unk_token="<unk>",
|
53 |
+
bos_token="<s>",
|
54 |
+
eos_token="</s>",
|
55 |
+
pad_token="</s>",
|
56 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
57 |
+
add_bos_token=True,
|
58 |
+
add_eos_token=False,
|
59 |
+
decode_with_prefix_space=False,
|
60 |
+
clean_up_tokenization_spaces=False,
|
61 |
+
**kwargs,
|
62 |
+
):
|
63 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
64 |
+
self.vocab_file = vocab_file
|
65 |
+
self.add_bos_token = add_bos_token
|
66 |
+
self.add_eos_token = add_eos_token
|
67 |
+
self.decode_with_prefix_space = decode_with_prefix_space
|
68 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
69 |
+
self.sp_model.Load(vocab_file)
|
70 |
+
self._no_prefix_space_tokens = None
|
71 |
+
super().__init__(
|
72 |
+
bos_token=bos_token,
|
73 |
+
eos_token=eos_token,
|
74 |
+
unk_token=unk_token,
|
75 |
+
pad_token=pad_token,
|
76 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
77 |
+
**kwargs,
|
78 |
+
)
|
79 |
+
|
80 |
+
@property
|
81 |
+
def no_prefix_space_tokens(self):
|
82 |
+
if self._no_prefix_space_tokens is None:
|
83 |
+
vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
|
84 |
+
self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith("▁")}
|
85 |
+
return self._no_prefix_space_tokens
|
86 |
+
|
87 |
+
@property
|
88 |
+
def vocab_size(self):
|
89 |
+
"""Returns vocab size"""
|
90 |
+
return self.sp_model.get_piece_size()
|
91 |
+
|
92 |
+
@property
|
93 |
+
def bos_token_id(self) -> Optional[int]:
|
94 |
+
return self.sp_model.bos_id()
|
95 |
+
|
96 |
+
@property
|
97 |
+
def eos_token_id(self) -> Optional[int]:
|
98 |
+
return self.sp_model.eos_id()
|
99 |
+
|
100 |
+
def get_vocab(self):
|
101 |
+
"""Returns vocab as a dict"""
|
102 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
103 |
+
vocab.update(self.added_tokens_encoder)
|
104 |
+
return vocab
|
105 |
+
|
106 |
+
def _tokenize(self, text):
|
107 |
+
"""Returns a tokenized string."""
|
108 |
+
return self.sp_model.encode(text, out_type=str)
|
109 |
+
|
110 |
+
def _convert_token_to_id(self, token):
|
111 |
+
"""Converts a token (str) in an id using the vocab."""
|
112 |
+
return self.sp_model.piece_to_id(token)
|
113 |
+
|
114 |
+
def _convert_id_to_token(self, index):
|
115 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
116 |
+
token = self.sp_model.IdToPiece(index)
|
117 |
+
return token
|
118 |
+
|
119 |
+
def _maybe_add_prefix_space(self, tokens, decoded):
|
120 |
+
if tokens and tokens[0] not in self.no_prefix_space_tokens:
|
121 |
+
return " " + decoded
|
122 |
+
else:
|
123 |
+
return decoded
|
124 |
+
|
125 |
+
def convert_tokens_to_string(self, tokens):
|
126 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
127 |
+
current_sub_tokens = []
|
128 |
+
out_string = ""
|
129 |
+
prev_is_special = False
|
130 |
+
for token in tokens:
|
131 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
132 |
+
if token in self.all_special_tokens:
|
133 |
+
if not prev_is_special:
|
134 |
+
out_string += " "
|
135 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
136 |
+
prev_is_special = True
|
137 |
+
current_sub_tokens = []
|
138 |
+
else:
|
139 |
+
current_sub_tokens.append(token)
|
140 |
+
prev_is_special = False
|
141 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
142 |
+
out_string = self.clean_up_tokenization(out_string)
|
143 |
+
out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
|
144 |
+
return out_string[1:]
|
145 |
+
|
146 |
+
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
147 |
+
"""
|
148 |
+
Save the vocabulary and special tokens file to a directory.
|
149 |
+
|
150 |
+
Args:
|
151 |
+
save_directory (`str`):
|
152 |
+
The directory in which to save the vocabulary.
|
153 |
+
|
154 |
+
Returns:
|
155 |
+
`Tuple(str)`: Paths to the files saved.
|
156 |
+
"""
|
157 |
+
if not os.path.isdir(save_directory):
|
158 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
159 |
+
return
|
160 |
+
out_vocab_file = os.path.join(
|
161 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
162 |
+
)
|
163 |
+
|
164 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
165 |
+
copyfile(self.vocab_file, out_vocab_file)
|
166 |
+
elif not os.path.isfile(self.vocab_file):
|
167 |
+
with open(out_vocab_file, "wb") as fi:
|
168 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
169 |
+
fi.write(content_spiece_model)
|
170 |
+
|
171 |
+
return (out_vocab_file,)
|
172 |
+
|
173 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
174 |
+
if self.add_bos_token:
|
175 |
+
bos_token_ids = [self.bos_token_id]
|
176 |
+
else:
|
177 |
+
bos_token_ids = []
|
178 |
+
|
179 |
+
output = bos_token_ids + token_ids_0
|
180 |
+
|
181 |
+
if token_ids_1 is not None:
|
182 |
+
output = output + token_ids_1
|
183 |
+
|
184 |
+
if self.add_eos_token:
|
185 |
+
output = output + [self.eos_token_id]
|
186 |
+
|
187 |
+
return output
|
188 |
+
|
189 |
+
def get_special_tokens_mask(
|
190 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
191 |
+
) -> List[int]:
|
192 |
+
"""
|
193 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
194 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
195 |
+
|
196 |
+
Args:
|
197 |
+
token_ids_0 (`List[int]`):
|
198 |
+
List of IDs.
|
199 |
+
token_ids_1 (`List[int]`, *optional*):
|
200 |
+
Optional second list of IDs for sequence pairs.
|
201 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
202 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
203 |
+
|
204 |
+
Returns:
|
205 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
206 |
+
"""
|
207 |
+
if already_has_special_tokens:
|
208 |
+
return super().get_special_tokens_mask(
|
209 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
210 |
+
)
|
211 |
+
|
212 |
+
if token_ids_1 is None:
|
213 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
214 |
+
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
|
215 |
+
|
216 |
+
def create_token_type_ids_from_sequences(
|
217 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
218 |
+
) -> List[int]:
|
219 |
+
"""
|
220 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
|
221 |
+
use of token type ids, therefore a list of zeros is returned.
|
222 |
+
|
223 |
+
Args:
|
224 |
+
token_ids_0 (`List[int]`):
|
225 |
+
List of IDs.
|
226 |
+
token_ids_1 (`List[int]`, *optional*):
|
227 |
+
Optional second list of IDs for sequence pairs.
|
228 |
+
|
229 |
+
Returns:
|
230 |
+
`List[int]`: List of zeros.
|
231 |
+
"""
|
232 |
+
eos = [self.eos_token_id]
|
233 |
+
|
234 |
+
if token_ids_1 is None:
|
235 |
+
return len(token_ids_0 + eos) * [0]
|
236 |
+
return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f868398fc4e05ee1e8aeba95ddf18ddcc45b8bce55d5093bead5bbf80429b48b
|
3 |
+
size 1477754
|
tokenizer_config.json
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<unk>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<s>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"92538": {
|
28 |
+
"content": "<|plugin|>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"92539": {
|
36 |
+
"content": "<|interpreter|>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"92540": {
|
44 |
+
"content": "<|action_end|>",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
},
|
51 |
+
"92541": {
|
52 |
+
"content": "<|action_start|>",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": false,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": true
|
58 |
+
},
|
59 |
+
"92542": {
|
60 |
+
"content": "<|im_end|>",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": false,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false,
|
65 |
+
"special": true
|
66 |
+
},
|
67 |
+
"92543": {
|
68 |
+
"content": "<|im_start|>",
|
69 |
+
"lstrip": false,
|
70 |
+
"normalized": false,
|
71 |
+
"rstrip": false,
|
72 |
+
"single_word": false,
|
73 |
+
"special": true
|
74 |
+
}
|
75 |
+
},
|
76 |
+
"additional_special_tokens": [
|
77 |
+
"<|im_start|>",
|
78 |
+
"<|im_end|>",
|
79 |
+
"<|action_start|>",
|
80 |
+
"<|action_end|>",
|
81 |
+
"<|interpreter|>",
|
82 |
+
"<|plugin|>"
|
83 |
+
],
|
84 |
+
"auto_map": {
|
85 |
+
"AutoTokenizer": [
|
86 |
+
"tokenization_internlm2.InternLM2Tokenizer",
|
87 |
+
null
|
88 |
+
]
|
89 |
+
},
|
90 |
+
"bos_token": "<s>",
|
91 |
+
"chat_template": "{{ bos_token }}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
92 |
+
"clean_up_tokenization_spaces": false,
|
93 |
+
"eos_token": "</s>",
|
94 |
+
"model_max_length": 1000000000000000019884624838656,
|
95 |
+
"pad_token": "</s>",
|
96 |
+
"padding_side": "right",
|
97 |
+
"tokenizer_class": "InternLM2Tokenizer",
|
98 |
+
"unk_token": "<unk>"
|
99 |
+
}
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,587 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
252 |
+
param_shapes = zero_model_states[0].param_shapes
|
253 |
+
|
254 |
+
# Reconstruction protocol:
|
255 |
+
#
|
256 |
+
# XXX: document this
|
257 |
+
|
258 |
+
if debug:
|
259 |
+
for i in range(world_size):
|
260 |
+
for j in range(len(fp32_flat_groups[0])):
|
261 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
262 |
+
|
263 |
+
# XXX: memory usage doubles here (zero2)
|
264 |
+
num_param_groups = len(fp32_flat_groups[0])
|
265 |
+
merged_single_partition_of_fp32_groups = []
|
266 |
+
for i in range(num_param_groups):
|
267 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
268 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
269 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
270 |
+
avail_numel = sum(
|
271 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
272 |
+
|
273 |
+
if debug:
|
274 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
275 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
276 |
+
# not asserting if there is a mismatch due to possible padding
|
277 |
+
print(f"Have {avail_numel} numels to process.")
|
278 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
279 |
+
|
280 |
+
# params
|
281 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
282 |
+
# out-of-core computing solution
|
283 |
+
total_numel = 0
|
284 |
+
total_params = 0
|
285 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
286 |
+
offset = 0
|
287 |
+
avail_numel = full_single_fp32_vector.numel()
|
288 |
+
for name, shape in shapes.items():
|
289 |
+
|
290 |
+
unpartitioned_numel = shape.numel()
|
291 |
+
total_numel += unpartitioned_numel
|
292 |
+
total_params += 1
|
293 |
+
|
294 |
+
if debug:
|
295 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
296 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
297 |
+
offset += unpartitioned_numel
|
298 |
+
|
299 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
300 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
301 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
302 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
303 |
+
align_to = 2 * world_size
|
304 |
+
|
305 |
+
def zero2_align(x):
|
306 |
+
return align_to * math.ceil(x / align_to)
|
307 |
+
|
308 |
+
if debug:
|
309 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
310 |
+
|
311 |
+
offset = zero2_align(offset)
|
312 |
+
avail_numel = zero2_align(avail_numel)
|
313 |
+
|
314 |
+
if debug:
|
315 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
316 |
+
|
317 |
+
# Sanity check
|
318 |
+
if offset != avail_numel:
|
319 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
320 |
+
|
321 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
322 |
+
|
323 |
+
|
324 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
325 |
+
state_dict = OrderedDict()
|
326 |
+
|
327 |
+
# buffers
|
328 |
+
buffers = zero_model_states[0].buffers
|
329 |
+
state_dict.update(buffers)
|
330 |
+
if debug:
|
331 |
+
print(f"added {len(buffers)} buffers")
|
332 |
+
|
333 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
334 |
+
|
335 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
336 |
+
|
337 |
+
# recover shared parameters
|
338 |
+
for pair in zero_model_states[0].shared_params:
|
339 |
+
if pair[1] in state_dict:
|
340 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
341 |
+
|
342 |
+
return state_dict
|
343 |
+
|
344 |
+
|
345 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
346 |
+
remainder = unpartitioned_numel % world_size
|
347 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
348 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
349 |
+
return partitioned_numel, padding_numel
|
350 |
+
|
351 |
+
|
352 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
353 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
354 |
+
return
|
355 |
+
|
356 |
+
if debug:
|
357 |
+
for i in range(world_size):
|
358 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
359 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
360 |
+
|
361 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
362 |
+
wanted_params = len(frozen_param_shapes)
|
363 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
364 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
365 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
366 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
367 |
+
|
368 |
+
total_params = 0
|
369 |
+
total_numel = 0
|
370 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
371 |
+
total_params += 1
|
372 |
+
unpartitioned_numel = shape.numel()
|
373 |
+
total_numel += unpartitioned_numel
|
374 |
+
|
375 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
376 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
377 |
+
|
378 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
379 |
+
|
380 |
+
if debug:
|
381 |
+
print(
|
382 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
383 |
+
)
|
384 |
+
|
385 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
386 |
+
|
387 |
+
|
388 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
389 |
+
param_shapes = zero_model_states[0].param_shapes
|
390 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
391 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
392 |
+
# param, re-consolidating each param, while dealing with padding if any
|
393 |
+
|
394 |
+
# merge list of dicts, preserving order
|
395 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
396 |
+
|
397 |
+
if debug:
|
398 |
+
for i in range(world_size):
|
399 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
400 |
+
|
401 |
+
wanted_params = len(param_shapes)
|
402 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
403 |
+
# not asserting if there is a mismatch due to possible padding
|
404 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
405 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
406 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
407 |
+
|
408 |
+
# params
|
409 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
410 |
+
# out-of-core computing solution
|
411 |
+
offset = 0
|
412 |
+
total_numel = 0
|
413 |
+
total_params = 0
|
414 |
+
for name, shape in param_shapes.items():
|
415 |
+
|
416 |
+
unpartitioned_numel = shape.numel()
|
417 |
+
total_numel += unpartitioned_numel
|
418 |
+
total_params += 1
|
419 |
+
|
420 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
421 |
+
|
422 |
+
if debug:
|
423 |
+
print(
|
424 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
425 |
+
)
|
426 |
+
|
427 |
+
# XXX: memory usage doubles here
|
428 |
+
state_dict[name] = torch.cat(
|
429 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
430 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
431 |
+
offset += partitioned_numel
|
432 |
+
|
433 |
+
offset *= world_size
|
434 |
+
|
435 |
+
# Sanity check
|
436 |
+
if offset != avail_numel:
|
437 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
438 |
+
|
439 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
440 |
+
|
441 |
+
|
442 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
443 |
+
state_dict = OrderedDict()
|
444 |
+
|
445 |
+
# buffers
|
446 |
+
buffers = zero_model_states[0].buffers
|
447 |
+
state_dict.update(buffers)
|
448 |
+
if debug:
|
449 |
+
print(f"added {len(buffers)} buffers")
|
450 |
+
|
451 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
452 |
+
|
453 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
454 |
+
|
455 |
+
# recover shared parameters
|
456 |
+
for pair in zero_model_states[0].shared_params:
|
457 |
+
if pair[1] in state_dict:
|
458 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
459 |
+
|
460 |
+
return state_dict
|
461 |
+
|
462 |
+
|
463 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
464 |
+
"""
|
465 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
466 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
467 |
+
via a model hub.
|
468 |
+
|
469 |
+
Args:
|
470 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
471 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
472 |
+
|
473 |
+
Returns:
|
474 |
+
- pytorch ``state_dict``
|
475 |
+
|
476 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
477 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
478 |
+
the checkpoint.
|
479 |
+
|
480 |
+
A typical usage might be ::
|
481 |
+
|
482 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
483 |
+
# do the training and checkpoint saving
|
484 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
485 |
+
model = model.cpu() # move to cpu
|
486 |
+
model.load_state_dict(state_dict)
|
487 |
+
# submit to model hub or save the model to share with others
|
488 |
+
|
489 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
490 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
491 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
492 |
+
|
493 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
494 |
+
|
495 |
+
"""
|
496 |
+
if tag is None:
|
497 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
498 |
+
if os.path.isfile(latest_path):
|
499 |
+
with open(latest_path, 'r') as fd:
|
500 |
+
tag = fd.read().strip()
|
501 |
+
else:
|
502 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
503 |
+
|
504 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
505 |
+
|
506 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
507 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
508 |
+
|
509 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
510 |
+
|
511 |
+
|
512 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
513 |
+
"""
|
514 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
515 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
516 |
+
|
517 |
+
Args:
|
518 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
519 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
520 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
521 |
+
"""
|
522 |
+
|
523 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
524 |
+
print(f"Saving fp32 state dict to {output_file}")
|
525 |
+
torch.save(state_dict, output_file)
|
526 |
+
|
527 |
+
|
528 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
529 |
+
"""
|
530 |
+
1. Put the provided model to cpu
|
531 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
532 |
+
3. Load it into the provided model
|
533 |
+
|
534 |
+
Args:
|
535 |
+
- ``model``: the model object to update
|
536 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
537 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
538 |
+
|
539 |
+
Returns:
|
540 |
+
- ``model`: modified model
|
541 |
+
|
542 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
543 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
544 |
+
conveniently placed for you in the checkpoint folder.
|
545 |
+
|
546 |
+
A typical usage might be ::
|
547 |
+
|
548 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
549 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
550 |
+
# submit to model hub or save the model to share with others
|
551 |
+
|
552 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
553 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
554 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
555 |
+
|
556 |
+
"""
|
557 |
+
logger.info(f"Extracting fp32 weights")
|
558 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
559 |
+
|
560 |
+
logger.info(f"Overwriting model with fp32 weights")
|
561 |
+
model = model.cpu()
|
562 |
+
model.load_state_dict(state_dict, strict=False)
|
563 |
+
|
564 |
+
return model
|
565 |
+
|
566 |
+
|
567 |
+
if __name__ == "__main__":
|
568 |
+
|
569 |
+
parser = argparse.ArgumentParser()
|
570 |
+
parser.add_argument("checkpoint_dir",
|
571 |
+
type=str,
|
572 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
573 |
+
parser.add_argument(
|
574 |
+
"output_file",
|
575 |
+
type=str,
|
576 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
577 |
+
parser.add_argument("-t",
|
578 |
+
"--tag",
|
579 |
+
type=str,
|
580 |
+
default=None,
|
581 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
582 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
583 |
+
args = parser.parse_args()
|
584 |
+
|
585 |
+
debug = args.debug
|
586 |
+
|
587 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|