|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """PyTorch InternLM2 model.""" | 
					
						
						|  | import math | 
					
						
						|  | import queue | 
					
						
						|  | import threading | 
					
						
						|  | from typing import List, Optional, Tuple, Union | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  | import torch.utils.checkpoint | 
					
						
						|  | from einops import rearrange | 
					
						
						|  | from torch import nn | 
					
						
						|  | from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | 
					
						
						|  | from transformers.activations import ACT2FN | 
					
						
						|  | from transformers.cache_utils import Cache, DynamicCache, StaticCache | 
					
						
						|  | from transformers.modeling_attn_mask_utils import AttentionMaskConverter | 
					
						
						|  | from transformers.modeling_outputs import ( | 
					
						
						|  | BaseModelOutputWithPast, | 
					
						
						|  | CausalLMOutputWithPast, | 
					
						
						|  | QuestionAnsweringModelOutput, | 
					
						
						|  | SequenceClassifierOutputWithPast, | 
					
						
						|  | TokenClassifierOutput, | 
					
						
						|  | ) | 
					
						
						|  | from transformers.modeling_utils import PreTrainedModel | 
					
						
						|  | from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS | 
					
						
						|  | from transformers.utils import ( | 
					
						
						|  | add_start_docstrings, | 
					
						
						|  | add_start_docstrings_to_model_forward, | 
					
						
						|  | is_flash_attn_greater_or_equal_2_10, | 
					
						
						|  | logging, | 
					
						
						|  | replace_return_docstrings, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | from transformers.generation.streamers import BaseStreamer | 
					
						
						|  | except Exception: | 
					
						
						|  | BaseStreamer = None | 
					
						
						|  |  | 
					
						
						|  | from .configuration_internlm2 import InternLM2Config | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | from flash_attn import flash_attn_func, flash_attn_varlen_func | 
					
						
						|  | from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input | 
					
						
						|  | except: | 
					
						
						|  | pass | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | support_bf16_triu = torch.__version__ >= "2.1.0" | 
					
						
						|  | except Exception: | 
					
						
						|  | support_bf16_triu = False | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  | _CONFIG_FOR_DOC = "InternLM2Config" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _get_unpad_data(attention_mask): | 
					
						
						|  | seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) | 
					
						
						|  | indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() | 
					
						
						|  | max_seqlen_in_batch = seqlens_in_batch.max().item() | 
					
						
						|  | cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) | 
					
						
						|  | return ( | 
					
						
						|  | indices, | 
					
						
						|  | cu_seqlens, | 
					
						
						|  | max_seqlen_in_batch, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class InternLM2RMSNorm(nn.Module): | 
					
						
						|  | """InternLM2RMSNorm is equivalent to T5LayerNorm.""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, hidden_size, eps=1e-6): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.weight = nn.Parameter(torch.ones(hidden_size)) | 
					
						
						|  | self.variance_epsilon = eps | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states): | 
					
						
						|  | input_dtype = hidden_states.dtype | 
					
						
						|  | hidden_states = hidden_states.to(torch.float32) | 
					
						
						|  | variance = hidden_states.pow(2).mean(-1, keepdim=True) | 
					
						
						|  | hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | 
					
						
						|  | return self.weight * hidden_states.to(input_dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ALL_LAYERNORM_LAYERS.append(InternLM2RMSNorm) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class InternLM2RotaryEmbedding(nn.Module): | 
					
						
						|  | """Rotary Position Embedding for the InternLM2 model. Credits to the Reddit user /u/lucidrains.""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.scaling_factor = scaling_factor | 
					
						
						|  | self.dim = dim | 
					
						
						|  | self.max_position_embeddings = max_position_embeddings | 
					
						
						|  | self.base = base | 
					
						
						|  | inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) | 
					
						
						|  | self.register_buffer("inv_freq", inv_freq, persistent=False) | 
					
						
						|  |  | 
					
						
						|  | self.max_seq_len_cached = max_position_embeddings | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | def forward(self, x, position_ids): | 
					
						
						|  |  | 
					
						
						|  | inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) | 
					
						
						|  | position_ids_expanded = position_ids[:, None, :].float() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | device_type = x.device.type | 
					
						
						|  | device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" | 
					
						
						|  | with torch.autocast(device_type=device_type, enabled=False): | 
					
						
						|  | freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) | 
					
						
						|  | emb = torch.cat((freqs, freqs), dim=-1) | 
					
						
						|  | cos = emb.cos() | 
					
						
						|  | sin = emb.sin() | 
					
						
						|  | return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding): | 
					
						
						|  | """InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, position_ids): | 
					
						
						|  |  | 
					
						
						|  | position_ids = position_ids.float() / self.scaling_factor | 
					
						
						|  | cos, sin = super().forward(x, position_ids) | 
					
						
						|  | return cos, sin | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding): | 
					
						
						|  | """InternLM2RotaryEmbedding extended with Dynamic NTK scaling. | 
					
						
						|  | Credits to the Reddit users /u/bloc97 and /u/emozilla""" | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, position_ids): | 
					
						
						|  |  | 
					
						
						|  | seq_len = torch.max(position_ids) + 1 | 
					
						
						|  | if seq_len > self.max_position_embeddings: | 
					
						
						|  | base = self.base * ( | 
					
						
						|  | (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1) | 
					
						
						|  | ) ** (self.dim / (self.dim - 2)) | 
					
						
						|  | inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(x.device) / self.dim)) | 
					
						
						|  | self.register_buffer("inv_freq", inv_freq, persistent=False) | 
					
						
						|  |  | 
					
						
						|  | cos, sin = super().forward(x, position_ids) | 
					
						
						|  | return cos, sin | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def rotate_half(x): | 
					
						
						|  | """Rotates half the hidden dims of the input.""" | 
					
						
						|  | x1 = x[..., : x.shape[-1] // 2] | 
					
						
						|  | x2 = x[..., x.shape[-1] // 2 :] | 
					
						
						|  | return torch.cat((-x2, x1), dim=-1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): | 
					
						
						|  | """Applies Rotary Position Embedding to the query and key tensors. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | q (`torch.Tensor`): The query tensor. | 
					
						
						|  | k (`torch.Tensor`): The key tensor. | 
					
						
						|  | cos (`torch.Tensor`): The cosine part of the rotary embedding. | 
					
						
						|  | sin (`torch.Tensor`): The sine part of the rotary embedding. | 
					
						
						|  | position_ids (`torch.Tensor`, *optional*): | 
					
						
						|  | Deprecated and unused. | 
					
						
						|  | unsqueeze_dim (`int`, *optional*, defaults to 1): | 
					
						
						|  | The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and | 
					
						
						|  | sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note | 
					
						
						|  | that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and | 
					
						
						|  | k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes | 
					
						
						|  | cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have | 
					
						
						|  | the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. | 
					
						
						|  | Returns: | 
					
						
						|  | `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. | 
					
						
						|  | """ | 
					
						
						|  | cos = cos.unsqueeze(unsqueeze_dim) | 
					
						
						|  | sin = sin.unsqueeze(unsqueeze_dim) | 
					
						
						|  | q_embed = (q * cos) + (rotate_half(q) * sin) | 
					
						
						|  | k_embed = (k * cos) + (rotate_half(k) * sin) | 
					
						
						|  | return q_embed, k_embed | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class InternLM2MLP(nn.Module): | 
					
						
						|  | """MLP for InternLM2 model.""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.hidden_size = config.hidden_size | 
					
						
						|  | self.intermediate_size = config.intermediate_size | 
					
						
						|  | self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | 
					
						
						|  | self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | 
					
						
						|  | self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) | 
					
						
						|  | self.act_fn = ACT2FN[config.hidden_act] | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x)) | 
					
						
						|  |  | 
					
						
						|  | return down_proj | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | 
					
						
						|  | """ | 
					
						
						|  | This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, | 
					
						
						|  | num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) | 
					
						
						|  | """ | 
					
						
						|  | batch, num_key_value_heads, slen, head_dim = hidden_states.shape | 
					
						
						|  | if n_rep == 1: | 
					
						
						|  | return hidden_states | 
					
						
						|  | hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) | 
					
						
						|  | return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class InternLM2Attention(nn.Module): | 
					
						
						|  | """Multi-headed attention from 'Attention Is All You Need' paper""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: InternLM2Config, layer_idx: Optional[int] = None): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.layer_idx = layer_idx | 
					
						
						|  | if layer_idx is None: | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " | 
					
						
						|  | "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " | 
					
						
						|  | "when creating this class." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.hidden_size = config.hidden_size | 
					
						
						|  | self.num_heads = config.num_attention_heads | 
					
						
						|  | self.head_dim = self.hidden_size // self.num_heads | 
					
						
						|  | self.num_key_value_heads = config.num_key_value_heads | 
					
						
						|  | self.num_key_value_groups = self.num_heads // self.num_key_value_heads | 
					
						
						|  | self.max_position_embeddings = config.max_position_embeddings | 
					
						
						|  | self.rope_theta = config.rope_theta | 
					
						
						|  | self.is_causal = True | 
					
						
						|  |  | 
					
						
						|  | if (self.head_dim * self.num_heads) != self.hidden_size: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" | 
					
						
						|  | f" and `num_heads`: {self.num_heads})." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.wqkv = nn.Linear( | 
					
						
						|  | self.hidden_size, | 
					
						
						|  | (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim, | 
					
						
						|  | bias=config.bias, | 
					
						
						|  | ) | 
					
						
						|  | self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias) | 
					
						
						|  |  | 
					
						
						|  | self._init_rope() | 
					
						
						|  |  | 
					
						
						|  | def _init_rope(self): | 
					
						
						|  | if self.config.rope_scaling is None: | 
					
						
						|  | self.rotary_emb = InternLM2RotaryEmbedding( | 
					
						
						|  | self.head_dim, | 
					
						
						|  | max_position_embeddings=self.max_position_embeddings, | 
					
						
						|  | base=self.rope_theta, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | scaling_type = self.config.rope_scaling["type"] | 
					
						
						|  | scaling_factor = self.config.rope_scaling["factor"] | 
					
						
						|  | if scaling_type == "linear": | 
					
						
						|  | self.rotary_emb = InternLM2LinearScalingRotaryEmbedding( | 
					
						
						|  | self.head_dim, | 
					
						
						|  | max_position_embeddings=self.max_position_embeddings, | 
					
						
						|  | scaling_factor=scaling_factor, | 
					
						
						|  | base=self.rope_theta, | 
					
						
						|  | ) | 
					
						
						|  | elif scaling_type == "dynamic": | 
					
						
						|  | self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding( | 
					
						
						|  | self.head_dim, | 
					
						
						|  | max_position_embeddings=self.max_position_embeddings, | 
					
						
						|  | scaling_factor=scaling_factor, | 
					
						
						|  | base=self.rope_theta, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"Unknown RoPE scaling type {scaling_type}") | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[Cache] = None, | 
					
						
						|  | output_attentions: bool = False, | 
					
						
						|  | use_cache: bool = False, | 
					
						
						|  | cache_position: Optional[torch.LongTensor] = None, | 
					
						
						|  | ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
						
						|  | bsz, q_len, _ = hidden_states.size() | 
					
						
						|  |  | 
					
						
						|  | if self.config.pretraining_tp > 1: | 
					
						
						|  |  | 
					
						
						|  | key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp | 
					
						
						|  | qkv_slices = self.wqkv.weight.split(key_value_slicing, dim=0) | 
					
						
						|  | qkv_states = torch.cat( | 
					
						
						|  | [F.linear(hidden_states, qkv_slice) for qkv_slice in qkv_slices], dim=-1 | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | qkv_states = self.wqkv(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | qkv_states = rearrange( | 
					
						
						|  | qkv_states, | 
					
						
						|  | "b q (h gs d) -> b q h gs d", | 
					
						
						|  | gs=2 + self.num_key_value_groups, | 
					
						
						|  | d=self.head_dim, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | query_states = qkv_states[..., : self.num_key_value_groups, :] | 
					
						
						|  | query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d").transpose(1, 2) | 
					
						
						|  | key_states = qkv_states[..., -2, :].transpose(1, 2) | 
					
						
						|  | value_states = qkv_states[..., -1, :].transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | cos, sin = self.rotary_emb(value_states, position_ids) | 
					
						
						|  | query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) | 
					
						
						|  |  | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  |  | 
					
						
						|  | cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} | 
					
						
						|  | key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | 
					
						
						|  |  | 
					
						
						|  | key_states = repeat_kv(key_states, self.num_key_value_groups) | 
					
						
						|  | value_states = repeat_kv(value_states, self.num_key_value_groups) | 
					
						
						|  |  | 
					
						
						|  | attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] | 
					
						
						|  | attn_weights = attn_weights + causal_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) | 
					
						
						|  | attn_output = torch.matmul(attn_weights, value_states) | 
					
						
						|  |  | 
					
						
						|  | if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" | 
					
						
						|  | f" {attn_output.size()}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.transpose(1, 2).contiguous() | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | 
					
						
						|  |  | 
					
						
						|  | if self.config.pretraining_tp > 1: | 
					
						
						|  | attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2) | 
					
						
						|  | o_proj_slices = self.wo.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1) | 
					
						
						|  | attn_output = sum( | 
					
						
						|  | [ | 
					
						
						|  | F.linear(attn_output[i], o_proj_slices[i]) | 
					
						
						|  | for i in range(self.config.pretraining_tp) | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | attn_output = self.wo(attn_output) | 
					
						
						|  |  | 
					
						
						|  | if not output_attentions: | 
					
						
						|  | attn_weights = None | 
					
						
						|  |  | 
					
						
						|  | return attn_output, attn_weights, past_key_value | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class InternLM2FlashAttention2(InternLM2Attention): | 
					
						
						|  | """ | 
					
						
						|  | InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays | 
					
						
						|  | untouched. The only required change would be on the forward pass where it needs to correctly call the public API of | 
					
						
						|  | flash attention and deal with padding tokens in case the input contains any of them. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, *args, **kwargs): | 
					
						
						|  | super().__init__(*args, **kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.LongTensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[Cache] = None, | 
					
						
						|  | output_attentions: bool = False, | 
					
						
						|  | use_cache: bool = False, | 
					
						
						|  | cache_position: Optional[torch.LongTensor] = None, | 
					
						
						|  | ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
						
						|  | if isinstance(past_key_value, StaticCache): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` " | 
					
						
						|  | "make sure to use `sdpa` in the mean time, and open an issue at " | 
					
						
						|  | "https://github.com/huggingface/transformers" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | output_attentions = False | 
					
						
						|  |  | 
					
						
						|  | bsz, q_len, _ = hidden_states.size() | 
					
						
						|  |  | 
					
						
						|  | qkv_states = self.wqkv(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | qkv_states = rearrange( | 
					
						
						|  | qkv_states, | 
					
						
						|  | "b q (h gs d) -> b q h gs d", | 
					
						
						|  | gs=2 + self.num_key_value_groups, | 
					
						
						|  | d=self.head_dim, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | query_states = qkv_states[..., : self.num_key_value_groups, :] | 
					
						
						|  | query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d") | 
					
						
						|  | key_states = qkv_states[..., -2, :] | 
					
						
						|  | value_states = qkv_states[..., -1, :] | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.transpose(1, 2) | 
					
						
						|  | key_states = key_states.transpose(1, 2) | 
					
						
						|  | value_states = value_states.transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | cos, sin = self.rotary_emb(value_states, position_ids) | 
					
						
						|  | query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) | 
					
						
						|  |  | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  |  | 
					
						
						|  | cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} | 
					
						
						|  | key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.transpose(1, 2) | 
					
						
						|  | key_states = key_states.transpose(1, 2) | 
					
						
						|  | value_states = value_states.transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | dropout_rate = 0.0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | input_dtype = query_states.dtype | 
					
						
						|  | if input_dtype == torch.float32: | 
					
						
						|  | if torch.is_autocast_enabled(): | 
					
						
						|  | target_dtype = torch.get_autocast_gpu_dtype() | 
					
						
						|  |  | 
					
						
						|  | elif hasattr(self.config, "_pre_quantization_dtype"): | 
					
						
						|  | target_dtype = self.config._pre_quantization_dtype | 
					
						
						|  | else: | 
					
						
						|  | target_dtype = self.wqkv.weight.dtype | 
					
						
						|  |  | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | f"The input hidden states seems to be silently casted in float32, this might be related to" | 
					
						
						|  | f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" | 
					
						
						|  | f" {target_dtype}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.to(target_dtype) | 
					
						
						|  | key_states = key_states.to(target_dtype) | 
					
						
						|  | value_states = value_states.to(target_dtype) | 
					
						
						|  |  | 
					
						
						|  | attn_output = self._flash_attention_forward( | 
					
						
						|  | query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() | 
					
						
						|  | attn_output = self.wo(attn_output) | 
					
						
						|  |  | 
					
						
						|  | if not output_attentions: | 
					
						
						|  | attn_weights = None | 
					
						
						|  |  | 
					
						
						|  | return attn_output, attn_weights, past_key_value | 
					
						
						|  |  | 
					
						
						|  | def _flash_attention_forward( | 
					
						
						|  | self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token | 
					
						
						|  | first unpad the input, then computes the attention scores and pad the final attention scores. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | query_states (`torch.Tensor`): | 
					
						
						|  | Input query states to be passed to Flash Attention API | 
					
						
						|  | key_states (`torch.Tensor`): | 
					
						
						|  | Input key states to be passed to Flash Attention API | 
					
						
						|  | value_states (`torch.Tensor`): | 
					
						
						|  | Input value states to be passed to Flash Attention API | 
					
						
						|  | attention_mask (`torch.Tensor`): | 
					
						
						|  | The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the | 
					
						
						|  | position of padding tokens and 1 for the position of non-padding tokens. | 
					
						
						|  | dropout (`float`): | 
					
						
						|  | Attention dropout | 
					
						
						|  | softmax_scale (`float`, *optional*): | 
					
						
						|  | The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) | 
					
						
						|  | """ | 
					
						
						|  | if not self._flash_attn_uses_top_left_mask: | 
					
						
						|  | causal = self.is_causal | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | causal = self.is_causal and query_length != 1 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | batch_size = query_states.shape[0] | 
					
						
						|  | query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( | 
					
						
						|  | query_states, key_states, value_states, attention_mask, query_length | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | cu_seqlens_q, cu_seqlens_k = cu_seq_lens | 
					
						
						|  | max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens | 
					
						
						|  |  | 
					
						
						|  | attn_output_unpad = flash_attn_varlen_func( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | cu_seqlens_q=cu_seqlens_q, | 
					
						
						|  | cu_seqlens_k=cu_seqlens_k, | 
					
						
						|  | max_seqlen_q=max_seqlen_in_batch_q, | 
					
						
						|  | max_seqlen_k=max_seqlen_in_batch_k, | 
					
						
						|  | dropout_p=dropout, | 
					
						
						|  | softmax_scale=softmax_scale, | 
					
						
						|  | causal=causal, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) | 
					
						
						|  | else: | 
					
						
						|  | attn_output = flash_attn_func( | 
					
						
						|  | query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return attn_output | 
					
						
						|  |  | 
					
						
						|  | def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): | 
					
						
						|  | indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) | 
					
						
						|  | batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape | 
					
						
						|  |  | 
					
						
						|  | key_layer = index_first_axis( | 
					
						
						|  | key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k | 
					
						
						|  | ) | 
					
						
						|  | value_layer = index_first_axis( | 
					
						
						|  | value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k | 
					
						
						|  | ) | 
					
						
						|  | if query_length == kv_seq_len: | 
					
						
						|  | query_layer = index_first_axis( | 
					
						
						|  | query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k | 
					
						
						|  | ) | 
					
						
						|  | cu_seqlens_q = cu_seqlens_k | 
					
						
						|  | max_seqlen_in_batch_q = max_seqlen_in_batch_k | 
					
						
						|  | indices_q = indices_k | 
					
						
						|  | elif query_length == 1: | 
					
						
						|  | max_seqlen_in_batch_q = 1 | 
					
						
						|  | cu_seqlens_q = torch.arange( | 
					
						
						|  | batch_size + 1, dtype=torch.int32, device=query_layer.device | 
					
						
						|  | ) | 
					
						
						|  | indices_q = cu_seqlens_q[:-1] | 
					
						
						|  | query_layer = query_layer.squeeze(1) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | attention_mask = attention_mask[:, -query_length:] | 
					
						
						|  | query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input( | 
					
						
						|  | query_layer, attention_mask | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return ( | 
					
						
						|  | query_layer, | 
					
						
						|  | key_layer, | 
					
						
						|  | value_layer, | 
					
						
						|  | indices_q, | 
					
						
						|  | (cu_seqlens_q, cu_seqlens_k), | 
					
						
						|  | (max_seqlen_in_batch_q, max_seqlen_in_batch_k), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class InternLM2SdpaAttention(InternLM2Attention): | 
					
						
						|  | """ | 
					
						
						|  | InternLM2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from | 
					
						
						|  | `InternLM2Attention` as the weights of the module stays untouched. The only changes are on the forward pass | 
					
						
						|  | to adapt to SDPA API. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[Cache] = None, | 
					
						
						|  | output_attentions: bool = False, | 
					
						
						|  | use_cache: bool = False, | 
					
						
						|  | cache_position: Optional[torch.LongTensor] = None, | 
					
						
						|  | ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
						
						|  | if output_attentions: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | "InternLM2Model uses InternLM2SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` " | 
					
						
						|  | "does not support `output_attentions=True`. Falling back to the manual attention implementation, " | 
					
						
						|  | "but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. " | 
					
						
						|  | 'This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' | 
					
						
						|  | ) | 
					
						
						|  | return super().forward( | 
					
						
						|  | hidden_states=hidden_states, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_value=past_key_value, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | cache_position=cache_position, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | bsz, q_len, _ = hidden_states.size() | 
					
						
						|  |  | 
					
						
						|  | qkv_states = self.wqkv(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | qkv_states = rearrange( | 
					
						
						|  | qkv_states, | 
					
						
						|  | "b q (h gs d) -> b q h gs d", | 
					
						
						|  | gs=2 + self.num_key_value_groups, | 
					
						
						|  | d=self.head_dim, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | query_states = qkv_states[..., : self.num_key_value_groups, :] | 
					
						
						|  | query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d") | 
					
						
						|  | key_states = qkv_states[..., -2, :] | 
					
						
						|  | value_states = qkv_states[..., -1, :] | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.transpose(1, 2) | 
					
						
						|  | key_states = key_states.transpose(1, 2) | 
					
						
						|  | value_states = value_states.transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | cos, sin = self.rotary_emb(value_states, position_ids) | 
					
						
						|  | query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) | 
					
						
						|  |  | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  |  | 
					
						
						|  | cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} | 
					
						
						|  | key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | 
					
						
						|  |  | 
					
						
						|  | key_states = repeat_kv(key_states, self.num_key_value_groups) | 
					
						
						|  | value_states = repeat_kv(value_states, self.num_key_value_groups) | 
					
						
						|  |  | 
					
						
						|  | causal_mask = attention_mask | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | causal_mask = causal_mask[:, :, :, : key_states.shape[-2]] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if query_states.device.type == "cuda" and causal_mask is not None: | 
					
						
						|  | query_states = query_states.contiguous() | 
					
						
						|  | key_states = key_states.contiguous() | 
					
						
						|  | value_states = value_states.contiguous() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | is_causal = bool(causal_mask is None and q_len > 1) | 
					
						
						|  |  | 
					
						
						|  | attn_output = torch.nn.functional.scaled_dot_product_attention( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | attn_mask=causal_mask, | 
					
						
						|  | dropout_p=0.0, | 
					
						
						|  | is_causal=is_causal, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.transpose(1, 2).contiguous() | 
					
						
						|  | attn_output = attn_output.view(bsz, q_len, self.hidden_size) | 
					
						
						|  |  | 
					
						
						|  | attn_output = self.wo(attn_output) | 
					
						
						|  |  | 
					
						
						|  | return attn_output, None, past_key_value | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | INTERNLM2_ATTENTION_CLASSES = { | 
					
						
						|  | "eager": InternLM2Attention, | 
					
						
						|  | "flash_attention_2": InternLM2FlashAttention2, | 
					
						
						|  | "sdpa": InternLM2SdpaAttention, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class InternLM2DecoderLayer(nn.Module): | 
					
						
						|  | """InternLM2 Decoder Layer. This module is a single layer of the InternLM2 model.""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: InternLM2Config, layer_idx: int): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.hidden_size = config.hidden_size | 
					
						
						|  | self.layer_idx = layer_idx | 
					
						
						|  |  | 
					
						
						|  | self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config, layer_idx=layer_idx) | 
					
						
						|  |  | 
					
						
						|  | self.feed_forward = InternLM2MLP(config) | 
					
						
						|  | self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
						
						|  | self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[Cache] = None, | 
					
						
						|  | output_attentions: Optional[bool] = False, | 
					
						
						|  | use_cache: Optional[bool] = False, | 
					
						
						|  | cache_position: Optional[torch.LongTensor] = None, | 
					
						
						|  | ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | 
					
						
						|  | """ | 
					
						
						|  | Args: | 
					
						
						|  | hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | 
					
						
						|  | attention_mask (`torch.FloatTensor`, *optional*): | 
					
						
						|  | attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, | 
					
						
						|  | query_sequence_length, key_sequence_length)` if default attention is used. | 
					
						
						|  | output_attentions (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the attentions tensors of all attention layers. See `attentions` under | 
					
						
						|  | returned tensors for more detail. | 
					
						
						|  | use_cache (`bool`, *optional*): | 
					
						
						|  | If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | 
					
						
						|  | (see `past_key_values`). | 
					
						
						|  | past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states | 
					
						
						|  | """ | 
					
						
						|  | residual = hidden_states | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.attention_norm(hidden_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states, self_attn_weights, present_key_value = self.attention( | 
					
						
						|  | hidden_states=hidden_states, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_value=past_key_value, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | cache_position=cache_position, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = residual + hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | residual = hidden_states | 
					
						
						|  | hidden_states = self.ffn_norm(hidden_states) | 
					
						
						|  | hidden_states = self.feed_forward(hidden_states) | 
					
						
						|  | hidden_states = residual + hidden_states | 
					
						
						|  |  | 
					
						
						|  | outputs = (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if output_attentions: | 
					
						
						|  | outputs += (self_attn_weights,) | 
					
						
						|  |  | 
					
						
						|  | if use_cache: | 
					
						
						|  | outputs += (present_key_value,) | 
					
						
						|  |  | 
					
						
						|  | return outputs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | InternLM2_START_DOCSTRING = r""" | 
					
						
						|  | This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | 
					
						
						|  | library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | 
					
						
						|  | etc.) | 
					
						
						|  |  | 
					
						
						|  | This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | 
					
						
						|  | Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | 
					
						
						|  | and behavior. | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | config ([`InternLM2Config`]): | 
					
						
						|  | Model configuration class with all the parameters of the model. Initializing with a config file does not | 
					
						
						|  | load the weights associated with the model, only the configuration. Check out the | 
					
						
						|  | [`~PreTrainedModel.from_pretrained`] method to load the model weights. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | "The bare InternLM2 Model outputting raw hidden-states without any specific head on top.", | 
					
						
						|  | InternLM2_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class InternLM2PreTrainedModel(PreTrainedModel): | 
					
						
						|  | """ | 
					
						
						|  | InternLM2 pretraiend model's base class. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | config_class = InternLM2Config | 
					
						
						|  | base_model_prefix = "model" | 
					
						
						|  | supports_gradient_checkpointing = True | 
					
						
						|  | _no_split_modules = ["InternLM2DecoderLayer"] | 
					
						
						|  | _skip_keys_device_placement = ["past_key_values"] | 
					
						
						|  | _supports_flash_attn_2 = True | 
					
						
						|  | _supports_sdpa = True | 
					
						
						|  | _supports_cache_class = True | 
					
						
						|  | _supports_quantized_cache = True | 
					
						
						|  | _supports_static_cache = True | 
					
						
						|  |  | 
					
						
						|  | def _init_weights(self, module): | 
					
						
						|  | std = self.config.initializer_range | 
					
						
						|  | if isinstance(module, nn.Linear): | 
					
						
						|  | module.weight.data.normal_(mean=0.0, std=std) | 
					
						
						|  | if module.bias is not None: | 
					
						
						|  | module.bias.data.zero_() | 
					
						
						|  | elif isinstance(module, nn.Embedding): | 
					
						
						|  | module.weight.data.normal_(mean=0.0, std=std) | 
					
						
						|  | if module.padding_idx is not None: | 
					
						
						|  | module.weight.data[module.padding_idx].zero_() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | InternLM2_INPUTS_DOCSTRING = r""" | 
					
						
						|  | Args: | 
					
						
						|  | input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | 
					
						
						|  | Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | 
					
						
						|  | it. | 
					
						
						|  |  | 
					
						
						|  | Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
						
						|  | [`PreTrainedTokenizer.__call__`] for details. | 
					
						
						|  |  | 
					
						
						|  | [What are input IDs?](../glossary#input-ids) | 
					
						
						|  | attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | 
					
						
						|  |  | 
					
						
						|  | - 1 for tokens that are **not masked**, | 
					
						
						|  | - 0 for tokens that are **masked**. | 
					
						
						|  |  | 
					
						
						|  | [What are attention masks?](../glossary#attention-mask) | 
					
						
						|  |  | 
					
						
						|  | Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
						
						|  | [`PreTrainedTokenizer.__call__`] for details. | 
					
						
						|  |  | 
					
						
						|  | If `past_key_values` is used, optionally only the last `input_ids` have to be input (see | 
					
						
						|  | `past_key_values`). | 
					
						
						|  |  | 
					
						
						|  | If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] | 
					
						
						|  | and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more | 
					
						
						|  | information on the default strategy. | 
					
						
						|  |  | 
					
						
						|  | - 1 indicates the head is **not masked**, | 
					
						
						|  | - 0 indicates the head is **masked**. | 
					
						
						|  | position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | 
					
						
						|  | config.n_positions - 1]`. | 
					
						
						|  |  | 
					
						
						|  | [What are position IDs?](../glossary#position-ids) | 
					
						
						|  | past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): | 
					
						
						|  | Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | 
					
						
						|  | blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` | 
					
						
						|  | returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. | 
					
						
						|  |  | 
					
						
						|  | Two formats are allowed: | 
					
						
						|  | - a [`~cache_utils.Cache`] instance; | 
					
						
						|  | - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of | 
					
						
						|  | shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy | 
					
						
						|  | cache format. | 
					
						
						|  |  | 
					
						
						|  | The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the | 
					
						
						|  | legacy cache format will be returned. | 
					
						
						|  |  | 
					
						
						|  | If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't | 
					
						
						|  | have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` | 
					
						
						|  | of shape `(batch_size, sequence_length)`. | 
					
						
						|  | inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | 
					
						
						|  | Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | 
					
						
						|  | is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | 
					
						
						|  | model's internal embedding lookup matrix. | 
					
						
						|  | use_cache (`bool`, *optional*): | 
					
						
						|  | If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | 
					
						
						|  | `past_key_values`). | 
					
						
						|  | output_attentions (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | 
					
						
						|  | tensors for more detail. | 
					
						
						|  | output_hidden_states (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | 
					
						
						|  | more detail. | 
					
						
						|  | return_dict (`bool`, *optional*): | 
					
						
						|  | Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | 
					
						
						|  | cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): | 
					
						
						|  | Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, | 
					
						
						|  | this tensor is not affected by padding. It is used to update the cache in the correct position and to infer | 
					
						
						|  | the complete sequence length. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | "The bare InternLM2 Model outputting raw hidden-states without any specific head on top.", | 
					
						
						|  | InternLM2_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class InternLM2Model(InternLM2PreTrainedModel): | 
					
						
						|  | """ | 
					
						
						|  | Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`] | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | config: InternLM2Config | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _auto_class = "AutoModel" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: InternLM2Config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.padding_idx = config.pad_token_id | 
					
						
						|  | self.vocab_size = config.vocab_size | 
					
						
						|  | self.config = config | 
					
						
						|  |  | 
					
						
						|  | self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) | 
					
						
						|  |  | 
					
						
						|  | self.layers = nn.ModuleList( | 
					
						
						|  | [InternLM2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] | 
					
						
						|  | ) | 
					
						
						|  | self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
						
						|  |  | 
					
						
						|  | self.gradient_checkpointing = False | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.tok_embeddings | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.tok_embeddings = value | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.LongTensor = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | cache_position: Optional[torch.LongTensor] = None, | 
					
						
						|  | ) -> Union[Tuple, BaseModelOutputWithPast]: | 
					
						
						|  | output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  | use_cache = use_cache if use_cache is not None else self.config.use_cache | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | if (input_ids is None) ^ (inputs_embeds is not None): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if self.gradient_checkpointing and self.training and use_cache: | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." | 
					
						
						|  | ) | 
					
						
						|  | use_cache = False | 
					
						
						|  |  | 
					
						
						|  | if inputs_embeds is None: | 
					
						
						|  | inputs_embeds = self.tok_embeddings(input_ids) | 
					
						
						|  |  | 
					
						
						|  | return_legacy_cache = False | 
					
						
						|  | if use_cache and not isinstance(past_key_values, Cache): | 
					
						
						|  | return_legacy_cache = True | 
					
						
						|  | past_key_values = DynamicCache.from_legacy_cache(past_key_values) | 
					
						
						|  |  | 
					
						
						|  | if cache_position is None: | 
					
						
						|  | past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 | 
					
						
						|  | cache_position = torch.arange( | 
					
						
						|  | past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device | 
					
						
						|  | ) | 
					
						
						|  | if position_ids is None: | 
					
						
						|  | position_ids = cache_position.unsqueeze(0) | 
					
						
						|  |  | 
					
						
						|  | causal_mask = self._update_causal_mask( | 
					
						
						|  | attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states = inputs_embeds | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | all_hidden_states = () if output_hidden_states else None | 
					
						
						|  | all_self_attns = () if output_attentions else None | 
					
						
						|  | next_decoder_cache = None | 
					
						
						|  |  | 
					
						
						|  | for decoder_layer in self.layers: | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | all_hidden_states += (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if self.gradient_checkpointing and self.training: | 
					
						
						|  | layer_outputs = self._gradient_checkpointing_func( | 
					
						
						|  | decoder_layer.__call__, | 
					
						
						|  | hidden_states, | 
					
						
						|  | causal_mask, | 
					
						
						|  | position_ids, | 
					
						
						|  | past_key_values, | 
					
						
						|  | output_attentions, | 
					
						
						|  | use_cache, | 
					
						
						|  | cache_position, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | layer_outputs = decoder_layer( | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask=causal_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_value=past_key_values, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | cache_position=cache_position, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = layer_outputs[0] | 
					
						
						|  |  | 
					
						
						|  | if use_cache: | 
					
						
						|  | next_decoder_cache = layer_outputs[2 if output_attentions else 1] | 
					
						
						|  |  | 
					
						
						|  | if output_attentions: | 
					
						
						|  | all_self_attns += (layer_outputs[1],) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.norm(hidden_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | all_hidden_states += (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | next_cache = next_decoder_cache if use_cache else None | 
					
						
						|  | if return_legacy_cache: | 
					
						
						|  | next_cache = next_cache.to_legacy_cache() | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) | 
					
						
						|  | return BaseModelOutputWithPast( | 
					
						
						|  | last_hidden_state=hidden_states, | 
					
						
						|  | past_key_values=next_cache, | 
					
						
						|  | hidden_states=all_hidden_states, | 
					
						
						|  | attentions=all_self_attns, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _update_causal_mask( | 
					
						
						|  | self, | 
					
						
						|  | attention_mask: torch.Tensor, | 
					
						
						|  | input_tensor: torch.Tensor, | 
					
						
						|  | cache_position: torch.Tensor, | 
					
						
						|  | past_key_values: Cache, | 
					
						
						|  | output_attentions: bool, | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.config.attn_implementation == "flash_attention_2": | 
					
						
						|  | if attention_mask is not None and 0.0 in attention_mask: | 
					
						
						|  | return attention_mask | 
					
						
						|  | return None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 | 
					
						
						|  | using_static_cache = isinstance(past_key_values, StaticCache) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.config.attn_implementation == "sdpa" and not using_static_cache and not output_attentions: | 
					
						
						|  | if AttentionMaskConverter._ignore_causal_mask_sdpa( | 
					
						
						|  | attention_mask, | 
					
						
						|  | inputs_embeds=input_tensor, | 
					
						
						|  | past_key_values_length=past_seen_tokens, | 
					
						
						|  | is_training=self.training, | 
					
						
						|  | ): | 
					
						
						|  | return None | 
					
						
						|  |  | 
					
						
						|  | dtype, device = input_tensor.dtype, input_tensor.device | 
					
						
						|  | min_dtype = torch.finfo(dtype).min | 
					
						
						|  | sequence_length = input_tensor.shape[1] | 
					
						
						|  | if using_static_cache: | 
					
						
						|  | target_length = past_key_values.get_max_length() | 
					
						
						|  | else: | 
					
						
						|  | target_length = ( | 
					
						
						|  | attention_mask.shape[-1] | 
					
						
						|  | if isinstance(attention_mask, torch.Tensor) | 
					
						
						|  | else past_seen_tokens + sequence_length + 1 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None and attention_mask.dim() == 4: | 
					
						
						|  |  | 
					
						
						|  | if attention_mask.max() != 0: | 
					
						
						|  | raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`") | 
					
						
						|  | causal_mask = attention_mask | 
					
						
						|  | else: | 
					
						
						|  | causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device) | 
					
						
						|  | if sequence_length != 1: | 
					
						
						|  | if support_bf16_triu or dtype == torch.float32: | 
					
						
						|  | causal_mask = torch.triu(causal_mask, diagonal=1) | 
					
						
						|  | else: | 
					
						
						|  | triu_mask = torch.triu(torch.ones(causal_mask.size(), device=device), diagonal=1).bool() | 
					
						
						|  | causal_mask.masked_fill_(~triu_mask, 0) | 
					
						
						|  | causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) | 
					
						
						|  | causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1) | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | causal_mask = causal_mask.clone() | 
					
						
						|  | mask_length = attention_mask.shape[-1] | 
					
						
						|  | padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] | 
					
						
						|  | padding_mask = padding_mask == 0 | 
					
						
						|  | causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( | 
					
						
						|  | padding_mask, min_dtype | 
					
						
						|  | ) | 
					
						
						|  | if ( | 
					
						
						|  | self.config.attn_implementation == "sdpa" | 
					
						
						|  | and attention_mask is not None | 
					
						
						|  | and attention_mask.device.type == "cuda" | 
					
						
						|  | and not output_attentions | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) | 
					
						
						|  |  | 
					
						
						|  | return causal_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class InternLM2ForCausalLM(InternLM2PreTrainedModel): | 
					
						
						|  | """Causal language model (CLM) for InternLM2.""" | 
					
						
						|  |  | 
					
						
						|  | _auto_class = "AutoModelForCausalLM" | 
					
						
						|  | _tied_weights_keys = ["output.weight"] | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.model = InternLM2Model(config) | 
					
						
						|  | self.vocab_size = config.vocab_size | 
					
						
						|  | self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.model.tok_embeddings | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.model.tok_embeddings = value | 
					
						
						|  |  | 
					
						
						|  | def get_output_embeddings(self): | 
					
						
						|  | return self.output | 
					
						
						|  |  | 
					
						
						|  | def set_output_embeddings(self, new_embeddings): | 
					
						
						|  | self.output = new_embeddings | 
					
						
						|  |  | 
					
						
						|  | def set_decoder(self, decoder): | 
					
						
						|  | self.model = decoder | 
					
						
						|  |  | 
					
						
						|  | def get_decoder(self): | 
					
						
						|  | return self.model | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING) | 
					
						
						|  | @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.LongTensor = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | labels: Optional[torch.LongTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | cache_position: Optional[torch.LongTensor] = None, | 
					
						
						|  | ) -> Union[Tuple, CausalLMOutputWithPast]: | 
					
						
						|  | r""" | 
					
						
						|  | Args: | 
					
						
						|  | labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | 
					
						
						|  | config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | 
					
						
						|  | (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  |  | 
					
						
						|  | Example: | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | >>> from transformers import AutoTokenizer, InternLM2ForCausalLM | 
					
						
						|  |  | 
					
						
						|  | >>> model = InternLM2ForCausalLM.from_pretrained("meta-InternLM2/InternLM2-2-7b-hf") | 
					
						
						|  | >>> tokenizer = AutoTokenizer.from_pretrained("meta-InternLM2/InternLM2-2-7b-hf") | 
					
						
						|  |  | 
					
						
						|  | >>> prompt = "Hey, are you conscious? Can you talk to me?" | 
					
						
						|  | >>> inputs = tokenizer(prompt, return_tensors="pt") | 
					
						
						|  |  | 
					
						
						|  | >>> # Generate | 
					
						
						|  | >>> generate_ids = model.generate(inputs.input_ids, max_length=30) | 
					
						
						|  | >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | 
					
						
						|  | "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." | 
					
						
						|  | ```""" | 
					
						
						|  |  | 
					
						
						|  | output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | outputs = self.model( | 
					
						
						|  | input_ids=input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | cache_position=cache_position, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = outputs[0] | 
					
						
						|  | if self.config.pretraining_tp > 1: | 
					
						
						|  | output_slices = self.output.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0) | 
					
						
						|  | logits = [ | 
					
						
						|  | F.linear(hidden_states, output_slices[i]) | 
					
						
						|  | for i in range(self.config.pretraining_tp) | 
					
						
						|  | ] | 
					
						
						|  | logits = torch.cat(logits, dim=-1) | 
					
						
						|  | else: | 
					
						
						|  | logits = self.output(hidden_states) | 
					
						
						|  | logits = logits.float() | 
					
						
						|  |  | 
					
						
						|  | loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  |  | 
					
						
						|  | shift_logits = logits[..., :-1, :].contiguous() | 
					
						
						|  | shift_labels = labels[..., 1:].contiguous() | 
					
						
						|  |  | 
					
						
						|  | loss_fct = CrossEntropyLoss() | 
					
						
						|  | shift_logits = shift_logits.view(-1, self.config.vocab_size) | 
					
						
						|  | shift_labels = shift_labels.view(-1) | 
					
						
						|  |  | 
					
						
						|  | shift_labels = shift_labels.to(shift_logits.device) | 
					
						
						|  | loss = loss_fct(shift_logits, shift_labels) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (logits,) + outputs[1:] | 
					
						
						|  | return (loss,) + output if loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return CausalLMOutputWithPast( | 
					
						
						|  | loss=loss, | 
					
						
						|  | logits=logits, | 
					
						
						|  | past_key_values=outputs.past_key_values, | 
					
						
						|  | hidden_states=outputs.hidden_states, | 
					
						
						|  | attentions=outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def prepare_inputs_for_generation( | 
					
						
						|  | self, | 
					
						
						|  | input_ids, | 
					
						
						|  | past_key_values=None, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | inputs_embeds=None, | 
					
						
						|  | cache_position=None, | 
					
						
						|  | use_cache=True, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | past_length = 0 | 
					
						
						|  | if past_key_values is not None: | 
					
						
						|  | if isinstance(past_key_values, Cache): | 
					
						
						|  | past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length() | 
					
						
						|  | max_cache_length = ( | 
					
						
						|  | torch.tensor(past_key_values.get_max_length(), device=input_ids.device) | 
					
						
						|  | if past_key_values.get_max_length() is not None | 
					
						
						|  | else None | 
					
						
						|  | ) | 
					
						
						|  | cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length) | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | cache_length = past_length = past_key_values[0][0].shape[2] | 
					
						
						|  | max_cache_length = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: | 
					
						
						|  | input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | elif past_length < input_ids.shape[1]: | 
					
						
						|  | input_ids = input_ids[:, past_length:] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if ( | 
					
						
						|  | max_cache_length is not None | 
					
						
						|  | and attention_mask is not None | 
					
						
						|  | and cache_length + input_ids.shape[1] > max_cache_length | 
					
						
						|  | ): | 
					
						
						|  | attention_mask = attention_mask[:, -max_cache_length:] | 
					
						
						|  |  | 
					
						
						|  | position_ids = kwargs.get("position_ids", None) | 
					
						
						|  | if attention_mask is not None and position_ids is None: | 
					
						
						|  |  | 
					
						
						|  | position_ids = attention_mask.long().cumsum(-1) - 1 | 
					
						
						|  | position_ids.masked_fill_(attention_mask == 0, 1) | 
					
						
						|  | if past_key_values: | 
					
						
						|  | position_ids = position_ids[:, -input_ids.shape[1] :] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if inputs_embeds is not None and past_key_values is None: | 
					
						
						|  | model_inputs = {"inputs_embeds": inputs_embeds} | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | model_inputs = {"input_ids": input_ids.contiguous()} | 
					
						
						|  |  | 
					
						
						|  | input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1] | 
					
						
						|  | if cache_position is None: | 
					
						
						|  | cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device) | 
					
						
						|  | elif use_cache: | 
					
						
						|  | cache_position = cache_position[-input_length:] | 
					
						
						|  |  | 
					
						
						|  | model_inputs.update( | 
					
						
						|  | { | 
					
						
						|  | "position_ids": position_ids, | 
					
						
						|  | "cache_position": cache_position, | 
					
						
						|  | "past_key_values": past_key_values, | 
					
						
						|  | "use_cache": use_cache, | 
					
						
						|  | "attention_mask": attention_mask, | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  | return model_inputs | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | def _reorder_cache(past_key_values, beam_idx): | 
					
						
						|  | reordered_past = () | 
					
						
						|  | for layer_past in past_key_values: | 
					
						
						|  | reordered_past += ( | 
					
						
						|  | tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), | 
					
						
						|  | ) | 
					
						
						|  | return reordered_past | 
					
						
						|  |  | 
					
						
						|  | def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, meta_instruction=""): | 
					
						
						|  | if history is None: | 
					
						
						|  | history = [] | 
					
						
						|  | if tokenizer.add_bos_token: | 
					
						
						|  | prompt = "" | 
					
						
						|  | else: | 
					
						
						|  | prompt = tokenizer.bos_token | 
					
						
						|  | if meta_instruction: | 
					
						
						|  | prompt += f"""<|im_start|>system\n{meta_instruction}<|im_end|>\n""" | 
					
						
						|  | for record in history: | 
					
						
						|  | prompt += f"""<|im_start|>user\n{record[0]}<|im_end|>\n<|im_start|>assistant\n{record[1]}<|im_end|>\n""" | 
					
						
						|  | prompt += f"""<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant\n""" | 
					
						
						|  | return tokenizer([prompt], return_tensors="pt") | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | def chat( | 
					
						
						|  | self, | 
					
						
						|  | tokenizer, | 
					
						
						|  | query: str, | 
					
						
						|  | history: Optional[List[Tuple[str, str]]] = None, | 
					
						
						|  | streamer: Optional[BaseStreamer] = None, | 
					
						
						|  | max_new_tokens: int = 1024, | 
					
						
						|  | do_sample: bool = True, | 
					
						
						|  | temperature: float = 0.8, | 
					
						
						|  | top_p: float = 0.8, | 
					
						
						|  | meta_instruction: str = "You are an AI assistant whose name is InternLM (书生·浦语).\n" | 
					
						
						|  | "- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory " | 
					
						
						|  | "(上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n" | 
					
						
						|  | "- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such " | 
					
						
						|  | "as English and 中文.", | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | if history is None: | 
					
						
						|  | history = [] | 
					
						
						|  | inputs = self.build_inputs(tokenizer, query, history, meta_instruction) | 
					
						
						|  | inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)} | 
					
						
						|  |  | 
					
						
						|  | eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(["<|im_end|>"])[0]] | 
					
						
						|  | outputs = self.generate( | 
					
						
						|  | **inputs, | 
					
						
						|  | streamer=streamer, | 
					
						
						|  | max_new_tokens=max_new_tokens, | 
					
						
						|  | do_sample=do_sample, | 
					
						
						|  | temperature=temperature, | 
					
						
						|  | top_p=top_p, | 
					
						
						|  | eos_token_id=eos_token_id, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  | outputs = outputs[0].cpu().tolist()[len(inputs["input_ids"][0]) :] | 
					
						
						|  | response = tokenizer.decode(outputs, skip_special_tokens=True) | 
					
						
						|  | response = response.split("<|im_end|>")[0] | 
					
						
						|  | history = history + [(query, response)] | 
					
						
						|  | return response, history | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | def stream_chat( | 
					
						
						|  | self, | 
					
						
						|  | tokenizer, | 
					
						
						|  | query: str, | 
					
						
						|  | history: List[Tuple[str, str]] = None, | 
					
						
						|  | max_new_tokens: int = 1024, | 
					
						
						|  | do_sample: bool = True, | 
					
						
						|  | temperature: float = 0.8, | 
					
						
						|  | top_p: float = 0.8, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | if history is None: | 
					
						
						|  | history = [] | 
					
						
						|  | """ | 
					
						
						|  | Return a generator in format: (response, history) | 
					
						
						|  | Eg. | 
					
						
						|  | ('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')]) | 
					
						
						|  | ('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')]) | 
					
						
						|  | """ | 
					
						
						|  | if BaseStreamer is None: | 
					
						
						|  | raise ModuleNotFoundError( | 
					
						
						|  | "The version of `transformers` is too low. Please make sure " | 
					
						
						|  | "that you have installed `transformers>=4.28.0`." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | response_queue = queue.Queue(maxsize=20) | 
					
						
						|  |  | 
					
						
						|  | class ChatStreamer(BaseStreamer): | 
					
						
						|  | """ | 
					
						
						|  | Streamer used in generate to print words one by one. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, tokenizer) -> None: | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.tokenizer = tokenizer | 
					
						
						|  | self.queue = response_queue | 
					
						
						|  | self.query = query | 
					
						
						|  | self.history = history | 
					
						
						|  | self.response = "" | 
					
						
						|  | self.cache = [] | 
					
						
						|  | self.received_inputs = False | 
					
						
						|  | self.queue.put((self.response, history + [(self.query, self.response)])) | 
					
						
						|  |  | 
					
						
						|  | def put(self, value): | 
					
						
						|  | if len(value.shape) > 1 and value.shape[0] > 1: | 
					
						
						|  | raise ValueError("ChatStreamer only supports batch size 1") | 
					
						
						|  | elif len(value.shape) > 1: | 
					
						
						|  | value = value[0] | 
					
						
						|  |  | 
					
						
						|  | if not self.received_inputs: | 
					
						
						|  |  | 
					
						
						|  | self.received_inputs = True | 
					
						
						|  | return | 
					
						
						|  |  | 
					
						
						|  | self.cache.extend(value.tolist()) | 
					
						
						|  | token = self.tokenizer.decode(self.cache, skip_special_tokens=True) | 
					
						
						|  | if token.strip() != "<|im_end|>": | 
					
						
						|  | self.response = self.response + token | 
					
						
						|  | history = self.history + [(self.query, self.response)] | 
					
						
						|  | self.queue.put((self.response, history)) | 
					
						
						|  | self.cache = [] | 
					
						
						|  | else: | 
					
						
						|  | self.end() | 
					
						
						|  |  | 
					
						
						|  | def end(self): | 
					
						
						|  | self.queue.put(None) | 
					
						
						|  |  | 
					
						
						|  | def stream_producer(): | 
					
						
						|  | return self.chat( | 
					
						
						|  | tokenizer=tokenizer, | 
					
						
						|  | query=query, | 
					
						
						|  | streamer=ChatStreamer(tokenizer=tokenizer), | 
					
						
						|  | history=history, | 
					
						
						|  | max_new_tokens=max_new_tokens, | 
					
						
						|  | do_sample=do_sample, | 
					
						
						|  | temperature=temperature, | 
					
						
						|  | top_p=top_p, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def consumer(): | 
					
						
						|  | producer = threading.Thread(target=stream_producer) | 
					
						
						|  | producer.start() | 
					
						
						|  | while True: | 
					
						
						|  | res = response_queue.get() | 
					
						
						|  | if res is None: | 
					
						
						|  | return | 
					
						
						|  | yield res | 
					
						
						|  |  | 
					
						
						|  | return consumer() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | """ | 
					
						
						|  | The InternLM2 Model transformer with a sequence classification head on top (linear layer). | 
					
						
						|  |  | 
					
						
						|  | [`InternLM2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models | 
					
						
						|  | (e.g. GPT-2) do. | 
					
						
						|  |  | 
					
						
						|  | Since it does classification on the last token, it requires to know the position of the last token. If a | 
					
						
						|  | `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If | 
					
						
						|  | no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the | 
					
						
						|  | padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in | 
					
						
						|  | each row of the batch). | 
					
						
						|  | """, | 
					
						
						|  | InternLM2_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class InternLM2ForSequenceClassification(InternLM2PreTrainedModel): | 
					
						
						|  | """Sequence Classification Head for InternLM2 Model.""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.num_labels = config.num_labels | 
					
						
						|  | self.model = InternLM2Model(config) | 
					
						
						|  | self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.model.tok_embeddings | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.model.tok_embeddings = value | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.LongTensor = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | labels: Optional[torch.LongTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple, SequenceClassifierOutputWithPast]: | 
					
						
						|  | r""" | 
					
						
						|  | labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | 
					
						
						|  | Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | 
					
						
						|  | config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | 
					
						
						|  | `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | 
					
						
						|  | """ | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | transformer_outputs = self.model( | 
					
						
						|  | input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = transformer_outputs[0] | 
					
						
						|  | logits = self.score(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | if input_ids is not None: | 
					
						
						|  | batch_size = input_ids.shape[0] | 
					
						
						|  | else: | 
					
						
						|  | batch_size = inputs_embeds.shape[0] | 
					
						
						|  |  | 
					
						
						|  | if self.config.pad_token_id is None and batch_size != 1: | 
					
						
						|  | raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") | 
					
						
						|  | if self.config.pad_token_id is None: | 
					
						
						|  | sequence_lengths = -1 | 
					
						
						|  | else: | 
					
						
						|  | if input_ids is not None: | 
					
						
						|  |  | 
					
						
						|  | sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 | 
					
						
						|  | sequence_lengths = sequence_lengths % input_ids.shape[-1] | 
					
						
						|  | sequence_lengths = sequence_lengths.to(logits.device) | 
					
						
						|  | else: | 
					
						
						|  | sequence_lengths = -1 | 
					
						
						|  |  | 
					
						
						|  | pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] | 
					
						
						|  |  | 
					
						
						|  | loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  | labels = labels.to(logits.device) | 
					
						
						|  | if self.config.problem_type is None: | 
					
						
						|  | if self.num_labels == 1: | 
					
						
						|  | self.config.problem_type = "regression" | 
					
						
						|  | elif self.num_labels > 1 and (labels.dtype in (torch.long, torch.int)): | 
					
						
						|  | self.config.problem_type = "single_label_classification" | 
					
						
						|  | else: | 
					
						
						|  | self.config.problem_type = "multi_label_classification" | 
					
						
						|  |  | 
					
						
						|  | if self.config.problem_type == "regression": | 
					
						
						|  | loss_fct = MSELoss() | 
					
						
						|  | if self.num_labels == 1: | 
					
						
						|  | loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) | 
					
						
						|  | else: | 
					
						
						|  | loss = loss_fct(pooled_logits, labels) | 
					
						
						|  | elif self.config.problem_type == "single_label_classification": | 
					
						
						|  | loss_fct = CrossEntropyLoss() | 
					
						
						|  | loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) | 
					
						
						|  | elif self.config.problem_type == "multi_label_classification": | 
					
						
						|  | loss_fct = BCEWithLogitsLoss() | 
					
						
						|  | loss = loss_fct(pooled_logits, labels) | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (pooled_logits,) + transformer_outputs[1:] | 
					
						
						|  | return ((loss,) + output) if loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return SequenceClassifierOutputWithPast( | 
					
						
						|  | loss=loss, | 
					
						
						|  | logits=pooled_logits, | 
					
						
						|  | past_key_values=transformer_outputs.past_key_values, | 
					
						
						|  | hidden_states=transformer_outputs.hidden_states, | 
					
						
						|  | attentions=transformer_outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | """ | 
					
						
						|  | The InternLM2 Model transformer with a span classification head on top for extractive question-answering tasks like | 
					
						
						|  | SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`). | 
					
						
						|  | """, | 
					
						
						|  | InternLM2_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class InternLM2ForQuestionAnswering(InternLM2PreTrainedModel): | 
					
						
						|  | """Question Answering model for InternLM2.""" | 
					
						
						|  |  | 
					
						
						|  | base_model_prefix = "transformer" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.transformer = InternLM2Model(config) | 
					
						
						|  | self.qa_outputs = nn.Linear(config.hidden_size, 2) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.transformer.tok_embeddings | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.transformer.tok_embeddings = value | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | attention_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | start_positions: Optional[torch.LongTensor] = None, | 
					
						
						|  | end_positions: Optional[torch.LongTensor] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple, QuestionAnsweringModelOutput]: | 
					
						
						|  | r""" | 
					
						
						|  | start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | 
					
						
						|  | Labels for position (index) of the start of the labelled span for computing the token classification loss. | 
					
						
						|  | Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | 
					
						
						|  | are not taken into account for computing the loss. | 
					
						
						|  | end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | 
					
						
						|  | Labels for position (index) of the end of the labelled span for computing the token classification loss. | 
					
						
						|  | Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | 
					
						
						|  | are not taken into account for computing the loss. | 
					
						
						|  | """ | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | outputs = self.transformer( | 
					
						
						|  | input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | sequence_output = outputs[0] | 
					
						
						|  |  | 
					
						
						|  | logits = self.qa_outputs(sequence_output) | 
					
						
						|  | start_logits, end_logits = logits.split(1, dim=-1) | 
					
						
						|  | start_logits = start_logits.squeeze(-1).contiguous() | 
					
						
						|  | end_logits = end_logits.squeeze(-1).contiguous() | 
					
						
						|  |  | 
					
						
						|  | total_loss = None | 
					
						
						|  | if start_positions is not None and end_positions is not None: | 
					
						
						|  |  | 
					
						
						|  | if len(start_positions.size()) > 1: | 
					
						
						|  | start_positions = start_positions.squeeze(-1).to(start_logits.device) | 
					
						
						|  | if len(end_positions.size()) > 1: | 
					
						
						|  | end_positions = end_positions.squeeze(-1).to(end_logits.device) | 
					
						
						|  |  | 
					
						
						|  | ignored_index = start_logits.size(1) | 
					
						
						|  | start_positions = start_positions.clamp(0, ignored_index) | 
					
						
						|  | end_positions = end_positions.clamp(0, ignored_index) | 
					
						
						|  |  | 
					
						
						|  | loss_fct = CrossEntropyLoss(ignore_index=ignored_index) | 
					
						
						|  | start_loss = loss_fct(start_logits, start_positions) | 
					
						
						|  | end_loss = loss_fct(end_logits, end_positions) | 
					
						
						|  | total_loss = (start_loss + end_loss) / 2 | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (start_logits, end_logits) + outputs[2:] | 
					
						
						|  | return ((total_loss,) + output) if total_loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return QuestionAnsweringModelOutput( | 
					
						
						|  | loss=total_loss, | 
					
						
						|  | start_logits=start_logits, | 
					
						
						|  | end_logits=end_logits, | 
					
						
						|  | hidden_states=outputs.hidden_states, | 
					
						
						|  | attentions=outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | """ | 
					
						
						|  | The InternLM2 Model transformer with a token classification head on top (a linear layer on top of the hidden-states | 
					
						
						|  | output) e.g. for Named-Entity-Recognition (NER) tasks. | 
					
						
						|  | """, | 
					
						
						|  | InternLM2_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class InternLM2ForTokenClassification(InternLM2PreTrainedModel): | 
					
						
						|  | """Token classification model for InternLM2.""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.num_labels = config.num_labels | 
					
						
						|  | self.model = InternLM2Model(config) | 
					
						
						|  | if getattr(config, "classifier_dropout", None) is not None: | 
					
						
						|  | classifier_dropout = config.classifier_dropout | 
					
						
						|  | elif getattr(config, "hidden_dropout", None) is not None: | 
					
						
						|  | classifier_dropout = config.hidden_dropout | 
					
						
						|  | else: | 
					
						
						|  | classifier_dropout = 0.1 | 
					
						
						|  | self.dropout = nn.Dropout(classifier_dropout) | 
					
						
						|  | self.score = nn.Linear(config.hidden_size, config.num_labels) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.model.tok_embeddings | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.model.tok_embeddings = value | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.LongTensor = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | labels: Optional[torch.LongTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple, SequenceClassifierOutputWithPast]: | 
					
						
						|  | r""" | 
					
						
						|  | labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | 
					
						
						|  | Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | 
					
						
						|  | config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | 
					
						
						|  | `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | 
					
						
						|  | """ | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | outputs = self.model( | 
					
						
						|  | input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  | sequence_output = outputs[0] | 
					
						
						|  | sequence_output = self.dropout(sequence_output) | 
					
						
						|  | logits = self.score(sequence_output) | 
					
						
						|  |  | 
					
						
						|  | loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  | loss_fct = CrossEntropyLoss() | 
					
						
						|  | loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (logits,) + outputs[2:] | 
					
						
						|  | return ((loss,) + output) if loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return TokenClassifierOutput( | 
					
						
						|  | loss=loss, | 
					
						
						|  | logits=logits, | 
					
						
						|  | hidden_states=outputs.hidden_states, | 
					
						
						|  | attentions=outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  |