--- base_model: cardiffnlp/twitter-xlm-roberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: training_with_callbacks results: [] --- # training_with_callbacks This model is a fine-tuned version of [cardiffnlp/twitter-xlm-roberta-base](https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4317 - Precision: 0.7304 - Recall: 0.7613 - F1: 0.7456 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | No log | 1.0 | 458 | 0.4317 | 0.7304 | 0.7613 | 0.7456 | | 0.5107 | 2.0 | 916 | 0.4730 | 0.8008 | 0.6193 | 0.6985 | | 0.3555 | 3.0 | 1374 | 0.4850 | 0.7512 | 0.7205 | 0.7355 | | 0.2265 | 4.0 | 1832 | 0.6697 | 0.7379 | 0.7356 | 0.7368 | | 0.1547 | 5.0 | 2290 | 0.7118 | 0.7491 | 0.6450 | 0.6932 | | 0.1154 | 6.0 | 2748 | 1.0137 | 0.7177 | 0.7221 | 0.7199 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1