File size: 2,594 Bytes
fd7dc6c
 
 
 
1f3b6c0
fd7dc6c
 
f2bcaf0
fd7dc6c
 
 
 
 
 
 
 
 
 
1cba86b
fd7dc6c
32553fa
 
 
 
 
fd7dc6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32553fa
 
 
 
 
 
 
 
 
 
 
 
 
 
fd7dc6c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
license: apache-2.0
tags:
- generated_from_trainer
datasets: din0s/asqa
metrics:
- rouge
base_model: google/t5-small-ssm-nq
model-index:
- name: t5-small-asqa-ob
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-small-asqa-ob

This model is a fine-tuned version of [google/t5-small-ssm-nq](https://huggingface.co/google/t5-small-ssm-nq) on the [ASQA](https://huggingface.co/datasets/din0s/asqa) dataset without context (closed book).
It achieves the following results on the evaluation set:
- Loss: 2.8099
- Rouge1: 0.1493
- Rouge2: 0.0837
- Rougel: 0.1272
- Rougelsum: 0.1270

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
| 3.8208        | 1.0   | 710  | 2.7856          | 0.1267 | 0.0644 | 0.1086 | 0.1084    |
| 3.0532        | 2.0   | 1420 | 2.6247          | 0.1321 | 0.0721 | 0.1145 | 0.1144    |
| 2.5656        | 3.0   | 2130 | 2.5062          | 0.1399 | 0.0773 | 0.1213 | 0.1213    |
| 2.3806        | 4.0   | 2840 | 2.5004          | 0.1431 | 0.0805 | 0.1243 | 0.1241    |
| 2.157         | 5.0   | 3550 | 2.5008          | 0.1455 | 0.0808 | 0.1255 | 0.1254    |
| 2.0458        | 6.0   | 4260 | 2.5313          | 0.1510 | 0.0846 | 0.1303 | 0.1301    |
| 1.914         | 7.0   | 4970 | 2.5298          | 0.1585 | 0.0885 | 0.1361 | 0.1358    |
| 1.7479        | 8.0   | 5680 | 2.5832          | 0.1508 | 0.0844 | 0.1292 | 0.1291    |
| 1.6875        | 9.0   | 6390 | 2.5928          | 0.1493 | 0.0834 | 0.1281 | 0.1279    |
| 1.574         | 10.0  | 7100 | 2.6364          | 0.1591 | 0.0885 | 0.1364 | 0.1363    |
| 1.4554        | 11.0  | 7810 | 2.6978          | 0.1513 | 0.0849 | 0.1295 | 0.1295    |
| 1.3909        | 12.0  | 8520 | 2.8099          | 0.1493 | 0.0837 | 0.1272 | 0.1270    |


### Framework versions

- Transformers 4.23.0.dev0
- Pytorch 1.12.1+cu102
- Datasets 2.5.1
- Tokenizers 0.12.1