--- base_model: canopylabs/orpheus-3b-0.1-ft language: - en library_name: transformers license: apache-2.0 pipeline_tag: text-to-speech tags: - llama-cpp - gguf-my-repo --- # Orpheus-TTS-Local A lightweight client for running [Orpheus TTS](https://huggingface.co/canopylabs/orpheus-3b-0.1-ft) locally using LM Studio API. {Github Repo](https://github.com/isaiahbjork/orpheus-tts-local) ## Features - 🎧 High-quality Text-to-Speech using the Orpheus TTS model - 💻 Completely local - no cloud API keys needed - 🔊 Multiple voice options (tara, leah, jess, leo, dan, mia, zac, zoe) - 💾 Save audio to WAV files ## Quick Setup 1. Install [LM Studio](https://lmstudio.ai/) 2. Install the [Orpheus TTS model (orpheus-3b-0.1-ft-q4_k_m.gguf)](https://huggingface.co/isaiahbjork/orpheus-3b-0.1-ft-Q4_K_M-GGUF) in LM Studio 3. Load the Orpheus model in LM Studio 4. Start the local server in LM Studio (default: http://127.0.0.1:1234) 5. Install dependencies: ``` python3 -m venv venv source venv/bin/activate pip install -r requirements.txt ``` 6. Run the script: ``` python gguf_orpheus.py --text "Hello, this is a test" --voice tara ``` ## Usage ``` python gguf_orpheus.py --text "Your text here" --voice tara --output "output.wav" ``` ### Options - `--text`: The text to convert to speech - `--voice`: The voice to use (default: tara) - `--output`: Output WAV file path (default: auto-generated filename) - `--list-voices`: Show available voices - `--temperature`: Temperature for generation (default: 0.6) - `--top_p`: Top-p sampling parameter (default: 0.9) - `--repetition_penalty`: Repetition penalty (default: 1.1) ## Available Voices - tara - Best overall voice for general use (default) - leah - jess - leo - dan - mia - zac - zoe ## Emotion You can add emotion to the speech by adding the following tags: ```xml ``` ## License Apache 2.0