---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:48972
- loss:TripletLoss
base_model: sentence-transformers/all-mpnet-base-v2
widget:
- source_sentence: '[instance: <*>] Terminating instance'
sentences:
- 'pam_unix(sshd:session): session opened for user <*> by (uid=<*>)'
- '[instance: <*>] Terminating instance'
- '[instance: <*>] Creating image'
- source_sentence: '[instance: <*>] Total vcpu: <*> VCPU, used: <*> VCPU'
sentences:
- '[instance: <*>] Total vcpu: <*> VCPU, used: <*> VCPU'
- 'Total usable vcpus: <*>, total allocated vcpus: <*>'
- Accepted password for <*> from <*> port <*> ssh2
- source_sentence: Creating event <*> for instance <*>
sentences:
- 'pam_unix(sshd:auth): check pass; user unknown'
- '[instance: <*>] disk limit not specified, defaulting to unlimited'
- Creating event <*> for instance <*>
- source_sentence: Successfully synced instances from host '<*>'.
sentences:
- Successfully synced instances from host '<*>'.
- 'pam_unix(sshd:auth): authentication failure; logname=<*> uid=<*> euid=<*> tty=<*>
ruser=<*> rhost=<*> user=<*>'
- 'Removable base files: <*>'
- source_sentence: 'HTTP exception thrown: No instances found for any event'
sentences:
- Invalid user <*> from <*>
- '[instance: <*>] VM Stopped (Lifecycle Event)'
- 'HTTP exception thrown: No instances found for any event'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
model-index:
- name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
results:
- task:
type: triplet
name: Triplet
dataset:
name: val eval
type: val-eval
metrics:
- type: cosine_accuracy
value: 1.0
name: Cosine Accuracy
---
# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)
- **Maximum Sequence Length:** 384 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'HTTP exception thrown: No instances found for any event',
'HTTP exception thrown: No instances found for any event',
'[instance: <*>] VM Stopped (Lifecycle Event)',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Triplet
* Dataset: `val-eval`
* Evaluated with [TripletEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:--------------------|:--------|
| **cosine_accuracy** | **1.0** |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 48,972 training samples
* Columns: sentence_0
, sentence_1
, and sentence_2
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 | sentence_2 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details |
[instance: <*>] Deletion of <*> complete
| [instance: <*>] Deletion of <*> complete
| image <*> at (<*>): in use: on this node <*> local, <*> on other nodes sharing this instance storage
|
| Creating event <*> for instance <*>
| Creating event <*> for instance <*>
| image <*> at (<*>): in use: on this node <*> local, <*> on other nodes sharing this instance storage
|
| Accepted password for <*> from <*> port <*> ssh2
| Accepted password for <*> from <*> port <*> ssh2
| error: Received disconnect from <*>: <*>: <*>: Auth fail [preauth]
|
* Loss: [TripletLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
```json
{
"distance_metric": "TripletDistanceMetric.EUCLIDEAN",
"triplet_margin": 1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 2
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters