Upload 2 files
Browse files- diffuser/run.py +30 -0
- diffuser/utils.py +81 -0
diffuser/run.py
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from utils import create_stable_diffusion_model, run_diffuser
|
| 2 |
+
import opensr_test
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
|
| 5 |
+
# Load the model
|
| 6 |
+
model = create_stable_diffusion_model(device="cuda")
|
| 7 |
+
|
| 8 |
+
# Load the dataset
|
| 9 |
+
dataset = opensr_test.load("naip")
|
| 10 |
+
lr_dataset, hr_dataset = dataset["L2A"], dataset["HRharm"]
|
| 11 |
+
|
| 12 |
+
# Run the model
|
| 13 |
+
results = run_diffuser(
|
| 14 |
+
model=model,
|
| 15 |
+
lr=lr_dataset[5][:,0:64, 0:64],
|
| 16 |
+
hr=hr_dataset[5][:,0:256, 0:256],
|
| 17 |
+
device="cuda"
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
# Display the results
|
| 21 |
+
fig, ax = plt.subplots(1, 3, figsize=(10, 5))
|
| 22 |
+
ax[0].imshow(results["lr"].transpose(1, 2, 0)/3000)
|
| 23 |
+
ax[0].set_title("LR")
|
| 24 |
+
ax[0].axis("off")
|
| 25 |
+
ax[1].imshow(results["sr"].transpose(1, 2, 0)/3000)
|
| 26 |
+
ax[1].set_title("SR")
|
| 27 |
+
ax[1].axis("off")
|
| 28 |
+
ax[2].imshow(results["hr"].transpose(1, 2, 0) / 3000)
|
| 29 |
+
ax[2].set_title("HR")
|
| 30 |
+
plt.show()
|
diffuser/utils.py
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from diffusers import LDMSuperResolutionPipeline
|
| 2 |
+
import numpy as np
|
| 3 |
+
import opensr_test
|
| 4 |
+
import torch
|
| 5 |
+
import pickle
|
| 6 |
+
from typing import Union
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def create_stable_diffusion_model(
|
| 10 |
+
device: Union[str, torch.device] = "cuda"
|
| 11 |
+
) -> LDMSuperResolutionPipeline:
|
| 12 |
+
""" Create the stable diffusion model
|
| 13 |
+
|
| 14 |
+
Returns:
|
| 15 |
+
LDMSuperResolutionPipeline: The model to use for
|
| 16 |
+
super resolution.
|
| 17 |
+
"""
|
| 18 |
+
model_id = "CompVis/ldm-super-resolution-4x-openimages"
|
| 19 |
+
pipeline = LDMSuperResolutionPipeline.from_pretrained(model_id)
|
| 20 |
+
pipeline = pipeline.to(device)
|
| 21 |
+
return pipeline
|
| 22 |
+
|
| 23 |
+
def run_diffuser(
|
| 24 |
+
model: LDMSuperResolutionPipeline,
|
| 25 |
+
lr: torch.Tensor,
|
| 26 |
+
hr: torch.Tensor,
|
| 27 |
+
device: Union[str, torch.device] = "cuda"
|
| 28 |
+
) -> dict:
|
| 29 |
+
""" Run the model on the low resolution image
|
| 30 |
+
|
| 31 |
+
Args:
|
| 32 |
+
model (LDMSuperResolutionPipeline): The model to use
|
| 33 |
+
lr (torch.Tensor): The low resolution image
|
| 34 |
+
hr (torch.Tensor): The high resolution image
|
| 35 |
+
device (Union[str, torch.device], optional): The device
|
| 36 |
+
to use. Defaults to "cuda".
|
| 37 |
+
|
| 38 |
+
Returns:
|
| 39 |
+
dict: The results of the model
|
| 40 |
+
"""
|
| 41 |
+
|
| 42 |
+
# move the images to the device
|
| 43 |
+
lr = (torch.from_numpy(lr[[3, 2, 1]]) / 2000).to(device).clamp(0, 1)
|
| 44 |
+
|
| 45 |
+
if lr.shape[1] == 121:
|
| 46 |
+
# add padding
|
| 47 |
+
lr = torch.nn.functional.pad(
|
| 48 |
+
lr[None],
|
| 49 |
+
pad=(3, 4, 3, 4),
|
| 50 |
+
mode='reflect'
|
| 51 |
+
).squeeze()
|
| 52 |
+
|
| 53 |
+
# run the model
|
| 54 |
+
with torch.no_grad():
|
| 55 |
+
sr = model(lr[None], num_inference_steps=100, eta=1)
|
| 56 |
+
sr = torch.from_numpy(
|
| 57 |
+
np.array(sr.images[0])/255
|
| 58 |
+
).permute(2,0,1).float()
|
| 59 |
+
|
| 60 |
+
# remove padding
|
| 61 |
+
sr = sr[:, 3*4:-4*4, 3*4:-4*4]
|
| 62 |
+
lr = lr[:, 3:-4, 3:-4]
|
| 63 |
+
else:
|
| 64 |
+
# run the model
|
| 65 |
+
with torch.no_grad():
|
| 66 |
+
sr = model(lr[None], num_inference_steps=100, eta=1)
|
| 67 |
+
sr = torch.from_numpy(
|
| 68 |
+
np.array(sr.images[0])/255
|
| 69 |
+
).permute(2,0,1).float()
|
| 70 |
+
|
| 71 |
+
lr = (lr.cpu().numpy() * 2000).astype(np.uint16)
|
| 72 |
+
hr = ((hr[0:3] / 2000).clip(0, 1) * 2000).astype(np.uint16)
|
| 73 |
+
sr = (sr.cpu().numpy() * 2000).astype(np.uint16)
|
| 74 |
+
|
| 75 |
+
results = {
|
| 76 |
+
"lr": lr,
|
| 77 |
+
"hr": hr,
|
| 78 |
+
"sr": sr
|
| 79 |
+
}
|
| 80 |
+
|
| 81 |
+
return results
|