File size: 2,445 Bytes
8809c99 aa2fa80 8809c99 aa2fa80 8809c99 5a3d591 aa2fa80 8809c99 5a3d591 8809c99 5a3d591 8809c99 5a3d591 aa2fa80 8809c99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
datasets:
- minds14
metrics:
- accuracy
model-index:
- name: my_awesome_mind_model
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: minds14
type: minds14
config: en-US
split: train
args: en-US
metrics:
- name: Accuracy
type: accuracy
value: 0.10619469026548672
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_mind_model
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the minds14 dataset.
It achieves the following results on the evaluation set:
- Loss: 2.6476
- Accuracy: 0.1062
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| No log | 0.8276 | 3 | 2.6387 | 0.0531 |
| No log | 1.8276 | 6 | 2.6428 | 0.0265 |
| No log | 2.8276 | 9 | 2.6448 | 0.0619 |
| 2.837 | 3.8276 | 12 | 2.6436 | 0.0531 |
| 2.837 | 4.8276 | 15 | 2.6464 | 0.0619 |
| 2.837 | 5.8276 | 18 | 2.6462 | 0.0885 |
| 2.8278 | 6.8276 | 21 | 2.6466 | 0.0973 |
| 2.8278 | 7.8276 | 24 | 2.6465 | 0.1062 |
| 2.8278 | 8.8276 | 27 | 2.6471 | 0.1062 |
| 2.8242 | 9.8276 | 30 | 2.6476 | 0.1062 |
### Framework versions
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0
|