File size: 2,445 Bytes
8809c99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa2fa80
8809c99
 
 
 
 
 
 
 
 
aa2fa80
 
8809c99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a3d591
 
aa2fa80
8809c99
5a3d591
8809c99
 
 
5a3d591
 
8809c99
 
 
5a3d591
 
aa2fa80
 
 
 
 
 
 
 
 
 
8809c99
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
datasets:
- minds14
metrics:
- accuracy
model-index:
- name: my_awesome_mind_model
  results:
  - task:
      name: Audio Classification
      type: audio-classification
    dataset:
      name: minds14
      type: minds14
      config: en-US
      split: train
      args: en-US
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.10619469026548672
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# my_awesome_mind_model

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the minds14 dataset.
It achieves the following results on the evaluation set:
- Loss: 2.6476
- Accuracy: 0.1062

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 10

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| No log        | 0.8276 | 3    | 2.6387          | 0.0531   |
| No log        | 1.8276 | 6    | 2.6428          | 0.0265   |
| No log        | 2.8276 | 9    | 2.6448          | 0.0619   |
| 2.837         | 3.8276 | 12   | 2.6436          | 0.0531   |
| 2.837         | 4.8276 | 15   | 2.6464          | 0.0619   |
| 2.837         | 5.8276 | 18   | 2.6462          | 0.0885   |
| 2.8278        | 6.8276 | 21   | 2.6466          | 0.0973   |
| 2.8278        | 7.8276 | 24   | 2.6465          | 0.1062   |
| 2.8278        | 8.8276 | 27   | 2.6471          | 0.1062   |
| 2.8242        | 9.8276 | 30   | 2.6476          | 0.1062   |


### Framework versions

- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0