--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - minds14 metrics: - accuracy model-index: - name: my_awesome_mind_model results: - task: name: Audio Classification type: audio-classification dataset: name: minds14 type: minds14 config: en-US split: train args: en-US metrics: - name: Accuracy type: accuracy value: 0.10619469026548672 --- # my_awesome_mind_model This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the minds14 dataset. It achieves the following results on the evaluation set: - Loss: 2.6476 - Accuracy: 0.1062 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | No log | 0.8276 | 3 | 2.6387 | 0.0531 | | No log | 1.8276 | 6 | 2.6428 | 0.0265 | | No log | 2.8276 | 9 | 2.6448 | 0.0619 | | 2.837 | 3.8276 | 12 | 2.6436 | 0.0531 | | 2.837 | 4.8276 | 15 | 2.6464 | 0.0619 | | 2.837 | 5.8276 | 18 | 2.6462 | 0.0885 | | 2.8278 | 6.8276 | 21 | 2.6466 | 0.0973 | | 2.8278 | 7.8276 | 24 | 2.6465 | 0.1062 | | 2.8278 | 8.8276 | 27 | 2.6471 | 0.1062 | | 2.8242 | 9.8276 | 30 | 2.6476 | 0.1062 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0