ivanleomk commited on
Commit
a40b74a
·
verified ·
1 Parent(s): 81a5d0e

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,538 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-base-en-v1.5
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy
6
+ - dot_accuracy
7
+ - manhattan_accuracy
8
+ - euclidean_accuracy
9
+ - max_accuracy
10
+ pipeline_tag: sentence-similarity
11
+ tags:
12
+ - sentence-transformers
13
+ - sentence-similarity
14
+ - feature-extraction
15
+ - generated_from_trainer
16
+ - dataset_size:624
17
+ - loss:MultipleNegativesRankingLoss
18
+ widget:
19
+ - source_sentence: '
20
+
21
+ Name : TechnoOp Essentials
22
+
23
+ Category: Office Automation Experts, Electronic Device Care
24
+
25
+ Department: IT Operations
26
+
27
+ Location: Berlin, Germany
28
+
29
+ Amount: 1189.47
30
+
31
+ Card: General Office Equipment Upgrade
32
+
33
+ Trip Name: unknown
34
+
35
+ '
36
+ sentences:
37
+ - Office Equipment Maintenance
38
+ - Employee Training & Development
39
+ - Internet & Network Services
40
+ - source_sentence: '
41
+
42
+ Name : Wellness Haven
43
+
44
+ Category: Employee Health Programs, Professional Development
45
+
46
+ Department: HR
47
+
48
+ Location: Munich, Germany
49
+
50
+ Amount: 762.35
51
+
52
+ Card: Corporate Wellness Initiatives
53
+
54
+ Trip Name: unknown
55
+
56
+ '
57
+ sentences:
58
+ - Customer Success & Support Infrastructure
59
+ - Employee Benefits & Perks
60
+ - Hardware & Equipment
61
+ - source_sentence: '
62
+
63
+ Name : Aspire Digital Solutions
64
+
65
+ Category: Digital Services, Subscription Management
66
+
67
+ Department: IT Operations
68
+
69
+ Location: Stockholm, Sweden
70
+
71
+ Amount: 983.65
72
+
73
+ Card: Digital Transformation Initiative
74
+
75
+ Trip Name: unknown
76
+
77
+ '
78
+ sentences:
79
+ - Employee Training & Development
80
+ - Software & Licenses
81
+ - Bank & Transaction Fees
82
+ - source_sentence: '
83
+
84
+ Name : Aperio Global Insights
85
+
86
+ Category: Strategic Business Consulting, Data Analytics Services
87
+
88
+ Department: Finance
89
+
90
+ Location: Chicago, IL
91
+
92
+ Amount: 3456.78
93
+
94
+ Card: Global Market Expansion Evaluation
95
+
96
+ Trip Name: unknown
97
+
98
+ '
99
+ sentences:
100
+ - Professional Services
101
+ - Office Equipment Maintenance
102
+ - Telecommunications
103
+ - source_sentence: '
104
+
105
+ Name : CityWide Car Rentals
106
+
107
+ Category: Car Rentals, Transportation Services
108
+
109
+ Department: Sales
110
+
111
+ Location: San Francisco, CA
112
+
113
+ Amount: 250.0
114
+
115
+ Card: Sales Team Travel Budget
116
+
117
+ Trip Name: unknown
118
+
119
+ '
120
+ sentences:
121
+ - 'Travel: Ground Transport'
122
+ - Office Equipment Maintenance
123
+ - Customer Success & Support Infrastructure
124
+ model-index:
125
+ - name: SentenceTransformer based on BAAI/bge-base-en-v1.5
126
+ results:
127
+ - task:
128
+ type: triplet
129
+ name: Triplet
130
+ dataset:
131
+ name: ramp transactions
132
+ type: ramp-transactions
133
+ metrics:
134
+ - type: cosine_accuracy
135
+ value: 0.8939393939393939
136
+ name: Cosine Accuracy
137
+ - type: dot_accuracy
138
+ value: 0.10606060606060606
139
+ name: Dot Accuracy
140
+ - type: manhattan_accuracy
141
+ value: 0.8787878787878788
142
+ name: Manhattan Accuracy
143
+ - type: euclidean_accuracy
144
+ value: 0.8939393939393939
145
+ name: Euclidean Accuracy
146
+ - type: max_accuracy
147
+ value: 0.8939393939393939
148
+ name: Max Accuracy
149
+ - type: cosine_accuracy
150
+ value: 0.9807692307692307
151
+ name: Cosine Accuracy
152
+ - type: dot_accuracy
153
+ value: 0.019230769230769232
154
+ name: Dot Accuracy
155
+ - type: manhattan_accuracy
156
+ value: 0.9871794871794872
157
+ name: Manhattan Accuracy
158
+ - type: euclidean_accuracy
159
+ value: 0.9807692307692307
160
+ name: Euclidean Accuracy
161
+ - type: max_accuracy
162
+ value: 0.9871794871794872
163
+ name: Max Accuracy
164
+ ---
165
+
166
+ # SentenceTransformer based on BAAI/bge-base-en-v1.5
167
+
168
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
169
+
170
+ ## Model Details
171
+
172
+ ### Model Description
173
+ - **Model Type:** Sentence Transformer
174
+ - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
175
+ - **Maximum Sequence Length:** 512 tokens
176
+ - **Output Dimensionality:** 768 tokens
177
+ - **Similarity Function:** Cosine Similarity
178
+ <!-- - **Training Dataset:** Unknown -->
179
+ <!-- - **Language:** Unknown -->
180
+ <!-- - **License:** Unknown -->
181
+
182
+ ### Model Sources
183
+
184
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
185
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
186
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
187
+
188
+ ### Full Model Architecture
189
+
190
+ ```
191
+ SentenceTransformer(
192
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
193
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
194
+ (2): Normalize()
195
+ )
196
+ ```
197
+
198
+ ## Usage
199
+
200
+ ### Direct Usage (Sentence Transformers)
201
+
202
+ First install the Sentence Transformers library:
203
+
204
+ ```bash
205
+ pip install -U sentence-transformers
206
+ ```
207
+
208
+ Then you can load this model and run inference.
209
+ ```python
210
+ from sentence_transformers import SentenceTransformer
211
+
212
+ # Download from the 🤗 Hub
213
+ model = SentenceTransformer("ivanleomk/finetuned-bge-bai")
214
+ # Run inference
215
+ sentences = [
216
+ '\nName : CityWide Car Rentals\nCategory: Car Rentals, Transportation Services\nDepartment: Sales\nLocation: San Francisco, CA\nAmount: 250.0\nCard: Sales Team Travel Budget\nTrip Name: unknown\n',
217
+ 'Travel: Ground Transport',
218
+ 'Customer Success & Support Infrastructure',
219
+ ]
220
+ embeddings = model.encode(sentences)
221
+ print(embeddings.shape)
222
+ # [3, 768]
223
+
224
+ # Get the similarity scores for the embeddings
225
+ similarities = model.similarity(embeddings, embeddings)
226
+ print(similarities.shape)
227
+ # [3, 3]
228
+ ```
229
+
230
+ <!--
231
+ ### Direct Usage (Transformers)
232
+
233
+ <details><summary>Click to see the direct usage in Transformers</summary>
234
+
235
+ </details>
236
+ -->
237
+
238
+ <!--
239
+ ### Downstream Usage (Sentence Transformers)
240
+
241
+ You can finetune this model on your own dataset.
242
+
243
+ <details><summary>Click to expand</summary>
244
+
245
+ </details>
246
+ -->
247
+
248
+ <!--
249
+ ### Out-of-Scope Use
250
+
251
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
252
+ -->
253
+
254
+ ## Evaluation
255
+
256
+ ### Metrics
257
+
258
+ #### Triplet
259
+ * Dataset: `ramp-transactions`
260
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
261
+
262
+ | Metric | Value |
263
+ |:-------------------|:-----------|
264
+ | cosine_accuracy | 0.8939 |
265
+ | dot_accuracy | 0.1061 |
266
+ | manhattan_accuracy | 0.8788 |
267
+ | euclidean_accuracy | 0.8939 |
268
+ | **max_accuracy** | **0.8939** |
269
+
270
+ #### Triplet
271
+ * Dataset: `ramp-transactions`
272
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
273
+
274
+ | Metric | Value |
275
+ |:-------------------|:-----------|
276
+ | cosine_accuracy | 0.9808 |
277
+ | dot_accuracy | 0.0192 |
278
+ | manhattan_accuracy | 0.9872 |
279
+ | euclidean_accuracy | 0.9808 |
280
+ | **max_accuracy** | **0.9872** |
281
+
282
+ <!--
283
+ ## Bias, Risks and Limitations
284
+
285
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
286
+ -->
287
+
288
+ <!--
289
+ ### Recommendations
290
+
291
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
292
+ -->
293
+
294
+ ## Training Details
295
+
296
+ ### Training Dataset
297
+
298
+ #### Unnamed Dataset
299
+
300
+
301
+ * Size: 624 training samples
302
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
303
+ * Approximate statistics based on the first 624 samples:
304
+ | | anchor | positive | negative |
305
+ |:--------|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
306
+ | type | string | string | string |
307
+ | details | <ul><li>min: 33 tokens</li><li>mean: 39.66 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.68 tokens</li><li>max: 7 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.66 tokens</li><li>max: 7 tokens</li></ul> |
308
+ * Samples:
309
+ | anchor | positive | negative |
310
+ |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------|:-------------------------------------|
311
+ | <code><br>Name : Global Insights Group<br>Category: Subscriptions & Memberships, Data Services & Analytics<br>Department: Marketing<br>Location: London, UK<br>Amount: 1245.67<br>Card: Marketing Intelligence Fund<br>Trip Name: unknown<br></code> | <code>Subscriptions & Memberships</code> | <code>Travel: Airfare</code> |
312
+ | <code><br>Name : Global Insights Group<br>Category: Subscriptions & Memberships, Data Services & Analytics<br>Department: Marketing<br>Location: London, UK<br>Amount: 1245.67<br>Card: Marketing Intelligence Fund<br>Trip Name: unknown<br></code> | <code>Subscriptions & Memberships</code> | <code>Office Rent & Utilities</code> |
313
+ | <code><br>Name : Global Insights Group<br>Category: Subscriptions & Memberships, Data Services & Analytics<br>Department: Marketing<br>Location: London, UK<br>Amount: 1245.67<br>Card: Marketing Intelligence Fund<br>Trip Name: unknown<br></code> | <code>Subscriptions & Memberships</code> | <code>Bank & Transaction Fees</code> |
314
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
315
+ ```json
316
+ {
317
+ "scale": 20.0,
318
+ "similarity_fct": "cos_sim"
319
+ }
320
+ ```
321
+
322
+ ### Evaluation Dataset
323
+
324
+ #### Unnamed Dataset
325
+
326
+
327
+ * Size: 198 evaluation samples
328
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
329
+ * Approximate statistics based on the first 198 samples:
330
+ | | anchor | positive | negative |
331
+ |:--------|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
332
+ | type | string | string | string |
333
+ | details | <ul><li>min: 35 tokens</li><li>mean: 39.89 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.45 tokens</li><li>max: 7 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.73 tokens</li><li>max: 7 tokens</li></ul> |
334
+ * Samples:
335
+ | anchor | positive | negative |
336
+ |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------|:------------------------------------------|
337
+ | <code><br>Name : Skyline Digital Solutions<br>Category: Cloud Management Services, Internet & Network Services<br>Department: IT Operations<br>Location: Sydney, Australia<br>Amount: 1128.37<br>Card: Global Networking Project<br>Trip Name: unknown<br></code> | <code>Cloud Infrastructure & Hosting</code> | <code>Office Equipment Maintenance</code> |
338
+ | <code><br>Name : Skyline Digital Solutions<br>Category: Cloud Management Services, Internet & Network Services<br>Department: IT Operations<br>Location: Sydney, Australia<br>Amount: 1128.37<br>Card: Global Networking Project<br>Trip Name: unknown<br></code> | <code>Cloud Infrastructure & Hosting</code> | <code>Telecommunications</code> |
339
+ | <code><br>Name : Skyline Digital Solutions<br>Category: Cloud Management Services, Internet & Network Services<br>Department: IT Operations<br>Location: Sydney, Australia<br>Amount: 1128.37<br>Card: Global Networking Project<br>Trip Name: unknown<br></code> | <code>Cloud Infrastructure & Hosting</code> | <code>Regulatory & Compliance Fees</code> |
340
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
341
+ ```json
342
+ {
343
+ "scale": 20.0,
344
+ "similarity_fct": "cos_sim"
345
+ }
346
+ ```
347
+
348
+ ### Training Hyperparameters
349
+ #### Non-Default Hyperparameters
350
+
351
+ - `eval_strategy`: steps
352
+ - `per_device_train_batch_size`: 16
353
+ - `per_device_eval_batch_size`: 16
354
+ - `learning_rate`: 2e-05
355
+ - `num_train_epochs`: 1
356
+ - `warmup_ratio`: 0.1
357
+ - `fp16`: True
358
+ - `batch_sampler`: no_duplicates
359
+
360
+ #### All Hyperparameters
361
+ <details><summary>Click to expand</summary>
362
+
363
+ - `overwrite_output_dir`: False
364
+ - `do_predict`: False
365
+ - `eval_strategy`: steps
366
+ - `prediction_loss_only`: True
367
+ - `per_device_train_batch_size`: 16
368
+ - `per_device_eval_batch_size`: 16
369
+ - `per_gpu_train_batch_size`: None
370
+ - `per_gpu_eval_batch_size`: None
371
+ - `gradient_accumulation_steps`: 1
372
+ - `eval_accumulation_steps`: None
373
+ - `torch_empty_cache_steps`: None
374
+ - `learning_rate`: 2e-05
375
+ - `weight_decay`: 0.0
376
+ - `adam_beta1`: 0.9
377
+ - `adam_beta2`: 0.999
378
+ - `adam_epsilon`: 1e-08
379
+ - `max_grad_norm`: 1.0
380
+ - `num_train_epochs`: 1
381
+ - `max_steps`: -1
382
+ - `lr_scheduler_type`: linear
383
+ - `lr_scheduler_kwargs`: {}
384
+ - `warmup_ratio`: 0.1
385
+ - `warmup_steps`: 0
386
+ - `log_level`: passive
387
+ - `log_level_replica`: warning
388
+ - `log_on_each_node`: True
389
+ - `logging_nan_inf_filter`: True
390
+ - `save_safetensors`: True
391
+ - `save_on_each_node`: False
392
+ - `save_only_model`: False
393
+ - `restore_callback_states_from_checkpoint`: False
394
+ - `no_cuda`: False
395
+ - `use_cpu`: False
396
+ - `use_mps_device`: False
397
+ - `seed`: 42
398
+ - `data_seed`: None
399
+ - `jit_mode_eval`: False
400
+ - `use_ipex`: False
401
+ - `bf16`: False
402
+ - `fp16`: True
403
+ - `fp16_opt_level`: O1
404
+ - `half_precision_backend`: auto
405
+ - `bf16_full_eval`: False
406
+ - `fp16_full_eval`: False
407
+ - `tf32`: None
408
+ - `local_rank`: 0
409
+ - `ddp_backend`: None
410
+ - `tpu_num_cores`: None
411
+ - `tpu_metrics_debug`: False
412
+ - `debug`: []
413
+ - `dataloader_drop_last`: False
414
+ - `dataloader_num_workers`: 0
415
+ - `dataloader_prefetch_factor`: None
416
+ - `past_index`: -1
417
+ - `disable_tqdm`: False
418
+ - `remove_unused_columns`: True
419
+ - `label_names`: None
420
+ - `load_best_model_at_end`: False
421
+ - `ignore_data_skip`: False
422
+ - `fsdp`: []
423
+ - `fsdp_min_num_params`: 0
424
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
425
+ - `fsdp_transformer_layer_cls_to_wrap`: None
426
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
427
+ - `deepspeed`: None
428
+ - `label_smoothing_factor`: 0.0
429
+ - `optim`: adamw_torch
430
+ - `optim_args`: None
431
+ - `adafactor`: False
432
+ - `group_by_length`: False
433
+ - `length_column_name`: length
434
+ - `ddp_find_unused_parameters`: None
435
+ - `ddp_bucket_cap_mb`: None
436
+ - `ddp_broadcast_buffers`: False
437
+ - `dataloader_pin_memory`: True
438
+ - `dataloader_persistent_workers`: False
439
+ - `skip_memory_metrics`: True
440
+ - `use_legacy_prediction_loop`: False
441
+ - `push_to_hub`: False
442
+ - `resume_from_checkpoint`: None
443
+ - `hub_model_id`: None
444
+ - `hub_strategy`: every_save
445
+ - `hub_private_repo`: False
446
+ - `hub_always_push`: False
447
+ - `gradient_checkpointing`: False
448
+ - `gradient_checkpointing_kwargs`: None
449
+ - `include_inputs_for_metrics`: False
450
+ - `eval_do_concat_batches`: True
451
+ - `fp16_backend`: auto
452
+ - `push_to_hub_model_id`: None
453
+ - `push_to_hub_organization`: None
454
+ - `mp_parameters`:
455
+ - `auto_find_batch_size`: False
456
+ - `full_determinism`: False
457
+ - `torchdynamo`: None
458
+ - `ray_scope`: last
459
+ - `ddp_timeout`: 1800
460
+ - `torch_compile`: False
461
+ - `torch_compile_backend`: None
462
+ - `torch_compile_mode`: None
463
+ - `dispatch_batches`: None
464
+ - `split_batches`: None
465
+ - `include_tokens_per_second`: False
466
+ - `include_num_input_tokens_seen`: False
467
+ - `neftune_noise_alpha`: None
468
+ - `optim_target_modules`: None
469
+ - `batch_eval_metrics`: False
470
+ - `eval_on_start`: False
471
+ - `eval_use_gather_object`: False
472
+ - `batch_sampler`: no_duplicates
473
+ - `multi_dataset_batch_sampler`: proportional
474
+
475
+ </details>
476
+
477
+ ### Training Logs
478
+ | Epoch | Step | ramp-transactions_max_accuracy |
479
+ |:-----:|:----:|:------------------------------:|
480
+ | 0 | 0 | 0.8939 |
481
+ | 1.0 | 39 | 0.9872 |
482
+
483
+
484
+ ### Framework Versions
485
+ - Python: 3.10.12
486
+ - Sentence Transformers: 3.2.1
487
+ - Transformers: 4.44.2
488
+ - PyTorch: 2.5.0+cu121
489
+ - Accelerate: 0.34.2
490
+ - Datasets: 3.1.0
491
+ - Tokenizers: 0.19.1
492
+
493
+ ## Citation
494
+
495
+ ### BibTeX
496
+
497
+ #### Sentence Transformers
498
+ ```bibtex
499
+ @inproceedings{reimers-2019-sentence-bert,
500
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
501
+ author = "Reimers, Nils and Gurevych, Iryna",
502
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
503
+ month = "11",
504
+ year = "2019",
505
+ publisher = "Association for Computational Linguistics",
506
+ url = "https://arxiv.org/abs/1908.10084",
507
+ }
508
+ ```
509
+
510
+ #### MultipleNegativesRankingLoss
511
+ ```bibtex
512
+ @misc{henderson2017efficient,
513
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
514
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
515
+ year={2017},
516
+ eprint={1705.00652},
517
+ archivePrefix={arXiv},
518
+ primaryClass={cs.CL}
519
+ }
520
+ ```
521
+
522
+ <!--
523
+ ## Glossary
524
+
525
+ *Clearly define terms in order to be accessible across audiences.*
526
+ -->
527
+
528
+ <!--
529
+ ## Model Card Authors
530
+
531
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
532
+ -->
533
+
534
+ <!--
535
+ ## Model Card Contact
536
+
537
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
538
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.44.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.2.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.5.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:06d2c69d79c50ee771d19382393ceb37c25dc2a9738140a74eb3ffccbe164f12
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff