ivanleomk commited on
Commit
e377421
·
verified ·
1 Parent(s): 5d6577f

Add new SentenceTransformer model.

Browse files
README.md CHANGED
@@ -372,19 +372,19 @@ model-index:
372
  type: bge-base-en-train
373
  metrics:
374
  - type: cosine_accuracy
375
- value: 0.8125
376
  name: Cosine Accuracy
377
  - type: dot_accuracy
378
- value: 0.1875
379
  name: Dot Accuracy
380
  - type: manhattan_accuracy
381
- value: 0.8173076923076923
382
  name: Manhattan Accuracy
383
  - type: euclidean_accuracy
384
- value: 0.8125
385
  name: Euclidean Accuracy
386
  - type: max_accuracy
387
- value: 0.8173076923076923
388
  name: Max Accuracy
389
  - task:
390
  type: triplet
@@ -394,19 +394,19 @@ model-index:
394
  type: bge-base-en-eval
395
  metrics:
396
  - type: cosine_accuracy
397
- value: 0.9393939393939394
398
  name: Cosine Accuracy
399
  - type: dot_accuracy
400
- value: 0.06060606060606061
401
  name: Dot Accuracy
402
  - type: manhattan_accuracy
403
- value: 0.9545454545454546
404
  name: Manhattan Accuracy
405
  - type: euclidean_accuracy
406
- value: 0.9393939393939394
407
  name: Euclidean Accuracy
408
  - type: max_accuracy
409
- value: 0.9545454545454546
410
  name: Max Accuracy
411
  ---
412
 
@@ -508,11 +508,11 @@ You can finetune this model on your own dataset.
508
 
509
  | Metric | Value |
510
  |:-------------------|:-----------|
511
- | cosine_accuracy | 0.8125 |
512
- | dot_accuracy | 0.1875 |
513
- | manhattan_accuracy | 0.8173 |
514
- | euclidean_accuracy | 0.8125 |
515
- | **max_accuracy** | **0.8173** |
516
 
517
  #### Triplet
518
  * Dataset: `bge-base-en-eval`
@@ -520,11 +520,11 @@ You can finetune this model on your own dataset.
520
 
521
  | Metric | Value |
522
  |:-------------------|:-----------|
523
- | cosine_accuracy | 0.9394 |
524
- | dot_accuracy | 0.0606 |
525
- | manhattan_accuracy | 0.9545 |
526
- | euclidean_accuracy | 0.9394 |
527
- | **max_accuracy** | **0.9545** |
528
 
529
  <!--
530
  ## Bias, Risks and Limitations
@@ -712,17 +712,17 @@ You can finetune this model on your own dataset.
712
  ### Training Logs
713
  | Epoch | Step | bge-base-en-eval_max_accuracy | bge-base-en-train_max_accuracy |
714
  |:-----:|:----:|:-----------------------------:|:------------------------------:|
715
- | 0 | 0 | - | 0.8173 |
716
- | 5.0 | 65 | 0.9545 | - |
717
 
718
 
719
  ### Framework Versions
720
- - Python: 3.11.11
721
  - Sentence Transformers: 3.1.1
722
  - Transformers: 4.45.2
723
- - PyTorch: 2.5.1+cu124
724
  - Accelerate: 1.3.0
725
- - Datasets: 3.3.2
726
  - Tokenizers: 0.20.3
727
 
728
  ## Citation
 
372
  type: bge-base-en-train
373
  metrics:
374
  - type: cosine_accuracy
375
+ value: 0.8269230769230769
376
  name: Cosine Accuracy
377
  - type: dot_accuracy
378
+ value: 0.17307692307692307
379
  name: Dot Accuracy
380
  - type: manhattan_accuracy
381
+ value: 0.8269230769230769
382
  name: Manhattan Accuracy
383
  - type: euclidean_accuracy
384
+ value: 0.8269230769230769
385
  name: Euclidean Accuracy
386
  - type: max_accuracy
387
+ value: 0.8269230769230769
388
  name: Max Accuracy
389
  - task:
390
  type: triplet
 
394
  type: bge-base-en-eval
395
  metrics:
396
  - type: cosine_accuracy
397
+ value: 0.9696969696969697
398
  name: Cosine Accuracy
399
  - type: dot_accuracy
400
+ value: 0.030303030303030304
401
  name: Dot Accuracy
402
  - type: manhattan_accuracy
403
+ value: 0.9696969696969697
404
  name: Manhattan Accuracy
405
  - type: euclidean_accuracy
406
+ value: 0.9696969696969697
407
  name: Euclidean Accuracy
408
  - type: max_accuracy
409
+ value: 0.9696969696969697
410
  name: Max Accuracy
411
  ---
412
 
 
508
 
509
  | Metric | Value |
510
  |:-------------------|:-----------|
511
+ | cosine_accuracy | 0.8269 |
512
+ | dot_accuracy | 0.1731 |
513
+ | manhattan_accuracy | 0.8269 |
514
+ | euclidean_accuracy | 0.8269 |
515
+ | **max_accuracy** | **0.8269** |
516
 
517
  #### Triplet
518
  * Dataset: `bge-base-en-eval`
 
520
 
521
  | Metric | Value |
522
  |:-------------------|:-----------|
523
+ | cosine_accuracy | 0.9697 |
524
+ | dot_accuracy | 0.0303 |
525
+ | manhattan_accuracy | 0.9697 |
526
+ | euclidean_accuracy | 0.9697 |
527
+ | **max_accuracy** | **0.9697** |
528
 
529
  <!--
530
  ## Bias, Risks and Limitations
 
712
  ### Training Logs
713
  | Epoch | Step | bge-base-en-eval_max_accuracy | bge-base-en-train_max_accuracy |
714
  |:-----:|:----:|:-----------------------------:|:------------------------------:|
715
+ | 0 | 0 | - | 0.8269 |
716
+ | 5.0 | 65 | 0.9697 | - |
717
 
718
 
719
  ### Framework Versions
720
+ - Python: 3.9.6
721
  - Sentence Transformers: 3.1.1
722
  - Transformers: 4.45.2
723
+ - PyTorch: 2.6.0
724
  - Accelerate: 1.3.0
725
+ - Datasets: 3.5.0
726
  - Tokenizers: 0.20.3
727
 
728
  ## Citation
config_sentence_transformers.json CHANGED
@@ -2,7 +2,7 @@
2
  "__version__": {
3
  "sentence_transformers": "3.1.1",
4
  "transformers": "4.45.2",
5
- "pytorch": "2.5.1+cu124"
6
  },
7
  "prompts": {},
8
  "default_prompt_name": null,
 
2
  "__version__": {
3
  "sentence_transformers": "3.1.1",
4
  "transformers": "4.45.2",
5
+ "pytorch": "2.6.0"
6
  },
7
  "prompts": {},
8
  "default_prompt_name": null,
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a87f57598ae86b5e141557e4f00e5ef707c841421bd96a04a440cdb5e6b45cd0
3
  size 437951328
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97e6bfe80a4590dcf864959ba8a6dc1d8b6528a13cfb645a01060f078a852265
3
  size 437951328