Add new SentenceTransformer model.
Browse files- README.md +25 -25
- config_sentence_transformers.json +1 -1
- model.safetensors +1 -1
README.md
CHANGED
|
@@ -372,19 +372,19 @@ model-index:
|
|
| 372 |
type: bge-base-en-train
|
| 373 |
metrics:
|
| 374 |
- type: cosine_accuracy
|
| 375 |
-
value: 0.
|
| 376 |
name: Cosine Accuracy
|
| 377 |
- type: dot_accuracy
|
| 378 |
-
value: 0.
|
| 379 |
name: Dot Accuracy
|
| 380 |
- type: manhattan_accuracy
|
| 381 |
-
value: 0.
|
| 382 |
name: Manhattan Accuracy
|
| 383 |
- type: euclidean_accuracy
|
| 384 |
-
value: 0.
|
| 385 |
name: Euclidean Accuracy
|
| 386 |
- type: max_accuracy
|
| 387 |
-
value: 0.
|
| 388 |
name: Max Accuracy
|
| 389 |
- task:
|
| 390 |
type: triplet
|
|
@@ -394,19 +394,19 @@ model-index:
|
|
| 394 |
type: bge-base-en-eval
|
| 395 |
metrics:
|
| 396 |
- type: cosine_accuracy
|
| 397 |
-
value: 0.
|
| 398 |
name: Cosine Accuracy
|
| 399 |
- type: dot_accuracy
|
| 400 |
-
value: 0.
|
| 401 |
name: Dot Accuracy
|
| 402 |
- type: manhattan_accuracy
|
| 403 |
-
value: 0.
|
| 404 |
name: Manhattan Accuracy
|
| 405 |
- type: euclidean_accuracy
|
| 406 |
-
value: 0.
|
| 407 |
name: Euclidean Accuracy
|
| 408 |
- type: max_accuracy
|
| 409 |
-
value: 0.
|
| 410 |
name: Max Accuracy
|
| 411 |
---
|
| 412 |
|
|
@@ -508,11 +508,11 @@ You can finetune this model on your own dataset.
|
|
| 508 |
|
| 509 |
| Metric | Value |
|
| 510 |
|:-------------------|:-----------|
|
| 511 |
-
| cosine_accuracy | 0.
|
| 512 |
-
| dot_accuracy | 0.
|
| 513 |
-
| manhattan_accuracy | 0.
|
| 514 |
-
| euclidean_accuracy | 0.
|
| 515 |
-
| **max_accuracy** | **0.
|
| 516 |
|
| 517 |
#### Triplet
|
| 518 |
* Dataset: `bge-base-en-eval`
|
|
@@ -520,11 +520,11 @@ You can finetune this model on your own dataset.
|
|
| 520 |
|
| 521 |
| Metric | Value |
|
| 522 |
|:-------------------|:-----------|
|
| 523 |
-
| cosine_accuracy | 0.
|
| 524 |
-
| dot_accuracy | 0.
|
| 525 |
-
| manhattan_accuracy | 0.
|
| 526 |
-
| euclidean_accuracy | 0.
|
| 527 |
-
| **max_accuracy** | **0.
|
| 528 |
|
| 529 |
<!--
|
| 530 |
## Bias, Risks and Limitations
|
|
@@ -712,17 +712,17 @@ You can finetune this model on your own dataset.
|
|
| 712 |
### Training Logs
|
| 713 |
| Epoch | Step | bge-base-en-eval_max_accuracy | bge-base-en-train_max_accuracy |
|
| 714 |
|:-----:|:----:|:-----------------------------:|:------------------------------:|
|
| 715 |
-
| 0 | 0 | - | 0.
|
| 716 |
-
| 5.0 | 65 | 0.
|
| 717 |
|
| 718 |
|
| 719 |
### Framework Versions
|
| 720 |
-
- Python: 3.
|
| 721 |
- Sentence Transformers: 3.1.1
|
| 722 |
- Transformers: 4.45.2
|
| 723 |
-
- PyTorch: 2.
|
| 724 |
- Accelerate: 1.3.0
|
| 725 |
-
- Datasets: 3.
|
| 726 |
- Tokenizers: 0.20.3
|
| 727 |
|
| 728 |
## Citation
|
|
|
|
| 372 |
type: bge-base-en-train
|
| 373 |
metrics:
|
| 374 |
- type: cosine_accuracy
|
| 375 |
+
value: 0.8269230769230769
|
| 376 |
name: Cosine Accuracy
|
| 377 |
- type: dot_accuracy
|
| 378 |
+
value: 0.17307692307692307
|
| 379 |
name: Dot Accuracy
|
| 380 |
- type: manhattan_accuracy
|
| 381 |
+
value: 0.8269230769230769
|
| 382 |
name: Manhattan Accuracy
|
| 383 |
- type: euclidean_accuracy
|
| 384 |
+
value: 0.8269230769230769
|
| 385 |
name: Euclidean Accuracy
|
| 386 |
- type: max_accuracy
|
| 387 |
+
value: 0.8269230769230769
|
| 388 |
name: Max Accuracy
|
| 389 |
- task:
|
| 390 |
type: triplet
|
|
|
|
| 394 |
type: bge-base-en-eval
|
| 395 |
metrics:
|
| 396 |
- type: cosine_accuracy
|
| 397 |
+
value: 0.9696969696969697
|
| 398 |
name: Cosine Accuracy
|
| 399 |
- type: dot_accuracy
|
| 400 |
+
value: 0.030303030303030304
|
| 401 |
name: Dot Accuracy
|
| 402 |
- type: manhattan_accuracy
|
| 403 |
+
value: 0.9696969696969697
|
| 404 |
name: Manhattan Accuracy
|
| 405 |
- type: euclidean_accuracy
|
| 406 |
+
value: 0.9696969696969697
|
| 407 |
name: Euclidean Accuracy
|
| 408 |
- type: max_accuracy
|
| 409 |
+
value: 0.9696969696969697
|
| 410 |
name: Max Accuracy
|
| 411 |
---
|
| 412 |
|
|
|
|
| 508 |
|
| 509 |
| Metric | Value |
|
| 510 |
|:-------------------|:-----------|
|
| 511 |
+
| cosine_accuracy | 0.8269 |
|
| 512 |
+
| dot_accuracy | 0.1731 |
|
| 513 |
+
| manhattan_accuracy | 0.8269 |
|
| 514 |
+
| euclidean_accuracy | 0.8269 |
|
| 515 |
+
| **max_accuracy** | **0.8269** |
|
| 516 |
|
| 517 |
#### Triplet
|
| 518 |
* Dataset: `bge-base-en-eval`
|
|
|
|
| 520 |
|
| 521 |
| Metric | Value |
|
| 522 |
|:-------------------|:-----------|
|
| 523 |
+
| cosine_accuracy | 0.9697 |
|
| 524 |
+
| dot_accuracy | 0.0303 |
|
| 525 |
+
| manhattan_accuracy | 0.9697 |
|
| 526 |
+
| euclidean_accuracy | 0.9697 |
|
| 527 |
+
| **max_accuracy** | **0.9697** |
|
| 528 |
|
| 529 |
<!--
|
| 530 |
## Bias, Risks and Limitations
|
|
|
|
| 712 |
### Training Logs
|
| 713 |
| Epoch | Step | bge-base-en-eval_max_accuracy | bge-base-en-train_max_accuracy |
|
| 714 |
|:-----:|:----:|:-----------------------------:|:------------------------------:|
|
| 715 |
+
| 0 | 0 | - | 0.8269 |
|
| 716 |
+
| 5.0 | 65 | 0.9697 | - |
|
| 717 |
|
| 718 |
|
| 719 |
### Framework Versions
|
| 720 |
+
- Python: 3.9.6
|
| 721 |
- Sentence Transformers: 3.1.1
|
| 722 |
- Transformers: 4.45.2
|
| 723 |
+
- PyTorch: 2.6.0
|
| 724 |
- Accelerate: 1.3.0
|
| 725 |
+
- Datasets: 3.5.0
|
| 726 |
- Tokenizers: 0.20.3
|
| 727 |
|
| 728 |
## Citation
|
config_sentence_transformers.json
CHANGED
|
@@ -2,7 +2,7 @@
|
|
| 2 |
"__version__": {
|
| 3 |
"sentence_transformers": "3.1.1",
|
| 4 |
"transformers": "4.45.2",
|
| 5 |
-
"pytorch": "2.
|
| 6 |
},
|
| 7 |
"prompts": {},
|
| 8 |
"default_prompt_name": null,
|
|
|
|
| 2 |
"__version__": {
|
| 3 |
"sentence_transformers": "3.1.1",
|
| 4 |
"transformers": "4.45.2",
|
| 5 |
+
"pytorch": "2.6.0"
|
| 6 |
},
|
| 7 |
"prompts": {},
|
| 8 |
"default_prompt_name": null,
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 437951328
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:97e6bfe80a4590dcf864959ba8a6dc1d8b6528a13cfb645a01060f078a852265
|
| 3 |
size 437951328
|