izaitova commited on
Commit
887e0da
·
verified ·
1 Parent(s): 9416798

End of training

Browse files
Files changed (2) hide show
  1. README.md +99 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: deepset/gbert-large
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - universal_dependencies
8
+ metrics:
9
+ - precision
10
+ - recall
11
+ - f1
12
+ - accuracy
13
+ model-index:
14
+ - name: gbert-large-upos
15
+ results:
16
+ - task:
17
+ name: Token Classification
18
+ type: token-classification
19
+ dataset:
20
+ name: universal_dependencies
21
+ type: universal_dependencies
22
+ config: de_gsd
23
+ split: validation
24
+ args: de_gsd
25
+ metrics:
26
+ - name: Precision
27
+ type: precision
28
+ value: 0.825291976991079
29
+ - name: Recall
30
+ type: recall
31
+ value: 0.7826990832215603
32
+ - name: F1
33
+ type: f1
34
+ value: 0.7912197452035137
35
+ - name: Accuracy
36
+ type: accuracy
37
+ value: 0.9413806706114398
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # gbert-large-upos
44
+
45
+ This model is a fine-tuned version of [deepset/gbert-large](https://huggingface.co/deepset/gbert-large) on the universal_dependencies dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.1996
48
+ - Precision: 0.8253
49
+ - Recall: 0.7827
50
+ - F1: 0.7912
51
+ - Accuracy: 0.9414
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 5e-05
71
+ - train_batch_size: 16
72
+ - eval_batch_size: 8
73
+ - seed: 42
74
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
+ - lr_scheduler_type: linear
76
+ - num_epochs: 10
77
+
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | No log | 1.0 | 438 | 0.3197 | 0.8098 | 0.7291 | 0.7486 | 0.8936 |
83
+ | No log | 2.0 | 876 | 0.2261 | 0.8287 | 0.7679 | 0.7832 | 0.9269 |
84
+ | No log | 3.0 | 1314 | 0.1996 | 0.8253 | 0.7827 | 0.7912 | 0.9414 |
85
+ | No log | 4.0 | 1752 | 0.2183 | 0.8162 | 0.8006 | 0.8041 | 0.9435 |
86
+ | No log | 5.0 | 2190 | 0.2120 | 0.8198 | 0.8025 | 0.8074 | 0.9496 |
87
+ | No log | 6.0 | 2628 | 0.2339 | 0.8207 | 0.8068 | 0.8116 | 0.9489 |
88
+ | No log | 7.0 | 3066 | 0.2728 | 0.8156 | 0.8045 | 0.8071 | 0.9486 |
89
+ | No log | 8.0 | 3504 | 0.2790 | 0.8205 | 0.8110 | 0.8132 | 0.9527 |
90
+ | No log | 9.0 | 3942 | 0.2854 | 0.8306 | 0.8096 | 0.8146 | 0.9527 |
91
+ | No log | 10.0 | 4380 | 0.2906 | 0.8299 | 0.8115 | 0.8151 | 0.9534 |
92
+
93
+
94
+ ### Framework versions
95
+
96
+ - Transformers 4.42.4
97
+ - Pytorch 2.4.0+cu121
98
+ - Datasets 2.21.0
99
+ - Tokenizers 0.19.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b1246231c5092c121339b97368f151fd11952a520fee0db17322643b6fcd4b7f
3
  size 1338865448
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e5f9828061e53153742d86b8314e38fd43c499a19bea07d8e72d27aa6999e76
3
  size 1338865448