File size: 2,026 Bytes
7a7861b 3bfac90 e988e5b 3bfac90 e988e5b 3bfac90 e988e5b 3bfac90 dd20d2e 2c46d24 dd20d2e 03b655d dd20d2e cdb4a26 494d9f8 3bfac90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
---
license: cc-by-sa-4.0
datasets:
- izumi-lab/llm-japanese-dataset
language:
- ja
tags:
- llama
- causal-lm
---
This repo contains a low-rank adapter for LLaMA-13b
fit on the [llm-japanese-dataset](https://github.com/masanorihirano/llm-japanese-dataset) dataset.
You can test this at https://huggingface.co/spaces/izumi-lab/llama-13b-japanese-lora-v0-1ep
This version of the weights was trained with the following hyperparameters:
- Epochs: 1
- Batch size: 130
- Cutoff length: 256
- Learning rate: 3e-4
- Lora _r_: 4
- Lora target modules: q_proj, v_proj
```python
import torch
from transformers import LlamaForCausalLM, LlamaTokenizer
from peft import PeftModel
base_model = "decapoda-research/llama-13b-hf"
# Please note that the special license of decapoda-research/llama-13b-hf is applied.
model = LlamaForCausalLM.from_pretrained(base_model, torch_dtype=torch.float16)
tokenizer = LlamaTokenizer.from_pretrained(base_model)
model = PeftModel.from_pretrained(
model,
"izumi-lab/llama-13b-japanese-lora-v0",
torch_dtype=torch.float16,
)
```
To see more latest information, please go to [llm.msuzuki.me](https://llm.msuzuki.me).
## Details
- Japanese Paper: [https://jxiv.jst.go.jp/index.php/jxiv/preprint/view/383](https://jxiv.jst.go.jp/index.php/jxiv/preprint/view/383)
- English Paper: [https://arxiv.org/abs/2305.12720](https://arxiv.org/abs/2305.12720)
- GitHub: [https://github.com/masanorihirano/llm-japanese-dataset](https://github.com/masanorihirano/llm-japanese-dataset)
- Website: [llm.msuzuki.me](https://llm.msuzuki.me).
Citation:
```
@preprint{Hirano2023-llmj,
title={{llm-japanese-dataset v0: Construction of Japanese Chat Dataset for Large Language Models and its Methodology}},
autor={Masanori HIRANO and Masahiro SUZUKI and Hiroki SAKAJI},
doi={10.48550/arXiv.2305.12720},
archivePrefix={arXiv},
arxivId={2305.12720},
year={2023}
}
```
If you have any inquiries, such as joint research, data provision, various types of support, please email to [email protected] . |