File size: 2,037 Bytes
d62ea2c
 
 
 
 
 
2e8c646
d62ea2c
 
 
 
 
 
 
 
 
 
 
5b4875d
d62ea2c
5b4875d
d62ea2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ea4cca
d62ea2c
 
 
 
 
2ea4cca
 
 
 
 
 
 
 
d62ea2c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
library_name: transformers
license: llama3.2
base_model: meta-llama/Llama-3.2-1B
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: mini_llama_crafting_sft_success_new_mem
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mini_llama_crafting_sft_success_new_mem

This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on the identity and the crafting_sft_success_new_mem datasets.
It achieves the following results on the evaluation set:
- Loss: 0.4032

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- total_eval_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.8427        | 0.3380 | 50   | 1.1575          |
| 0.5411        | 0.6760 | 100  | 0.5065          |
| 0.519         | 1.0203 | 150  | 0.4361          |
| 0.3662        | 1.3583 | 200  | 0.4007          |
| 0.3679        | 1.6962 | 250  | 0.3948          |
| 0.3176        | 2.0406 | 300  | 0.3846          |
| 0.2141        | 2.3785 | 350  | 0.4076          |
| 0.2089        | 2.7165 | 400  | 0.3996          |


### Framework versions

- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0