--- library_name: transformers base_model: airesearch/wangchanberta-base-att-spm-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: CPALL-Stock-Trend-Prediction-Wangchanberta-APR results: [] --- # CPALL-Stock-Trend-Prediction-Wangchanberta-APR This model is a fine-tuned version of [airesearch/wangchanberta-base-att-spm-uncased](https://huggingface.co/airesearch/wangchanberta-base-att-spm-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1002 - Accuracy: 0.3341 - Precision: 0.3328 - Recall: 0.3341 - F1: 0.3270 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.1226 | 1.0 | 973 | 1.1571 | 0.3377 | 0.3194 | 0.3377 | 0.1889 | | 1.1146 | 2.0 | 1946 | 1.1015 | 0.3354 | 0.1125 | 0.3354 | 0.1685 | | 1.1106 | 3.0 | 2919 | 1.1036 | 0.3385 | 0.2776 | 0.3385 | 0.1715 | | 1.1083 | 4.0 | 3892 | 1.1033 | 0.3264 | 0.1065 | 0.3264 | 0.1606 | | 1.1083 | 5.0 | 4865 | 1.1013 | 0.3380 | 0.1143 | 0.3380 | 0.1709 | | 1.1039 | 6.0 | 5838 | 1.1065 | 0.3354 | 0.1125 | 0.3354 | 0.1685 | | 1.1032 | 7.0 | 6811 | 1.1011 | 0.3349 | 0.2014 | 0.3349 | 0.1697 | | 1.106 | 8.0 | 7784 | 1.1056 | 0.3356 | 0.3617 | 0.3356 | 0.1714 | | 1.1059 | 9.0 | 8757 | 1.1025 | 0.3259 | 0.3248 | 0.3259 | 0.3085 | | 1.1029 | 10.0 | 9730 | 1.1002 | 0.3341 | 0.3328 | 0.3341 | 0.3270 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1