Upload folder using huggingface_hub
Browse files- README.md +51 -0
- config.json +41 -0
- examples.py +36 -0
- metadata.json +0 -0
- model.safetensors +3 -0
- special_tokens_map.json +7 -0
- tokenizer_config.json +58 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: zh
|
3 |
+
license: mit
|
4 |
+
tags:
|
5 |
+
- bert
|
6 |
+
- sentiment-analysis
|
7 |
+
- chinese
|
8 |
+
datasets:
|
9 |
+
- custom
|
10 |
+
---
|
11 |
+
|
12 |
+
# 中文情感分析模型
|
13 |
+
|
14 |
+
這是一個基於 BERT 的中文情感分析模型,可用於判斷文本的情感傾向(正面、負面或中性)。
|
15 |
+
|
16 |
+
## 模型描述
|
17 |
+
|
18 |
+
- 模型基於 bert-base-chinese 微調
|
19 |
+
- 適用於中文文本的情感分析
|
20 |
+
- 輸出標籤:0(負面),1(正面),2(中性)
|
21 |
+
- 使用 Focal Loss 訓練,以處理類別不平衡問題
|
22 |
+
|
23 |
+
## 使用方法
|
24 |
+
|
25 |
+
```python
|
26 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
27 |
+
import torch
|
28 |
+
|
29 |
+
# 載入模型和分詞器
|
30 |
+
model = AutoModelForSequenceClassification.from_pretrained("jackietung/bert-base-chinese-sentiment-finetuned")
|
31 |
+
tokenizer = AutoTokenizer.from_pretrained("jackietung/bert-base-chinese-sentiment-finetuned")
|
32 |
+
|
33 |
+
# 準備輸入
|
34 |
+
text = "這個App使用體驗很差!"
|
35 |
+
inputs = tokenizer(text, return_tensors="pt")
|
36 |
+
|
37 |
+
# 進行預測
|
38 |
+
with torch.no_grad():
|
39 |
+
outputs = model(**inputs)
|
40 |
+
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
41 |
+
|
42 |
+
# 獲取預測結果
|
43 |
+
label_names = ["負面", "正面", "中性"]
|
44 |
+
predicted_class = torch.argmax(predictions, dim=1).item()
|
45 |
+
|
46 |
+
print(f"預測類別: {label_names[predicted_class]}")
|
47 |
+
print(f"預測分數: {predictions[0][predicted_class].item():.4f}")
|
48 |
+
|
49 |
+
# 顯示所有類別的分數
|
50 |
+
for i, label in enumerate(label_names):
|
51 |
+
print(f"{label} 分數: {predictions[0][i].item():.4f}")
|
config.json
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "bert-base-chinese",
|
3 |
+
"architectures": [
|
4 |
+
"BertForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"directionality": "bidi",
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"id2label": {
|
13 |
+
"0": "\u8ca0\u9762",
|
14 |
+
"1": "\u6b63\u9762",
|
15 |
+
"2": "\u4e2d\u6027"
|
16 |
+
},
|
17 |
+
"initializer_range": 0.02,
|
18 |
+
"intermediate_size": 3072,
|
19 |
+
"label2id": {
|
20 |
+
"\u4e2d\u6027": 2,
|
21 |
+
"\u6b63\u9762": 1,
|
22 |
+
"\u8ca0\u9762": 0
|
23 |
+
},
|
24 |
+
"layer_norm_eps": 1e-12,
|
25 |
+
"max_position_embeddings": 512,
|
26 |
+
"model_type": "bert",
|
27 |
+
"num_attention_heads": 12,
|
28 |
+
"num_hidden_layers": 12,
|
29 |
+
"pad_token_id": 0,
|
30 |
+
"pooler_fc_size": 768,
|
31 |
+
"pooler_num_attention_heads": 12,
|
32 |
+
"pooler_num_fc_layers": 3,
|
33 |
+
"pooler_size_per_head": 128,
|
34 |
+
"pooler_type": "first_token_transform",
|
35 |
+
"position_embedding_type": "absolute",
|
36 |
+
"torch_dtype": "float32",
|
37 |
+
"transformers_version": "4.48.3",
|
38 |
+
"type_vocab_size": 2,
|
39 |
+
"use_cache": true,
|
40 |
+
"vocab_size": 21128
|
41 |
+
}
|
examples.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# 載入情感分析管道
|
5 |
+
classifier = pipeline(
|
6 |
+
"sentiment-analysis",
|
7 |
+
model="jackietung/bert-base-chinese-sentiment-finetuned",
|
8 |
+
return_all_scores=True
|
9 |
+
)
|
10 |
+
|
11 |
+
# 測試文本
|
12 |
+
texts = [
|
13 |
+
"這款 App 的界面設計非常直觀,使用起來很順暢!",
|
14 |
+
"客服回應速度太慢,問題遲遲得不到解決,很失望。",
|
15 |
+
"功能還算齊全,但偶爾會閃退,希望能改進。",
|
16 |
+
"雖然有些小bug,但整體來說是個實用的工具App。",
|
17 |
+
"完全不推薦下載,廣告太多而且耗電量驚人。"
|
18 |
+
]
|
19 |
+
|
20 |
+
# 進行預測
|
21 |
+
for text in texts:
|
22 |
+
result = classifier(text)[0]
|
23 |
+
print(f"文本: {text}")
|
24 |
+
|
25 |
+
# 按分數排序
|
26 |
+
sorted_scores = sorted(result, key=lambda x: x['score'], reverse=True)
|
27 |
+
|
28 |
+
# 獲取最高分數的情感
|
29 |
+
top_sentiment = sorted_scores[0]
|
30 |
+
print(f"預測情感: {top_sentiment['label']} (分數: {top_sentiment['score']:.4f})")
|
31 |
+
|
32 |
+
# 顯示所有情感分數
|
33 |
+
print("所有情感分數:")
|
34 |
+
for score_item in sorted_scores:
|
35 |
+
print(f" {score_item['label']}: {score_item['score']:.4f}")
|
36 |
+
print("-" * 50)
|
metadata.json
ADDED
File without changes
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ead3f78962d41b506f182b3fdc6ca023f9d72b3367d789b677014c198cf16b9
|
3 |
+
size 409103316
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer_config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": false,
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"mask_token": "[MASK]",
|
50 |
+
"model_max_length": 512,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_token": "[PAD]",
|
53 |
+
"sep_token": "[SEP]",
|
54 |
+
"strip_accents": null,
|
55 |
+
"tokenize_chinese_chars": true,
|
56 |
+
"tokenizer_class": "BertTokenizer",
|
57 |
+
"unk_token": "[UNK]"
|
58 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|