jacksonferrigno commited on
Commit
e964946
·
verified ·
1 Parent(s): 331c158

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +93 -3
README.md CHANGED
@@ -1,3 +1,93 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - stable-baselines3
4
+ - power-grid
5
+ - ppo
6
+ - lstm
7
+ - electricity
8
+ - reinforcement-learning
9
+ - forecasting
10
+ - tensorflow
11
+ - gym
12
+ license: mit
13
+ ---
14
+
15
+ # ⚡ Power Grid Optimization with LSTM + PPO
16
+
17
+ This repository showcases a hybrid deep learning + reinforcement learning system for power grid optimization in Lauderdale County, AL. The system forecasts demand using a weather-informed LSTM model and trains a PPO-based agent to maintain stability and minimize blackout risk under stress.
18
+
19
+ ---
20
+
21
+ ## 📈 Models
22
+
23
+ - **LSTM Demand Predictor**
24
+ A deep bidirectional LSTM with attention, trained on 4 years of TVA and weather data.
25
+
26
+ - **PPO Grid Policy**
27
+ Trained in a custom `PowerGridEnv` with generator output, transformer tap, and load shedding control.
28
+
29
+ ---
30
+
31
+ ## 🧠 Dataset Overview
32
+
33
+ - **Demand Data:**
34
+ Sourced from the U.S. EIA (TVA region, 2021–2024)
35
+ - Demand, Net Generation, Day-Ahead Forecasts, Interchange
36
+
37
+ - **Weather Data:**
38
+ Daily min/max temperatures + precipitation
39
+ - From 5 major TVA-region airports via NOAA
40
+
41
+ ---
42
+
43
+ ## 🧮 LSTM Model
44
+
45
+ - **Architecture:**
46
+ 2-layer bidirectional LSTM + attention, followed by global pooling and dense layers.
47
+
48
+ - **Key Features:**
49
+ - Rolling temperature windows, demand lags
50
+ - Weekly mean demand, change rate
51
+ - Temp volatility, extreme flags
52
+
53
+ - **Metrics:**
54
+ | Metric | Value |
55
+ |---------------|--------------------|
56
+ | R² | 0.911 |
57
+ | RMSE | 19,565 MWh |
58
+ | Mean Error | 713 MWh (overbias) |
59
+ | Beats TVA Forecast | 70.08% of days |
60
+
61
+ ---
62
+
63
+ ## 🤖 PPO DRL Agent
64
+
65
+ - **Environment:**
66
+ PyPSA-based Lauderdale County grid
67
+ - 6 generators (Nuclear, Hydro, CCGT)
68
+ - Load centers with realistic demand shares
69
+ - Thermal constraints, ramp limits, marginal costs
70
+
71
+ - **Action Space:**
72
+ - Generator control
73
+ - Transformer tap shift
74
+ - Load shedding (up to 20%)
75
+
76
+ - **Reward Design:**
77
+ ✅ Balance demand/supply, low thermal overload
78
+ ❌ Penalize instability, overloads, excessive cost
79
+
80
+ - **Training:**
81
+ - Algorithm: PPO (SB3)
82
+ - Timesteps: 400,000
83
+ - VecNormalize, 5 eval episodes per 2048 steps
84
+
85
+ - **Metrics:**
86
+ | Metric | Value |
87
+ |--------------------|-----------|
88
+ | Mean Reward | ~1480 |
89
+ | Explained Variance | Up to 0.85 |
90
+ | Blackout Risk | < 5% |
91
+ | Load Shedding | < 3% avg |
92
+
93
+ ---