File size: 1,980 Bytes
0aaf28c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
license: mit
language:
- en
metrics:
- accuracy
- precision
- recall
- f1
pipeline_tag: text-classification
tags:
- NLP
- SentimentAnalysis
- LogisticRegression
- ScikitLearn
---
# ๐ง Sentiment Analysis with Logistic Regression
This model performs **multi-class sentiment analysis** on tweets, classifying them into the following categories:
- Positive
- Negative
- Neutral
- Irrelevant
It uses a custom preprocessing pipeline with:
<!-- - Text cleaning (URL, mention, hashtag, punctuation removal)-->
- CountVectorizer
- TF-IDF transformation
- Logistic Regression classifier (`max_iter=1000`)
---
## ๐ Model Architecture
<!-- - **TextCleaner**: Custom scikit-learn transformer for consistent text preprocessing.-->
- **CountVectorizer**: Converts tweets into token count vectors.
- **TfidfTransformer**: Reweights tokens by importance.
- **LogisticRegression**: Interpretable and robust classification baseline.
---
## ๐งช Evaluation
Evaluated on a separate validation set of 999 tweets:
| Class | Precision | Recall | F1-score |
|-------------|-----------|--------|----------|
| Irrelevant | 0.88 | 0.85 | 0.87 |
| Negative | 0.87 | 0.94 | 0.91 |
| Neutral | 0.97 | 0.86 | 0.91 |
| Positive | 0.89 | 0.94 | 0.91 |
| **Overall Accuracy** | | | **0.90** |
---
## ๐ฆ Usage
```
python
import joblib
model = joblib.load("sentiment_model_lr.pkl")
user_input = "This update is surprisingly good!"
prediction = model.predict([user_input])
print(prediction[0]) # โ Positive, Negative, etc.
```
---
```> โ ๏ธ Requires scikit-learn 1.6.1+ to avoid version mismatch warnings.```
---
## ๐ Dataset
```
Tweets were preprocessed using a clean_text routine and labeled into
the four sentiment categories. If youโd like to experiment or re-train, contact
the author or fork this repo.
```
---
## ๐งโ๐ป Author
```
Built by @arshvir Model version: 1.0 License: MIT
```
--- |