File size: 12,512 Bytes
4e3e150 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
// Extractor mejorado de 32 características de amplitudes de onda de presión
export const FEATURE_VECTOR_SIZE = 32;
interface AdvancedFeatures {
spectralCentroid: number;
spectralRolloff: number;
spectralFlux: number;
zeroCrossingRate: number;
rms: number;
peak: number;
crest: number;
spectralSpread: number;
spectralFlatness: number;
spectralSlope: number;
harmonicRatio: number;
noiseRatio: number;
tonalPower: number;
spectralContrast: number[]; // 7 valores
spectralBandEnergy: number[]; // 8 valores
temporalFeatures: number[]; // 4 valores
}
// Función principal mejorada para extraer características ML
export const extractMLFeatures = (
magnitudes: number[],
rawData: Uint8Array,
previousAmplitudes: number[],
sampleRate: number
): number[] => {
const features: number[] = new Array(FEATURE_VECTOR_SIZE).fill(0);
try {
// Convertir datos raw a amplitudes normalizadas
const amplitudes = convertRawToAmplitudes(rawData);
// Extraer características avanzadas
const advancedFeatures = extractAdvancedFeatures(magnitudes, amplitudes, previousAmplitudes, sampleRate);
// Mapear a vector de 32 características
const featureVector = mapToFeatureVector(advancedFeatures);
// Copiar al array de salida
for (let i = 0; i < Math.min(FEATURE_VECTOR_SIZE, featureVector.length); i++) {
features[i] = featureVector[i];
}
return features;
} catch (error) {
console.warn('Error extracting ML features:', error);
// Fallback a extracción básica
return extractBasicFeatures(magnitudes, rawData, sampleRate);
}
};
// Convertir datos raw a amplitudes normalizadas
function convertRawToAmplitudes(rawData: Uint8Array): number[] {
const amplitudes: number[] = [];
// Convertir de Uint8 a valores signed y normalizar
for (let i = 0; i < rawData.length - 1; i += 2) {
// Combinar bytes para 16-bit sample
const sample = (rawData[i + 1] << 8) | rawData[i];
const signed = sample > 32767 ? sample - 65536 : sample;
amplitudes.push(signed / 32768.0); // Normalizar a [-1, 1]
}
return amplitudes;
}
// Extractor de características avanzadas
function extractAdvancedFeatures(
magnitudes: number[],
amplitudes: number[],
previousAmplitudes: number[],
sampleRate: number
): AdvancedFeatures {
const N = magnitudes.length;
const nyquist = sampleRate / 2;
// 1. Centroide espectral
const spectralCentroid = calculateSpectralCentroid(magnitudes, nyquist);
// 2. Rolloff espectral (85% de energía)
const spectralRolloff = calculateSpectralRolloff(magnitudes, nyquist, 0.85);
// 3. Flujo espectral
const spectralFlux = calculateSpectralFlux(magnitudes, previousAmplitudes);
// 4. Tasa de cruces por cero
const zeroCrossingRate = calculateZeroCrossingRate(amplitudes);
// 5. RMS (Root Mean Square)
const rms = calculateRMS(amplitudes);
// 6. Valor pico
const peak = Math.max(...amplitudes.map(Math.abs));
// 7. Factor de cresta
const crest = rms > 0 ? peak / rms : 0;
// 8. Dispersión espectral
const spectralSpread = calculateSpectralSpread(magnitudes, spectralCentroid, nyquist);
// 9. Planitud espectral
const spectralFlatness = calculateSpectralFlatness(magnitudes);
// 10. Pendiente espectral
const spectralSlope = calculateSpectralSlope(magnitudes, nyquist);
// 11-12. Ratio armónico y de ruido
const { harmonicRatio, noiseRatio } = calculateHarmonicNoiseRatio(magnitudes);
// 13. Potencia tonal
const tonalPower = calculateTonalPower(magnitudes);
// 14-20. Contraste espectral (7 bandas)
const spectralContrast = calculateSpectralContrast(magnitudes, 7);
// 21-28. Energía por bandas de frecuencia (8 bandas)
const spectralBandEnergy = calculateBandEnergy(magnitudes, 8);
// 29-32. Características temporales
const temporalFeatures = calculateTemporalFeatures(amplitudes, previousAmplitudes);
return {
spectralCentroid,
spectralRolloff,
spectralFlux,
zeroCrossingRate,
rms,
peak,
crest,
spectralSpread,
spectralFlatness,
spectralSlope,
harmonicRatio,
noiseRatio,
tonalPower,
spectralContrast,
spectralBandEnergy,
temporalFeatures
};
}
// Mapear características avanzadas a vector de 32 elementos
function mapToFeatureVector(features: AdvancedFeatures): number[] {
const vector: number[] = [];
// Características espectrales básicas (13 elementos)
vector.push(
features.spectralCentroid,
features.spectralRolloff,
features.spectralFlux,
features.zeroCrossingRate,
features.rms,
features.peak,
features.crest,
features.spectralSpread,
features.spectralFlatness,
features.spectralSlope,
features.harmonicRatio,
features.noiseRatio,
features.tonalPower
);
// Contraste espectral (7 elementos)
vector.push(...features.spectralContrast);
// Energía por bandas (8 elementos)
vector.push(...features.spectralBandEnergy);
// Características temporales (4 elementos)
vector.push(...features.temporalFeatures);
return vector.slice(0, 32); // Asegurar exactamente 32 elementos
}
// Funciones de cálculo específicas
function calculateSpectralCentroid(magnitudes: number[], nyquist: number): number {
let weightedSum = 0;
let magnitudeSum = 0;
for (let i = 0; i < magnitudes.length; i++) {
const freq = (i * nyquist) / magnitudes.length;
weightedSum += freq * magnitudes[i];
magnitudeSum += magnitudes[i];
}
return magnitudeSum > 0 ? weightedSum / magnitudeSum : 0;
}
function calculateSpectralRolloff(magnitudes: number[], nyquist: number, threshold: number): number {
const totalEnergy = magnitudes.reduce((sum, mag) => sum + mag * mag, 0);
const targetEnergy = totalEnergy * threshold;
let cumulativeEnergy = 0;
for (let i = 0; i < magnitudes.length; i++) {
cumulativeEnergy += magnitudes[i] * magnitudes[i];
if (cumulativeEnergy >= targetEnergy) {
return (i * nyquist) / magnitudes.length;
}
}
return nyquist;
}
function calculateSpectralFlux(current: number[], previous: number[]): number {
if (previous.length === 0) return 0;
let flux = 0;
const minLength = Math.min(current.length, previous.length);
for (let i = 0; i < minLength; i++) {
const diff = current[i] - previous[i];
if (diff > 0) flux += diff * diff;
}
return Math.sqrt(flux / minLength);
}
function calculateZeroCrossingRate(amplitudes: number[]): number {
let crossings = 0;
for (let i = 1; i < amplitudes.length; i++) {
if ((amplitudes[i] >= 0) !== (amplitudes[i-1] >= 0)) {
crossings++;
}
}
return crossings / (amplitudes.length - 1);
}
function calculateRMS(amplitudes: number[]): number {
const sumSquares = amplitudes.reduce((sum, amp) => sum + amp * amp, 0);
return Math.sqrt(sumSquares / amplitudes.length);
}
function calculateSpectralSpread(magnitudes: number[], centroid: number, nyquist: number): number {
let weightedVariance = 0;
let magnitudeSum = 0;
for (let i = 0; i < magnitudes.length; i++) {
const freq = (i * nyquist) / magnitudes.length;
const deviation = freq - centroid;
weightedVariance += deviation * deviation * magnitudes[i];
magnitudeSum += magnitudes[i];
}
return magnitudeSum > 0 ? Math.sqrt(weightedVariance / magnitudeSum) : 0;
}
function calculateSpectralFlatness(magnitudes: number[]): number {
let geometricMean = 1;
let arithmeticMean = 0;
let count = 0;
for (const mag of magnitudes) {
if (mag > 0) {
geometricMean *= Math.pow(mag, 1 / magnitudes.length);
arithmeticMean += mag;
count++;
}
}
arithmeticMean /= count;
return arithmeticMean > 0 ? geometricMean / arithmeticMean : 0;
}
function calculateSpectralSlope(magnitudes: number[], nyquist: number): number {
let sumXY = 0, sumX = 0, sumY = 0, sumX2 = 0;
const n = magnitudes.length;
for (let i = 0; i < n; i++) {
const x = (i * nyquist) / n; // frecuencia
const y = magnitudes[i]; // magnitud
sumXY += x * y;
sumX += x;
sumY += y;
sumX2 += x * x;
}
const denominator = n * sumX2 - sumX * sumX;
return denominator !== 0 ? (n * sumXY - sumX * sumY) / denominator : 0;
}
function calculateHarmonicNoiseRatio(magnitudes: number[]): { harmonicRatio: number, noiseRatio: number } {
// Simplificación: basado en picos vs valle promedio
const sortedMags = [...magnitudes].sort((a, b) => b - a);
const peakEnergy = sortedMags.slice(0, Math.floor(sortedMags.length * 0.1)).reduce((a, b) => a + b, 0);
const totalEnergy = magnitudes.reduce((a, b) => a + b, 0);
const harmonicRatio = totalEnergy > 0 ? peakEnergy / totalEnergy : 0;
const noiseRatio = 1 - harmonicRatio;
return { harmonicRatio, noiseRatio };
}
function calculateTonalPower(magnitudes: number[]): number {
// Potencia de componentes tonales vs total
let tonalPower = 0;
const threshold = Math.max(...magnitudes) * 0.1;
for (const mag of magnitudes) {
if (mag > threshold) {
tonalPower += mag * mag;
}
}
const totalPower = magnitudes.reduce((sum, mag) => sum + mag * mag, 0);
return totalPower > 0 ? tonalPower / totalPower : 0;
}
function calculateSpectralContrast(magnitudes: number[], numBands: number): number[] {
const bandSize = Math.floor(magnitudes.length / numBands);
const contrasts: number[] = [];
for (let band = 0; band < numBands; band++) {
const start = band * bandSize;
const end = Math.min(start + bandSize, magnitudes.length);
const bandMags = magnitudes.slice(start, end);
if (bandMags.length > 0) {
const sortedBand = [...bandMags].sort((a, b) => b - a);
const peakMean = sortedBand.slice(0, Math.max(1, Math.floor(sortedBand.length * 0.2)))
.reduce((a, b) => a + b, 0) / Math.max(1, Math.floor(sortedBand.length * 0.2));
const valleyMean = sortedBand.slice(Math.floor(sortedBand.length * 0.8))
.reduce((a, b) => a + b, 0) / Math.max(1, sortedBand.length - Math.floor(sortedBand.length * 0.8));
contrasts.push(valleyMean > 0 ? Math.log(peakMean / valleyMean) : 0);
} else {
contrasts.push(0);
}
}
return contrasts;
}
function calculateBandEnergy(magnitudes: number[], numBands: number): number[] {
const bandSize = Math.floor(magnitudes.length / numBands);
const energies: number[] = [];
for (let band = 0; band < numBands; band++) {
const start = band * bandSize;
const end = Math.min(start + bandSize, magnitudes.length);
let energy = 0;
for (let i = start; i < end; i++) {
energy += magnitudes[i] * magnitudes[i];
}
energies.push(energy / (end - start));
}
return energies;
}
function calculateTemporalFeatures(current: number[], previous: number[]): number[] {
const features: number[] = [];
// 1. Cambio de energía
const currentEnergy = current.reduce((sum, amp) => sum + amp * amp, 0);
const previousEnergy = previous.length > 0 ? previous.reduce((sum, amp) => sum + amp * amp, 0) : currentEnergy;
const energyChange = previousEnergy > 0 ? (currentEnergy - previousEnergy) / previousEnergy : 0;
features.push(energyChange);
// 2. Autocorrelación en lag=1
let autocorr = 0;
if (current.length > 1) {
for (let i = 1; i < current.length; i++) {
autocorr += current[i] * current[i-1];
}
autocorr /= (current.length - 1);
}
features.push(autocorr);
// 3. Varianza de amplitudes
const mean = current.reduce((a, b) => a + b, 0) / current.length;
const variance = current.reduce((sum, amp) => sum + (amp - mean) * (amp - mean), 0) / current.length;
features.push(variance);
// 4. Asimetría (skewness)
const std = Math.sqrt(variance);
let skewness = 0;
if (std > 0) {
skewness = current.reduce((sum, amp) => sum + Math.pow((amp - mean) / std, 3), 0) / current.length;
}
features.push(skewness);
return features;
}
// Función de fallback para extracción básica
function extractBasicFeatures(magnitudes: number[], rawData: Uint8Array, sampleRate: number): number[] {
const features: number[] = new Array(FEATURE_VECTOR_SIZE).fill(0);
// Usar magnitudes FFT básicas y rellenar
for (let i = 0; i < Math.min(FEATURE_VECTOR_SIZE, magnitudes.length); i++) {
features[i] = magnitudes[i];
}
return features;
} |