Add pipeline tag and usage example, remove library_tag
Browse filesHi!
This PR improves the model card by:
* Adding the `pipeline_tag: image-classification` to the main metadata block so the model can be found at https://huggingface.co/models?pipeline_tag=image-classification.
* Removing the redundant `library_tag` metadata.
* Adding a sample usage snippet using `timm`.
Feel free to merge if it looks good!
README.md
CHANGED
@@ -1,17 +1,56 @@
|
|
1 |
---
|
|
|
|
|
2 |
tags:
|
3 |
- image-classification
|
4 |
- timm
|
5 |
-
library_tag: timm
|
6 |
-
license: mit
|
7 |
-
library_name: timm
|
8 |
---
|
|
|
9 |
# LSNet: See Large, Focus Small
|
10 |
|
11 |
Paper: https://arxiv.org/abs/2503.23135
|
12 |
|
13 |
Code: https://github.com/THU-MIG/lsnet
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
```bibtex
|
16 |
@misc{wang2025lsnetlargefocussmall,
|
17 |
title={LSNet: See Large, Focus Small},
|
|
|
1 |
---
|
2 |
+
library_name: timm
|
3 |
+
license: mit
|
4 |
tags:
|
5 |
- image-classification
|
6 |
- timm
|
|
|
|
|
|
|
7 |
---
|
8 |
+
|
9 |
# LSNet: See Large, Focus Small
|
10 |
|
11 |
Paper: https://arxiv.org/abs/2503.23135
|
12 |
|
13 |
Code: https://github.com/THU-MIG/lsnet
|
14 |
|
15 |
+
## Usage
|
16 |
+
|
17 |
+
```python
|
18 |
+
import timm
|
19 |
+
import torch
|
20 |
+
from PIL import Image
|
21 |
+
import requests
|
22 |
+
from timm.data import resolve_data_config, create_transform
|
23 |
+
|
24 |
+
# Load the model
|
25 |
+
model = timm.create_model(
|
26 |
+
'hf_hub:jameslahm/lsnet_b',
|
27 |
+
pretrained=True
|
28 |
+
)
|
29 |
+
model.eval()
|
30 |
+
|
31 |
+
# Load and transform image
|
32 |
+
# Example using a URL:
|
33 |
+
url = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
|
34 |
+
img = Image.open(requests.get(url, stream=True).raw)
|
35 |
+
|
36 |
+
config = resolve_data_config({}, model=model)
|
37 |
+
transform = create_transform(**config)
|
38 |
+
input_tensor = transform(img).unsqueeze(0) # transform and add batch dimension
|
39 |
+
|
40 |
+
# Make prediction
|
41 |
+
with torch.no_grad():
|
42 |
+
output = model(input_tensor)
|
43 |
+
probabilities = torch.nn.functional.softmax(output[0], dim=0)
|
44 |
+
|
45 |
+
# Get top 5 predictions
|
46 |
+
top5_prob, top5_catid = torch.topk(probabilities, 5)
|
47 |
+
# Assuming you have imagenet labels list 'imagenet_labels'
|
48 |
+
# for i in range(top5_prob.size(0)):
|
49 |
+
# print(imagenet_labels[top5_catid[i]], top5_prob[i].item())
|
50 |
+
```
|
51 |
+
|
52 |
+
## Citation
|
53 |
+
|
54 |
```bibtex
|
55 |
@misc{wang2025lsnetlargefocussmall,
|
56 |
title={LSNet: See Large, Focus Small},
|