--- library_name: timm license: mit tags: - image-classification - timm --- # LSNet: See Large, Focus Small Paper: https://arxiv.org/abs/2503.23135 Code: https://github.com/THU-MIG/lsnet ## Usage ```python import timm import torch from PIL import Image import requests from timm.data import resolve_data_config, create_transform # Load the model model = timm.create_model( 'hf_hub:jameslahm/lsnet_b', pretrained=True ) model.eval() # Load and transform image # Example using a URL: url = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' img = Image.open(requests.get(url, stream=True).raw) config = resolve_data_config({}, model=model) transform = create_transform(**config) input_tensor = transform(img).unsqueeze(0) # transform and add batch dimension # Make prediction with torch.no_grad(): output = model(input_tensor) probabilities = torch.nn.functional.softmax(output[0], dim=0) # Get top 5 predictions top5_prob, top5_catid = torch.topk(probabilities, 5) # Assuming you have imagenet labels list 'imagenet_labels' # for i in range(top5_prob.size(0)): # print(imagenet_labels[top5_catid[i]], top5_prob[i].item()) ``` ## Citation ```bibtex @misc{wang2025lsnetlargefocussmall, title={LSNet: See Large, Focus Small}, author={Ao Wang and Hui Chen and Zijia Lin and Jungong Han and Guiguang Ding}, year={2025}, eprint={2503.23135}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2503.23135}, } ```