jamiet1139 commited on
Commit
befc5ac
·
1 Parent(s): 3009bff

Upload first attempt at lunar lander

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 268.92 +/- 18.92
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1ea35bb8b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1ea35bb940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1ea35bb9d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1ea35bba60>", "_build": "<function ActorCriticPolicy._build at 0x7f1ea35bbaf0>", "forward": "<function ActorCriticPolicy.forward at 0x7f1ea35bbb80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1ea35bbc10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1ea35bbca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1ea35bbd30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1ea35bbdc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1ea35bbe50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1ea35bbee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1ea35b4a20>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673883637907341304, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALPkaL1co026jE8StaMDDLBEoao7+iFkNAAAgD8AAIA/ZgxbPSuW+z6njBI+NxCIvrE7jj3I/M08AAAAAAAAAACN++29RXN0P9IDFL729gO/OyRGvgKtOj0AAAAAAAAAAPOerL32ZF+6e65Cu3EZlzyCF5o6J1ODPQAAAAAAAIA/psKSPgSreD9nl5E+87Tuvp28Tj7lY4i8AAAAAAAAAADzrI+9s5d3PxQvQr0Dk8u+0FM7vmEJKb0AAAAAAAAAAM1q9D25JbM/VHufPpfr075sacG9EWqKPQAAAAAAAAAAzRUvPS7bpz3nsEW+YTQavpNwKrwg6+e7AAAAAAAAAABmKwU9fA91PWMC6juySHe+FoAjO77zmD0AAAAAAAAAABovjD3IJro7IZGEvUbbbb7KeIk8WRiBuAAAAAAAAAAAU7KoPtwsDj8TcLG+UQSWvhcvgzxh2JO5AAAAAAAAAAAGLCi+bGuoPknQHz4vj76+2pxRvV6hWj0AAAAAAAAAAJM7Vj6ph6U/jTjpPmyqBr9JScc9NUWOPgAAAAAAAAAAzceqPa69nrrOGxY7IGMJuYm1yzr72yi6AACAPwAAAAAAfKc8dvh+vAz/n7ygMMM8pXflPQYYmb0AAIA/AACAP/prF76myLU+HmtwPneBhr5L2vS8PTL8PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIo+cWupJAcUCUhpRSlIwBbJRNNgGMAXSUR0CRvBjABT4tdX2UKGgGaAloD0MIkJ4ih4g+bkCUhpRSlGgVTUQBaBZHQJG8ZyzXz191fZQoaAZoCWgPQwhmEYqtoFJuQJSGlFKUaBVNFgFoFkdAkbzP9DQZ43V9lChoBmgJaA9DCESn592YjHBAlIaUUpRoFU1mAWgWR0CRveu4gA6udX2UKGgGaAloD0MIogvqW6ZAckCUhpRSlGgVTaUBaBZHQJG+SXrt3Oh1fZQoaAZoCWgPQwiSkh6G1uhxQJSGlFKUaBVNdgFoFkdAkb9ksWfseHV9lChoBmgJaA9DCMPX17rUiG5AlIaUUpRoFU2aAWgWR0CRv8yiVSn+dX2UKGgGaAloD0MIZHWr5+RPcECUhpRSlGgVTSQCaBZHQJG/1sMy8Bd1fZQoaAZoCWgPQwhCB13CoVtuQJSGlFKUaBVNAQJoFkdAkb/qI3zcynV9lChoBmgJaA9DCH9Ma9NY4G9AlIaUUpRoFU3AAWgWR0CRwD7yQPqcdX2UKGgGaAloD0MIAB3my8s2cUCUhpRSlGgVTTMBaBZHQJHBbBl+Vkd1fZQoaAZoCWgPQwjeVnptdmxwQJSGlFKUaBVNpAFoFkdAkcHUIsyzonV9lChoBmgJaA9DCKn7AKS2DnFAlIaUUpRoFU08AWgWR0CRweWcBltkdX2UKGgGaAloD0MIHomXp/MHcUCUhpRSlGgVTXwBaBZHQJHCWy7f51x1fZQoaAZoCWgPQwjxDvCkhZdxQJSGlFKUaBVL+mgWR0CRw/zLOiWWdX2UKGgGaAloD0MIpRXfUDjQckCUhpRSlGgVTSUBaBZHQJHFR8IAwPB1fZQoaAZoCWgPQwjIluXrspRvQJSGlFKUaBVNKQFoFkdAkcVzw+dK/XV9lChoBmgJaA9DCNjXutQI/3BAlIaUUpRoFU0nAWgWR0CRxfCyyD7JdX2UKGgGaAloD0MIMJsAw/KocECUhpRSlGgVTTgBaBZHQJHGJrTH80l1fZQoaAZoCWgPQwg1m8dhcLdwQJSGlFKUaBVNCgFoFkdAkcf2o3rD63V9lChoBmgJaA9DCJI9Qs3QfnBAlIaUUpRoFU0mAWgWR0CRyAyrgflqdX2UKGgGaAloD0MIWOatuo7zbkCUhpRSlGgVTVcBaBZHQJHIbnMdLg51fZQoaAZoCWgPQwjlmgKZne9sQJSGlFKUaBVNLQFoFkdAkcinP3SKFnV9lChoBmgJaA9DCC/7dac7TnFAlIaUUpRoFU1AAWgWR0CRyTPhhpg1dX2UKGgGaAloD0MI7Nrebsmeb0CUhpRSlGgVTYcBaBZHQJHKPeJpFkR1fZQoaAZoCWgPQwjZQpCDklxtQJSGlFKUaBVNAwFoFkdAkco92TxG2HV9lChoBmgJaA9DCP5D+u1rLWxAlIaUUpRoFU0nAWgWR0CRykh3JPqLdX2UKGgGaAloD0MIrUz4pX72b0CUhpRSlGgVTRwBaBZHQJHKao73fyh1fZQoaAZoCWgPQwhBCwkY3TRwQJSGlFKUaBVNLgFoFkdAkcrSkO7QLXV9lChoBmgJaA9DCMQkXMgjxXFAlIaUUpRoFU13AWgWR0CRyvIFvAGjdX2UKGgGaAloD0MICTVDqqiVcECUhpRSlGgVTVEBaBZHQJHOSSaEzwd1fZQoaAZoCWgPQwjrjsU2qWdvQJSGlFKUaBVNNgFoFkdAkc8LhJiAlXV9lChoBmgJaA9DCNjxXyDIV3BAlIaUUpRoFU0sAWgWR0CRzzlgtvn9dX2UKGgGaAloD0MINLkYA6tQcECUhpRSlGgVTQMBaBZHQJHQyIl+mWN1fZQoaAZoCWgPQwhd34eDhEdsQJSGlFKUaBVNVAFoFkdAkdD5zPrv9nV9lChoBmgJaA9DCH4bYrxmn29AlIaUUpRoFU11AWgWR0CR0TG6f8MvdX2UKGgGaAloD0MIZMxdS8j/T0CUhpRSlGgVS9RoFkdAkdGpPl+3IHV9lChoBmgJaA9DCF7Ymq08wm9AlIaUUpRoFU00AWgWR0CR0cTTOPeYdX2UKGgGaAloD0MIiBOYTiuocUCUhpRSlGgVTU4BaBZHQJHSqzRhMJx1fZQoaAZoCWgPQwhEbRtGAdpyQJSGlFKUaBVNIgFoFkdAkdN8NH6MznV9lChoBmgJaA9DCFuYhXaON3FAlIaUUpRoFU0tAWgWR0CR09Vea8YidX2UKGgGaAloD0MIPxwkRPkhckCUhpRSlGgVTVABaBZHQJHT8SYgJTl1fZQoaAZoCWgPQwjo9pLGqGxyQJSGlFKUaBVNNgFoFkdAkdRLCm/Fi3V9lChoBmgJaA9DCHBdMSP8LnJAlIaUUpRoFU2AAWgWR0CR1JD8tPHldX2UKGgGaAloD0MIb2b0o+HYbUCUhpRSlGgVTU8BaBZHQJHUzKuB+Wp1fZQoaAZoCWgPQwiL3T6rDCpxQJSGlFKUaBVNNgFoFkdAkdTP9pAUtnV9lChoBmgJaA9DCLde04OCajFAlIaUUpRoFUvPaBZHQJHVm3EyckN1fZQoaAZoCWgPQwgcfcwHBJROQJSGlFKUaBVL22gWR0CR1cOn2qT9dX2UKGgGaAloD0MIYg/tYwUfUUCUhpRSlGgVS+VoFkdAkeoG5hBqsXV9lChoBmgJaA9DCNcXCW05UG9AlIaUUpRoFU0tAWgWR0CR6jFrl/6PdX2UKGgGaAloD0MIWTMyyF0LcUCUhpRSlGgVS/hoFkdAkexpPIn0CnV9lChoBmgJaA9DCG8vaYyWw3BAlIaUUpRoFU0rAWgWR0CR7KA3DNyHdX2UKGgGaAloD0MIeQd40gKNckCUhpRSlGgVTSQBaBZHQJHs1+w1R+B1fZQoaAZoCWgPQwjiOzHrRcZvQJSGlFKUaBVNKQFoFkdAke0bXDm8unV9lChoBmgJaA9DCL4tWKqLGG9AlIaUUpRoFU0OAWgWR0CR7fZEUj9odX2UKGgGaAloD0MIf0+sU+VwcECUhpRSlGgVTXIBaBZHQJHuyPwNLDh1fZQoaAZoCWgPQwieRe9UgC5wQJSGlFKUaBVNAwFoFkdAke8mH+Idl3V9lChoBmgJaA9DCF7zqs5ql3BAlIaUUpRoFU0VAWgWR0CR72ZA6dUbdX2UKGgGaAloD0MIDXIXYYrFcUCUhpRSlGgVTU0BaBZHQJHwfW07bL51fZQoaAZoCWgPQwjDuYYZmjhwQJSGlFKUaBVNSQFoFkdAkfC2waBI4HV9lChoBmgJaA9DCCno9pIGOnJAlIaUUpRoFU1PAWgWR0CR8XALApKBdX2UKGgGaAloD0MIUfUrnY8hb0CUhpRSlGgVTSwBaBZHQJHxiSidrft1fZQoaAZoCWgPQwgMdVjh1ktxQJSGlFKUaBVNdQFoFkdAkfGEg4ffXXV9lChoBmgJaA9DCJ2E0hdCg3FAlIaUUpRoFU0tAWgWR0CR8bhX8wYcdX2UKGgGaAloD0MIF9nO91MBckCUhpRSlGgVTTcBaBZHQJHzaWZ7Xxx1fZQoaAZoCWgPQwhv8lt08ixxQJSGlFKUaBVNAAFoFkdAkfQCj59E1HV9lChoBmgJaA9DCET9LmyNknJAlIaUUpRoFU1HAWgWR0CR9Axfv4M4dX2UKGgGaAloD0MIy2YOSS0AS0CUhpRSlGgVS9VoFkdAkfQeoDPnjnV9lChoBmgJaA9DCAqd19hlZXBAlIaUUpRoFU0TAWgWR0CR9Q6j3225dX2UKGgGaAloD0MIasGLvgKKb0CUhpRSlGgVTS4BaBZHQJH1ZzNliBp1fZQoaAZoCWgPQwiKzFzgcrxsQJSGlFKUaBVNLgFoFkdAkfWRllK9PHV9lChoBmgJaA9DCA6g3/ev/nFAlIaUUpRoFU0VAWgWR0CR9oISDh99dX2UKGgGaAloD0MINZiG4eP9cUCUhpRSlGgVTSABaBZHQJH3Jz5oGpx1fZQoaAZoCWgPQwjhs3VwsNlwQJSGlFKUaBVNEgFoFkdAkfhCcG1QZXV9lChoBmgJaA9DCKoM426QKXBAlIaUUpRoFU1cAWgWR0CR+VfnOjZddX2UKGgGaAloD0MIBduIJzt8cECUhpRSlGgVTTMBaBZHQJH6W08eS0V1fZQoaAZoCWgPQwhNEHUfAP9yQJSGlFKUaBVNOAFoFkdAkfpwhje9BnV9lChoBmgJaA9DCH1bsFSXV29AlIaUUpRoFU1HAWgWR0CR+w6QvHtGdX2UKGgGaAloD0MIa4Ko+4CrbECUhpRSlGgVTW4BaBZHQJH7H3ueBhB1fZQoaAZoCWgPQwh6yJQPwYVvQJSGlFKUaBVNcQFoFkdAkfykxyn1nXV9lChoBmgJaA9DCI7Idyl1+25AlIaUUpRoFU09AWgWR0CR/SXpGFzudX2UKGgGaAloD0MI5C8t6hMHc0CUhpRSlGgVTTIBaBZHQJH9kFUyYXx1fZQoaAZoCWgPQwiOeLKbGYNyQJSGlFKUaBVNRAFoFkdAkf4MURFqjHV9lChoBmgJaA9DCErRyr1Az29AlIaUUpRoFU0pAWgWR0CR/uy9EkSmdX2UKGgGaAloD0MIR1hUxOnIcECUhpRSlGgVTR4BaBZHQJH/3C79Q411fZQoaAZoCWgPQwiQpKSHoVJyQJSGlFKUaBVNDwFoFkdAkgAgAp8WsXV9lChoBmgJaA9DCEATYcOTmXBAlIaUUpRoFU1MAWgWR0CSAE8/D+BIdX2UKGgGaAloD0MIdQMF3sliUkCUhpRSlGgVS6FoFkdAkgBwOz6acHV9lChoBmgJaA9DCNKrAUpD4HFAlIaUUpRoFU2mAWgWR0CSAUGRV6u5dX2UKGgGaAloD0MIDJV/Le9NcECUhpRSlGgVTYYBaBZHQJIBc1KoQ4F1fZQoaAZoCWgPQwgaahSSzKtwQJSGlFKUaBVNNAFoFkdAkgI1oQFs6HV9lChoBmgJaA9DCOYklL6QJW1AlIaUUpRoFU0gAWgWR0CSA4oYvWYndX2UKGgGaAloD0MIfT7KiMttcUCUhpRSlGgVS9ZoFkdAkgQ2NzbN8nV9lChoBmgJaA9DCCGwcmhR/nBAlIaUUpRoFU0qAWgWR0CSBHAkLQXzdX2UKGgGaAloD0MI0a5Cys9cckCUhpRSlGgVTUEBaBZHQJIEgqjJuEV1fZQoaAZoCWgPQwhN2ekHtaVxQJSGlFKUaBVNKQFoFkdAkgXSBPKuCHV9lChoBmgJaA9DCCKI83ACmHFAlIaUUpRoFU0pAWgWR0CSBlAO8TSLdX2UKGgGaAloD0MId9oaEYwrcUCUhpRSlGgVTRUBaBZHQJIGkOx0MgF1fZQoaAZoCWgPQwgkXwmkRG1wQJSGlFKUaBVNpQFoFkdAkgan/5tWMnV9lChoBmgJaA9DCAGIu3rVinBAlIaUUpRoFUvpaBZHQJIG2/rSmZV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
first_try_with_ppo.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76d54dcbb2bb09c15e9deaa4930e785d1006bfebccfb13275d0f9410880b8819
3
+ size 147412
first_try_with_ppo/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
first_try_with_ppo/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1ea35bb8b0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1ea35bb940>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1ea35bb9d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1ea35bba60>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f1ea35bbaf0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f1ea35bbb80>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1ea35bbc10>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1ea35bbca0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f1ea35bbd30>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1ea35bbdc0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1ea35bbe50>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1ea35bbee0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f1ea35b4a20>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1673883637907341304,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALPkaL1co026jE8StaMDDLBEoao7+iFkNAAAgD8AAIA/ZgxbPSuW+z6njBI+NxCIvrE7jj3I/M08AAAAAAAAAACN++29RXN0P9IDFL729gO/OyRGvgKtOj0AAAAAAAAAAPOerL32ZF+6e65Cu3EZlzyCF5o6J1ODPQAAAAAAAIA/psKSPgSreD9nl5E+87Tuvp28Tj7lY4i8AAAAAAAAAADzrI+9s5d3PxQvQr0Dk8u+0FM7vmEJKb0AAAAAAAAAAM1q9D25JbM/VHufPpfr075sacG9EWqKPQAAAAAAAAAAzRUvPS7bpz3nsEW+YTQavpNwKrwg6+e7AAAAAAAAAABmKwU9fA91PWMC6juySHe+FoAjO77zmD0AAAAAAAAAABovjD3IJro7IZGEvUbbbb7KeIk8WRiBuAAAAAAAAAAAU7KoPtwsDj8TcLG+UQSWvhcvgzxh2JO5AAAAAAAAAAAGLCi+bGuoPknQHz4vj76+2pxRvV6hWj0AAAAAAAAAAJM7Vj6ph6U/jTjpPmyqBr9JScc9NUWOPgAAAAAAAAAAzceqPa69nrrOGxY7IGMJuYm1yzr72yi6AACAPwAAAAAAfKc8dvh+vAz/n7ygMMM8pXflPQYYmb0AAIA/AACAP/prF76myLU+HmtwPneBhr5L2vS8PTL8PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIo+cWupJAcUCUhpRSlIwBbJRNNgGMAXSUR0CRvBjABT4tdX2UKGgGaAloD0MIkJ4ih4g+bkCUhpRSlGgVTUQBaBZHQJG8ZyzXz191fZQoaAZoCWgPQwhmEYqtoFJuQJSGlFKUaBVNFgFoFkdAkbzP9DQZ43V9lChoBmgJaA9DCESn592YjHBAlIaUUpRoFU1mAWgWR0CRveu4gA6udX2UKGgGaAloD0MIogvqW6ZAckCUhpRSlGgVTaUBaBZHQJG+SXrt3Oh1fZQoaAZoCWgPQwiSkh6G1uhxQJSGlFKUaBVNdgFoFkdAkb9ksWfseHV9lChoBmgJaA9DCMPX17rUiG5AlIaUUpRoFU2aAWgWR0CRv8yiVSn+dX2UKGgGaAloD0MIZHWr5+RPcECUhpRSlGgVTSQCaBZHQJG/1sMy8Bd1fZQoaAZoCWgPQwhCB13CoVtuQJSGlFKUaBVNAQJoFkdAkb/qI3zcynV9lChoBmgJaA9DCH9Ma9NY4G9AlIaUUpRoFU3AAWgWR0CRwD7yQPqcdX2UKGgGaAloD0MIAB3my8s2cUCUhpRSlGgVTTMBaBZHQJHBbBl+Vkd1fZQoaAZoCWgPQwjeVnptdmxwQJSGlFKUaBVNpAFoFkdAkcHUIsyzonV9lChoBmgJaA9DCKn7AKS2DnFAlIaUUpRoFU08AWgWR0CRweWcBltkdX2UKGgGaAloD0MIHomXp/MHcUCUhpRSlGgVTXwBaBZHQJHCWy7f51x1fZQoaAZoCWgPQwjxDvCkhZdxQJSGlFKUaBVL+mgWR0CRw/zLOiWWdX2UKGgGaAloD0MIpRXfUDjQckCUhpRSlGgVTSUBaBZHQJHFR8IAwPB1fZQoaAZoCWgPQwjIluXrspRvQJSGlFKUaBVNKQFoFkdAkcVzw+dK/XV9lChoBmgJaA9DCNjXutQI/3BAlIaUUpRoFU0nAWgWR0CRxfCyyD7JdX2UKGgGaAloD0MIMJsAw/KocECUhpRSlGgVTTgBaBZHQJHGJrTH80l1fZQoaAZoCWgPQwg1m8dhcLdwQJSGlFKUaBVNCgFoFkdAkcf2o3rD63V9lChoBmgJaA9DCJI9Qs3QfnBAlIaUUpRoFU0mAWgWR0CRyAyrgflqdX2UKGgGaAloD0MIWOatuo7zbkCUhpRSlGgVTVcBaBZHQJHIbnMdLg51fZQoaAZoCWgPQwjlmgKZne9sQJSGlFKUaBVNLQFoFkdAkcinP3SKFnV9lChoBmgJaA9DCC/7dac7TnFAlIaUUpRoFU1AAWgWR0CRyTPhhpg1dX2UKGgGaAloD0MI7Nrebsmeb0CUhpRSlGgVTYcBaBZHQJHKPeJpFkR1fZQoaAZoCWgPQwjZQpCDklxtQJSGlFKUaBVNAwFoFkdAkco92TxG2HV9lChoBmgJaA9DCP5D+u1rLWxAlIaUUpRoFU0nAWgWR0CRykh3JPqLdX2UKGgGaAloD0MIrUz4pX72b0CUhpRSlGgVTRwBaBZHQJHKao73fyh1fZQoaAZoCWgPQwhBCwkY3TRwQJSGlFKUaBVNLgFoFkdAkcrSkO7QLXV9lChoBmgJaA9DCMQkXMgjxXFAlIaUUpRoFU13AWgWR0CRyvIFvAGjdX2UKGgGaAloD0MICTVDqqiVcECUhpRSlGgVTVEBaBZHQJHOSSaEzwd1fZQoaAZoCWgPQwjrjsU2qWdvQJSGlFKUaBVNNgFoFkdAkc8LhJiAlXV9lChoBmgJaA9DCNjxXyDIV3BAlIaUUpRoFU0sAWgWR0CRzzlgtvn9dX2UKGgGaAloD0MINLkYA6tQcECUhpRSlGgVTQMBaBZHQJHQyIl+mWN1fZQoaAZoCWgPQwhd34eDhEdsQJSGlFKUaBVNVAFoFkdAkdD5zPrv9nV9lChoBmgJaA9DCH4bYrxmn29AlIaUUpRoFU11AWgWR0CR0TG6f8MvdX2UKGgGaAloD0MIZMxdS8j/T0CUhpRSlGgVS9RoFkdAkdGpPl+3IHV9lChoBmgJaA9DCF7Ymq08wm9AlIaUUpRoFU00AWgWR0CR0cTTOPeYdX2UKGgGaAloD0MIiBOYTiuocUCUhpRSlGgVTU4BaBZHQJHSqzRhMJx1fZQoaAZoCWgPQwhEbRtGAdpyQJSGlFKUaBVNIgFoFkdAkdN8NH6MznV9lChoBmgJaA9DCFuYhXaON3FAlIaUUpRoFU0tAWgWR0CR09Vea8YidX2UKGgGaAloD0MIPxwkRPkhckCUhpRSlGgVTVABaBZHQJHT8SYgJTl1fZQoaAZoCWgPQwjo9pLGqGxyQJSGlFKUaBVNNgFoFkdAkdRLCm/Fi3V9lChoBmgJaA9DCHBdMSP8LnJAlIaUUpRoFU2AAWgWR0CR1JD8tPHldX2UKGgGaAloD0MIb2b0o+HYbUCUhpRSlGgVTU8BaBZHQJHUzKuB+Wp1fZQoaAZoCWgPQwiL3T6rDCpxQJSGlFKUaBVNNgFoFkdAkdTP9pAUtnV9lChoBmgJaA9DCLde04OCajFAlIaUUpRoFUvPaBZHQJHVm3EyckN1fZQoaAZoCWgPQwgcfcwHBJROQJSGlFKUaBVL22gWR0CR1cOn2qT9dX2UKGgGaAloD0MIYg/tYwUfUUCUhpRSlGgVS+VoFkdAkeoG5hBqsXV9lChoBmgJaA9DCNcXCW05UG9AlIaUUpRoFU0tAWgWR0CR6jFrl/6PdX2UKGgGaAloD0MIWTMyyF0LcUCUhpRSlGgVS/hoFkdAkexpPIn0CnV9lChoBmgJaA9DCG8vaYyWw3BAlIaUUpRoFU0rAWgWR0CR7KA3DNyHdX2UKGgGaAloD0MIeQd40gKNckCUhpRSlGgVTSQBaBZHQJHs1+w1R+B1fZQoaAZoCWgPQwjiOzHrRcZvQJSGlFKUaBVNKQFoFkdAke0bXDm8unV9lChoBmgJaA9DCL4tWKqLGG9AlIaUUpRoFU0OAWgWR0CR7fZEUj9odX2UKGgGaAloD0MIf0+sU+VwcECUhpRSlGgVTXIBaBZHQJHuyPwNLDh1fZQoaAZoCWgPQwieRe9UgC5wQJSGlFKUaBVNAwFoFkdAke8mH+Idl3V9lChoBmgJaA9DCF7zqs5ql3BAlIaUUpRoFU0VAWgWR0CR72ZA6dUbdX2UKGgGaAloD0MIDXIXYYrFcUCUhpRSlGgVTU0BaBZHQJHwfW07bL51fZQoaAZoCWgPQwjDuYYZmjhwQJSGlFKUaBVNSQFoFkdAkfC2waBI4HV9lChoBmgJaA9DCCno9pIGOnJAlIaUUpRoFU1PAWgWR0CR8XALApKBdX2UKGgGaAloD0MIUfUrnY8hb0CUhpRSlGgVTSwBaBZHQJHxiSidrft1fZQoaAZoCWgPQwgMdVjh1ktxQJSGlFKUaBVNdQFoFkdAkfGEg4ffXXV9lChoBmgJaA9DCJ2E0hdCg3FAlIaUUpRoFU0tAWgWR0CR8bhX8wYcdX2UKGgGaAloD0MIF9nO91MBckCUhpRSlGgVTTcBaBZHQJHzaWZ7Xxx1fZQoaAZoCWgPQwhv8lt08ixxQJSGlFKUaBVNAAFoFkdAkfQCj59E1HV9lChoBmgJaA9DCET9LmyNknJAlIaUUpRoFU1HAWgWR0CR9Axfv4M4dX2UKGgGaAloD0MIy2YOSS0AS0CUhpRSlGgVS9VoFkdAkfQeoDPnjnV9lChoBmgJaA9DCAqd19hlZXBAlIaUUpRoFU0TAWgWR0CR9Q6j3225dX2UKGgGaAloD0MIasGLvgKKb0CUhpRSlGgVTS4BaBZHQJH1ZzNliBp1fZQoaAZoCWgPQwiKzFzgcrxsQJSGlFKUaBVNLgFoFkdAkfWRllK9PHV9lChoBmgJaA9DCA6g3/ev/nFAlIaUUpRoFU0VAWgWR0CR9oISDh99dX2UKGgGaAloD0MINZiG4eP9cUCUhpRSlGgVTSABaBZHQJH3Jz5oGpx1fZQoaAZoCWgPQwjhs3VwsNlwQJSGlFKUaBVNEgFoFkdAkfhCcG1QZXV9lChoBmgJaA9DCKoM426QKXBAlIaUUpRoFU1cAWgWR0CR+VfnOjZddX2UKGgGaAloD0MIBduIJzt8cECUhpRSlGgVTTMBaBZHQJH6W08eS0V1fZQoaAZoCWgPQwhNEHUfAP9yQJSGlFKUaBVNOAFoFkdAkfpwhje9BnV9lChoBmgJaA9DCH1bsFSXV29AlIaUUpRoFU1HAWgWR0CR+w6QvHtGdX2UKGgGaAloD0MIa4Ko+4CrbECUhpRSlGgVTW4BaBZHQJH7H3ueBhB1fZQoaAZoCWgPQwh6yJQPwYVvQJSGlFKUaBVNcQFoFkdAkfykxyn1nXV9lChoBmgJaA9DCI7Idyl1+25AlIaUUpRoFU09AWgWR0CR/SXpGFzudX2UKGgGaAloD0MI5C8t6hMHc0CUhpRSlGgVTTIBaBZHQJH9kFUyYXx1fZQoaAZoCWgPQwiOeLKbGYNyQJSGlFKUaBVNRAFoFkdAkf4MURFqjHV9lChoBmgJaA9DCErRyr1Az29AlIaUUpRoFU0pAWgWR0CR/uy9EkSmdX2UKGgGaAloD0MIR1hUxOnIcECUhpRSlGgVTR4BaBZHQJH/3C79Q411fZQoaAZoCWgPQwiQpKSHoVJyQJSGlFKUaBVNDwFoFkdAkgAgAp8WsXV9lChoBmgJaA9DCEATYcOTmXBAlIaUUpRoFU1MAWgWR0CSAE8/D+BIdX2UKGgGaAloD0MIdQMF3sliUkCUhpRSlGgVS6FoFkdAkgBwOz6acHV9lChoBmgJaA9DCNKrAUpD4HFAlIaUUpRoFU2mAWgWR0CSAUGRV6u5dX2UKGgGaAloD0MIDJV/Le9NcECUhpRSlGgVTYYBaBZHQJIBc1KoQ4F1fZQoaAZoCWgPQwgaahSSzKtwQJSGlFKUaBVNNAFoFkdAkgI1oQFs6HV9lChoBmgJaA9DCOYklL6QJW1AlIaUUpRoFU0gAWgWR0CSA4oYvWYndX2UKGgGaAloD0MIfT7KiMttcUCUhpRSlGgVS9ZoFkdAkgQ2NzbN8nV9lChoBmgJaA9DCCGwcmhR/nBAlIaUUpRoFU0qAWgWR0CSBHAkLQXzdX2UKGgGaAloD0MI0a5Cys9cckCUhpRSlGgVTUEBaBZHQJIEgqjJuEV1fZQoaAZoCWgPQwhN2ekHtaVxQJSGlFKUaBVNKQFoFkdAkgXSBPKuCHV9lChoBmgJaA9DCCKI83ACmHFAlIaUUpRoFU0pAWgWR0CSBlAO8TSLdX2UKGgGaAloD0MId9oaEYwrcUCUhpRSlGgVTRUBaBZHQJIGkOx0MgF1fZQoaAZoCWgPQwgkXwmkRG1wQJSGlFKUaBVNpQFoFkdAkgan/5tWMnV9lChoBmgJaA9DCAGIu3rVinBAlIaUUpRoFUvpaBZHQJIG2/rSmZV1ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
first_try_with_ppo/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0294aba777b263fc2a8cb459b89a7483b179c02d42918f71a64437e9249dfefc
3
+ size 87929
first_try_with_ppo/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:720bc8018a11ab99382a4b69f34d276d4786358b03a215d7cfabd4de3822db55
3
+ size 43393
first_try_with_ppo/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
first_try_with_ppo/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (218 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 268.92386330911484, "std_reward": 18.918359210512826, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-16T16:11:31.322231"}