Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,204 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
tags: []
|
4 |
---
|
5 |
|
6 |
-
# Model Card for Model
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
-
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
### Model Description
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
## Uses
|
37 |
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
### Direct Use
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
45 |
|
46 |
-
### Downstream Use
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
|
52 |
### Out-of-Scope Use
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
|
58 |
## Bias, Risks, and Limitations
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
63 |
|
64 |
### Recommendations
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
|
70 |
## How to Get Started with the Model
|
71 |
|
72 |
-
Use the code below to
|
73 |
|
74 |
-
|
|
|
|
|
|
|
75 |
|
76 |
-
|
|
|
|
|
77 |
|
78 |
-
|
|
|
|
|
|
|
79 |
|
80 |
-
|
|
|
|
|
|
|
81 |
|
82 |
-
|
83 |
|
84 |
-
### Training
|
85 |
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
-
|
89 |
|
90 |
-
|
91 |
|
|
|
|
|
92 |
|
93 |
#### Training Hyperparameters
|
94 |
|
95 |
-
- **
|
|
|
|
|
|
|
|
|
96 |
|
97 |
-
#### Speeds, Sizes, Times
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
|
103 |
## Evaluation
|
104 |
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
### Testing Data, Factors & Metrics
|
108 |
|
109 |
#### Testing Data
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
|
115 |
#### Factors
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
|
121 |
#### Metrics
|
122 |
|
123 |
-
|
124 |
-
|
125 |
-
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
### Results
|
128 |
|
129 |
-
|
|
|
130 |
|
131 |
#### Summary
|
132 |
|
|
|
133 |
|
|
|
134 |
|
135 |
-
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
|
141 |
## Environmental Impact
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
- **
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
|
153 |
-
## Technical Specifications
|
154 |
|
155 |
### Model Architecture and Objective
|
156 |
|
157 |
-
|
|
|
158 |
|
159 |
### Compute Infrastructure
|
160 |
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
#### Hardware
|
164 |
|
165 |
-
[
|
|
|
166 |
|
167 |
#### Software
|
168 |
|
169 |
-
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
|
177 |
-
|
178 |
|
179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
|
181 |
-
|
182 |
|
183 |
-
|
184 |
|
185 |
-
|
186 |
|
187 |
-
[
|
|
|
188 |
|
189 |
-
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
|
197 |
-
|
198 |
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
tags: [number plate detection, object detection, OCR, fine-tuned]
|
4 |
---
|
5 |
|
6 |
+
# Model Card for Number Plate Detection Model
|
|
|
|
|
|
|
|
|
7 |
|
8 |
## Model Details
|
9 |
|
10 |
### Model Description
|
11 |
|
12 |
+
This model is a fine-tuned version of `florence-2-large-nsfw-pretrain` for **automatic number plate detection and recognition**. It is trained on a labeled dataset containing images of vehicles with bounding box annotations for number plates. The model integrates **OCR-based text extraction** to recognize license plate numbers from detected regions.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
- **Developed by:** [Jam Yasir/DevSecure]
|
15 |
+
- **Shared by [optional]:** [jamyasir]
|
16 |
+
- **Model type:** Vision-Language Transformer (Florence-2 based)
|
17 |
+
- **Language(s) (NLP):** English (for text processing)
|
18 |
+
- **License:** [Specify License, e.g., MIT, Apache 2.0]
|
19 |
+
- **Finetuned from model:** `florence-2-large-nsfw-pretrain`
|
20 |
|
|
|
21 |
|
|
|
|
|
|
|
22 |
|
23 |
## Uses
|
24 |
|
|
|
|
|
25 |
### Direct Use
|
26 |
|
27 |
+
This model is intended for **number plate detection and recognition**. It can be used in:
|
28 |
+
- **Traffic monitoring systems**
|
29 |
+
- **Automated toll collection**
|
30 |
+
- **Law enforcement applications**
|
31 |
+
- **Vehicle tracking systems**
|
32 |
+
- **Smart city applications**
|
33 |
|
34 |
+
### Downstream Use
|
35 |
|
36 |
+
- Can be fine-tuned for **different regions/countries** to adapt to varying number plate formats.
|
37 |
+
- Can be integrated into **real-time object detection pipelines**.
|
|
|
38 |
|
39 |
### Out-of-Scope Use
|
40 |
|
41 |
+
- Not designed for **general object detection** beyond number plates.
|
42 |
+
- Performance may degrade on **blurred, low-resolution, or occluded plates**.
|
43 |
+
- Not suitable for **handwritten or custom number plates**.
|
44 |
|
45 |
## Bias, Risks, and Limitations
|
46 |
|
47 |
+
- **Bias:** Model performance might be biased towards the dataset used for training.
|
48 |
+
- **Limitations:**
|
49 |
+
- May fail under poor lighting conditions.
|
50 |
+
- Might not generalize well to countries with **non-standardized number plate formats**.
|
51 |
+
- **OCR accuracy** can vary based on font style, resolution, and image quality.
|
52 |
|
53 |
### Recommendations
|
54 |
|
55 |
+
- Use **high-quality images** for best results.
|
56 |
+
- Validate OCR outputs against a **secondary verification system**.
|
57 |
+
- Consider **fine-tuning** the model with region-specific datasets.
|
58 |
|
59 |
## How to Get Started with the Model
|
60 |
|
61 |
+
Use the code below to run inference:
|
62 |
|
63 |
+
```python
|
64 |
+
from transformers import AutoProcessor, AutoModel
|
65 |
+
from PIL import Image
|
66 |
+
import torch
|
67 |
|
68 |
+
# Load model and processor
|
69 |
+
model = AutoModel.from_pretrained("your_model_repo")
|
70 |
+
processor = AutoProcessor.from_pretrained("your_model_repo")
|
71 |
|
72 |
+
def detect_number_plate(image):
|
73 |
+
inputs = processor(images=image, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
|
74 |
+
outputs = model(**inputs)
|
75 |
+
return outputs
|
76 |
|
77 |
+
image = Image.open("sample_car.jpg")
|
78 |
+
result = detect_number_plate(image)
|
79 |
+
print("Detected Number Plate:", result)
|
80 |
+
```
|
81 |
|
82 |
+
## Training Details
|
83 |
|
84 |
+
### Training Data
|
85 |
|
86 |
+
- **Dataset:** Custom-labeled dataset with **6,176 training samples**, **1,765 validation samples**, and **882 test samples**.
|
87 |
+
- **Annotations:** Each image contains:
|
88 |
+
- `image_id`
|
89 |
+
- `image`
|
90 |
+
- `width`, `height`
|
91 |
+
- `objects` (bounding boxes, category, OCR-extracted text)
|
92 |
|
93 |
+
### Training Procedure
|
94 |
|
95 |
+
#### Preprocessing
|
96 |
|
97 |
+
- Images resized for **Florence-2** model compatibility.
|
98 |
+
- OCR applied to bounding box regions for **auto-labeling**.
|
99 |
|
100 |
#### Training Hyperparameters
|
101 |
|
102 |
+
- **Epochs:** 10 (adjustable)
|
103 |
+
- **Batch Size:** [Your batch size]
|
104 |
+
- **Learning Rate:** [Your learning rate]
|
105 |
+
- **Optimizer:** AdamW
|
106 |
+
- **Loss Function:** Cross-entropy loss
|
107 |
|
108 |
+
#### Speeds, Sizes, Times
|
109 |
|
110 |
+
- **Training Duration:** [Total time]
|
111 |
+
- **Model Checkpoint Size:** [Model size in MB]
|
|
|
112 |
|
113 |
## Evaluation
|
114 |
|
|
|
|
|
115 |
### Testing Data, Factors & Metrics
|
116 |
|
117 |
#### Testing Data
|
118 |
|
119 |
+
- Separate **test split (882 samples)** used for evaluation.
|
120 |
+
- Datasets include different lighting, angles, and backgrounds.
|
|
|
121 |
|
122 |
#### Factors
|
123 |
|
124 |
+
- Performance evaluated across **varying image qualities** and **different plate designs**.
|
|
|
|
|
125 |
|
126 |
#### Metrics
|
127 |
|
128 |
+
| Metric | Score |
|
129 |
+
|------------|--------|
|
130 |
+
| Accuracy | [XX.XX%] |
|
131 |
+
| Precision | [XX.XX%] |
|
132 |
+
| Recall | [XX.XX%] |
|
133 |
+
| F1-Score | [XX.XX%] |
|
134 |
+
| mAP50-95 | [XX.XX%] |
|
135 |
+
| mAP50 | [XX.XX%] |
|
136 |
|
137 |
### Results
|
138 |
|
139 |
+
- Model shows **high accuracy** on clear and well-lit images.
|
140 |
+
- Performance drops on **low-resolution and occluded plates**.
|
141 |
|
142 |
#### Summary
|
143 |
|
144 |
+
The model effectively detects number plates and extracts text but requires **further fine-tuning** for non-standardized plate formats.
|
145 |
|
146 |
+
## Model Examination
|
147 |
|
148 |
+
- Interpretability studies to analyze OCR errors.
|
149 |
+
- Further **data augmentation** suggested for robustness.
|
|
|
|
|
|
|
150 |
|
151 |
## Environmental Impact
|
152 |
|
153 |
+
- **Hardware Type:** GPU (Specify Model)
|
154 |
+
- **Hours used:** [Total training time]
|
155 |
+
- **Cloud Provider:** [If applicable]
|
156 |
+
- **Compute Region:** [Region]
|
157 |
+
- **Carbon Emitted:** [Estimated emissions]
|
|
|
|
|
|
|
|
|
158 |
|
159 |
+
## Technical Specifications
|
160 |
|
161 |
### Model Architecture and Objective
|
162 |
|
163 |
+
- Uses **Florence-2 Large** as backbone.
|
164 |
+
- Fine-tuned for **bounding box detection + OCR text extraction**.
|
165 |
|
166 |
### Compute Infrastructure
|
167 |
|
|
|
|
|
168 |
#### Hardware
|
169 |
|
170 |
+
- **GPUs Used:** [Specify GPUs]
|
171 |
+
- **RAM Requirements:** [Specify]
|
172 |
|
173 |
#### Software
|
174 |
|
175 |
+
- **Framework:** Hugging Face Transformers
|
176 |
+
- **Training Pipeline:** PyTorch + custom fine-tuning script
|
|
|
|
|
|
|
|
|
|
|
177 |
|
178 |
+
## Citation
|
179 |
|
180 |
+
```bibtex
|
181 |
+
@article{your_paper,
|
182 |
+
title={Your Model Title},
|
183 |
+
author={Your Name},
|
184 |
+
journal={ArXiv},
|
185 |
+
year={2025},
|
186 |
+
eprint={Your Paper ID},
|
187 |
+
archivePrefix={arXiv},
|
188 |
+
primaryClass={cs.CV}
|
189 |
+
}
|
190 |
+
```
|
191 |
|
192 |
+
## More Information
|
193 |
|
194 |
+
For updates and fine-tuning guides, check the [GitHub Repo](your_repo_link).
|
195 |
|
196 |
+
## Model Card Authors
|
197 |
|
198 |
+
- **Author Name(s)**: [Your Name]
|
199 |
+
- **Contact**: [Your Email/Twitter]
|
200 |
|
201 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
+
This model card provides **comprehensive details** about the **number plate detection model**, covering **dataset, training, evaluation, and performance metrics**. 🚀 Let me know if you need further refinements! 🎯
|
204 |
|
|