File size: 40,924 Bytes
e327e5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
#!/usr/bin/env python
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Training the Whisper model for sequence to sequence speech recognition via teacher-student distillation.
"""
# You can also adapt this script for your own distillation tasks. Pointers for this are left as comments.

import logging
import os
import re
import shutil
import sys
import time
# from multiprocessing import set_start_method
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import Any, Dict, List, Optional, Union

import datasets
import numpy as np
import torch
import torch.nn as nn
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from datasets import (
    DatasetDict,
    IterableDataset,
    load_dataset,
)
from huggingface_hub import Repository, create_repo
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import (
    AddedToken,
    HfArgumentParser,
    Seq2SeqTrainingArguments,
    WhisperConfig,
    WhisperFeatureExtractor,
    WhisperForConditionalGeneration,
    WhisperProcessor,
    WhisperTokenizerFast,
    get_scheduler,
    set_seed,
)
from transformers.modeling_outputs import BaseModelOutput
from transformers.utils import check_min_version
from transformers.utils.versions import require_version

# https://stackoverflow.com/questions/71692354/facing-ssl-error-with-huggingface-pretrained-models
os.environ['CURL_CA_BUNDLE'] = ''

# disable warning message
os.environ['TOKENIZERS_PARALLELISM'] = 'false'

# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.34.0.dev0")

require_version("datasets>=2.14.6", "To fix: `pip install --upgrade datasets`")

logger = get_logger(__name__)
# set_start_method("spawn")


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to distill from.
    """

    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained Whisper model or model identifier from huggingface.co/models"}
    )
    teacher_model_name_or_path: str = field(
        metadata={"help": "Path to pretrained teacher model or model identifier from huggingface.co/models"}
    )
    config_name: Optional[str] = field(
        default=None,
        metadata={"help": "Pretrained config name or path if not the same as model_name"},
    )
    tokenizer_name: Optional[str] = field(
        default=None,
        metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"},
    )
    feature_extractor_name: Optional[str] = field(
        default=None,
        metadata={"help": "feature extractor name or path if not the same as model_name"},
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    subfolder: str = field(
        default="",
        metadata={
            "help": "In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can"
            "specify the folder name here."
        },
    )
    token: str = field(
        default=None,
        metadata={
            "help": (
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
            )
        },
    )


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """
    train_dataset_name: str = field(
        default=None,
        metadata={
            "help": "The name of the training dataset to use (via the datasets library). Load and combine "
                    "multiple datasets by separating dataset ids by a '+' symbol. For example, to load LibriSpeech "
                    "and Common Voice, set `train_dataset_name='librispeech_asr+common_voice'`."
        },
    )
    train_dataset_config_name: Optional[str] = field(
        default=None,
        metadata={
            "help": "The configuration name of the training dataset to use (via the datasets library). Load and combine "
            "multiple datasets by separating dataset configs by a '+' symbol. Note that the order of the configs should "
            "match the order of the datasets."
        },
    )
    dataset_cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Path to cache directory for saving and loading datasets"},
    )
    overwrite_cache: bool = field(
        default=False,
        metadata={"help": "Overwrite the cached training and evaluation sets"},
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing if using non-streaming mode."},
    )
    preprocessing_batch_size: Optional[int] = field(
        default=256,
        metadata={"help": "Number of examples per batch provided to the `prepare_dataset` function."},
    )
    max_label_length: int = field(
        default=128,
        metadata={"help": "Truncate transcriptions that are longer `max_label_length` tokens."},
    )
    train_split_name: str = field(
        default="train",
        metadata={
            "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
        },
    )
    timestamp_probability: float = field(
        default=0.2, metadata={"help": "Probability for training on timestamped tokens if the data contains it."}
    )
    return_timestamps: bool = field(
        default=False, metadata={"help": "Whether or not to predict timestamps in the generation step."}
    )
    language: str = field(
        default=None,
        metadata={
            "help": (
                "Language for multilingual distillation. This argument should be set for multilingual distillation "
                "only. For English speech recognition, it should be left as `None`."
            )
        },
    )
    task: str = field(
        default="transcribe",
        metadata={
            "help": "Task, either `transcribe` for speech recognition or `translate` for speech translation."
            "This argument should be set for multilingual distillation only. For English speech recognition, it should be left as `None`."
        },
    )
    wandb_project: str = field(
        default="distil-whisper",
        metadata={"help": "The name of the wandb project."},
    )
    skip_logmel_transformation: bool = field(
        default=False, metadata={
            "help": "Whether or not to transform log-mel transformation. No need to transform if the dataset contains"
                    "log mel feature, otherwise it's required."
        }
    )
    logmel_dataset_name: Optional[str] = field(
        default=None, metadata={"help": "To upload the dataset with the log-mel feature."}
    )


@dataclass
class DistillationTrainingArguments(Seq2SeqTrainingArguments):
    freeze_encoder: Optional[bool] = field(
        default=False,
        metadata={
            "help": (
                "Whether to freeze the entire encoder model. Only recommended when the entire encoder has been "
                "copied from the teacher model."
            )
        },
    )
    temperature: Optional[float] = field(
        default=2.0, metadata={"help": "Temperature to anneal the logits when computing the softmax."}
    )
    kl_weight: Optional[float] = field(
        default=1.0,
        metadata={
            "help": (
                "Weighting assigned to the MSE loss in the KD formulation. MSE loss is "
                "computed between the teacher-student hidden states and attentions."
            )
        },
    )
    dtype: Optional[str] = field(
        default="float32",
        metadata={
            "help": (
                "The data type (dtype) in which to run training. One of `float32` (full-precision), "
                "`float16` or `bfloat16` (both half-precision)."
            )
        },
    )


@dataclass
class DataCollatorSpeechSeq2SeqWithPadding:
    """
    Data collator that will dynamically pad the inputs received.
    Args:
        processor ([`Wav2Vec2Processor`])
            The processor used for proccessing the data.
        decoder_start_token_id (:obj: `int`)
            The start-of-sequence token id of the decoder.
        decoder_prev_token_id (:obj: `int`)
            The start-of-prompt token id of the decoder
        input_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
            Select a strategy to pad the returned input sequences (according to the model's padding side and padding index)
            among:
            * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
              sequence if provided).
            * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
              maximum acceptable input length for the model if that argument is not provided.
            * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can statistics a batch with sequences of
              different lengths).
        target_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
            Select a strategy to pad the returned target sequences (according to the model's padding side and padding index).
            See above for details.
        max_target_length (:obj:`int`, `optional`):
            Maximum length of the ``labels`` of the returned list and optionally padding length (see above).
    """

    processor: Any
    decoder_start_token_id: int
    decoder_prev_token_id: int
    input_padding: Union[bool, str] = "max_length"
    target_padding: Union[bool, str] = "max_length"
    max_target_length: Optional[int] = None

    def __call__(self, features: List[Dict[str, Union[List[int], np.ndarray]]]) -> Dict[str, np.ndarray]:
        # split inputs and labels since they have to be of different lengths and need
        # different padding methods
        model_input_name = self.processor.model_input_names[0]

        # dataloader returns a list of features which we convert to a dict
        input_features = {model_input_name: [feature[model_input_name] for feature in features]}
        label_features = {"input_ids": [feature["labels"] for feature in features]}

        # reformat list to dict and set to pytorch format
        batch = self.processor.feature_extractor.pad(
            input_features,
            padding=self.input_padding,
            return_tensors="pt",
        )

        labels_batch = self.processor.tokenizer.pad(
            label_features,
            max_length=self.max_target_length,
            padding=self.target_padding,
            return_tensors="pt",
        )

        # shift labels to the right to get decoder input ids
        labels = labels_batch["input_ids"]
        decoder_input_ids = labels[:, :-1]
        labels = labels[:, 1:]
        labels_mask = labels_batch.attention_mask[:, 1:]

        # replace padding with -100 to ignore correctly when computing the loss
        labels = labels.masked_fill(labels_mask.ne(1), -100)

        # replace initial prompt tokens with -100 to ignore correctly when computing the loss
        bos_index = torch.argmax((labels == self.decoder_start_token_id).long(), dim=1)
        bos_index = torch.where(bos_index > 0, bos_index + 1, bos_index)
        prompt_mask = torch.arange(labels.shape[1]) < bos_index[:, None]
        labels = torch.where(prompt_mask, -100, labels)

        batch["labels"] = labels
        batch["decoder_input_ids"] = decoder_input_ids

        return batch


def log_metric(
    accelerator,
    metrics: Dict,
    train_time: float,
    step: int,
    epoch: int,
    learning_rate: float = None,
    prefix: str = "train",
):
    """Helper function to log all training/evaluation metrics with the correct prefixes and styling."""
    log_metrics = {}
    for k, v in metrics.items():
        log_metrics[f"{prefix}/{k}"] = v
    log_metrics[f"{prefix}/time"] = train_time
    log_metrics[f"{prefix}/epoch"] = epoch
    if learning_rate is not None:
        log_metrics[f"{prefix}/learning_rate"] = learning_rate
    accelerator.log(log_metrics, step=step)


def get_layers_to_supervise(student_layers: int, teacher_layers: int) -> Dict:
    """Helper function to map the student layer i to the teacher layer j whose statistics we'd like them to emulate. Used
    for MSE loss terms in distillation (hidden-states and activations). Student layers are paired with teacher layers
    in equal increments, e.g. for a 12-layer model distilled to a 3-layer model, student layer 0 emulates teacher layer
    3 (such that it behaves like the first 4 teacher layers), student layer 1 emulates teacher layer 7, and student layer
    2 emulates teacher layer 11. This mapping is summarised by the dictionary: {0: 3, 1: 7, 2: 11}, which is precisely
    the statistics of this function for the arguments (student_layers=3, teacher_layers=12)."""
    layer_intervals = np.linspace(teacher_layers // student_layers - 1, teacher_layers - 1, student_layers, dtype=int)
    layer_intervals[-1] = teacher_layers - 1
    layer_map = {}

    for student_layer, teacher_layer in enumerate(layer_intervals):
        layer_map[student_layer] = teacher_layer

    return layer_map


def sorted_checkpoints(output_dir=None, checkpoint_prefix="checkpoint") -> List[str]:
    """Helper function to sort saved checkpoints from oldest to newest."""
    ordering_and_checkpoint_path = []

    glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{checkpoint_prefix}-*") if os.path.isdir(x)]

    for path in glob_checkpoints:
        regex_match = re.match(f".*{checkpoint_prefix}-([0-9]+)", path)
        if regex_match is not None and regex_match.groups() is not None:
            ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))

    checkpoints_sorted = sorted(ordering_and_checkpoint_path)
    checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
    return checkpoints_sorted


def rotate_checkpoints(save_total_limit=None, output_dir=None, checkpoint_prefix="checkpoint") -> None:
    """Helper function to delete old checkpoints."""
    if save_total_limit is None or save_total_limit <= 0:
        return
    # Check if we should delete older checkpoint(s)
    checkpoints_sorted = sorted_checkpoints(output_dir=output_dir, checkpoint_prefix=checkpoint_prefix)
    if len(checkpoints_sorted) <= save_total_limit:
        return

    number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - save_total_limit)
    checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
    for checkpoint in checkpoints_to_be_deleted:
        logger.info(f"Deleting older checkpoint [{checkpoint}] due to args.save_total_limit")
        shutil.rmtree(checkpoint, ignore_errors=True)


_RE_CHECKPOINT = re.compile(r"^checkpoint-(\d+)-epoch-(\d+)$")


def get_last_checkpoint(folder):
    content = os.listdir(folder)
    checkpoints = [
        path
        for path in content
        if _RE_CHECKPOINT.search(path) is not None and os.path.isdir(os.path.join(folder, path))
    ]
    if len(checkpoints) == 0:
        return
    return os.path.join(folder, max(checkpoints, key=lambda x: int(_RE_CHECKPOINT.search(x).groups()[0])))


def get_parameter_names(model, forbidden_layer_types, forbidden_module=None):
    """
    Returns the names of the model parameters that are not inside a forbidden layer or forbidden module.
    Can be used to get a subset of parameter names for decay masks, or to exclude parameters from an optimiser
    (e.g. if the module is frozen).
    """
    result = []
    for name, child in model.named_children():
        result += [
            f"{name}.{n}"
            for n in get_parameter_names(child, forbidden_layer_types, forbidden_module)
            if not (
                isinstance(child, tuple(forbidden_layer_types))
                or (child in tuple(forbidden_module) if forbidden_module is not None else False)
            )
        ]
    # Add model specific parameters (defined with nn.Parameter) since they are not in any child.
    result += list(model._parameters.keys())
    return result


def main():
    # 1. Parse input arguments
    # We keep distinct sets of args, for cleaner separation of model/data/training related args
    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, DistillationTrainingArguments))

    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    # 2. Initialize the accelerator
    # We will let the accelerator handle device placement for us in this example
    # We simply have to specify the training precision and any trackers being used
    # We'll use the same dtype arguments as our JAX/Flax training script and convert
    # it to accelerate format
    # The teacher model can safely be cast to the dtype of training since we don't
    # update the params
    if training_args.dtype == "float16":
        mixed_precision = "fp16"
        teacher_dtype = torch.float16
    elif training_args.dtype == "bfloat16":
        mixed_precision = "bf16"
        teacher_dtype = torch.bfloat16
    else:
        mixed_precision = "no"
        teacher_dtype = torch.float32

    accelerator = Accelerator(
        gradient_accumulation_steps=training_args.gradient_accumulation_steps,
        mixed_precision=mixed_precision,
        log_with=training_args.report_to,
        project_dir=training_args.output_dir,
    )

    accelerator.init_trackers(project_name=data_args.wandb_project)

    # 3. Set-up basic logging
    # Create one log on every process with the configuration for debugging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    # Log a small summary on each proces
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
        f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
    )

    # Set the verbosity to info of the Transformers logger (on main process only)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()
    logger.info("Training/evaluation parameters %s", training_args)

    # 4. Detecting last checkpoint and eventually continue from last checkpoint
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # 5. Handle the repository creation
    if accelerator.is_main_process:
        if training_args.push_to_hub:
            # Retrieve of infer repo_name
            repo_name = training_args.hub_model_id
            if repo_name is None:
                repo_name = Path(training_args.output_dir).absolute().name
            # Create repo and retrieve repo_id
            repo_id = create_repo(repo_name, exist_ok=True, token=training_args.hub_token).repo_id
            # Clone repo locally
            repo = Repository(training_args.output_dir, clone_from=repo_id, token=training_args.hub_token)

            with open(os.path.join(training_args.output_dir, ".gitignore"), "w+") as gitignore:
                if "wandb" not in gitignore:
                    gitignore.write("wandb\n")
        elif training_args.output_dir is not None:
            os.makedirs(training_args.output_dir, exist_ok=True)
    accelerator.wait_for_everyone()

    # 7. Load pretrained model, tokenizer, and feature extractor
    feature_extractor = WhisperFeatureExtractor.from_pretrained(
        (model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path),
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        token=model_args.token,
    )
    config = WhisperConfig.from_pretrained(
        (model_args.config_name if model_args.config_name else model_args.model_name_or_path),
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        token=model_args.token,
    )
    tokenizer = WhisperTokenizerFast.from_pretrained(
        (model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path),
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
        token=model_args.token,
    )

    # override timestamp tokens until tokenizer issues are fixed in transformers
    timestamps = [AddedToken("<|%.2f|>" % (i * 0.02), lstrip=False, rstrip=False) for i in range(1500 + 1)]
    tokenizer.add_tokens(timestamps)

    teacher_model = WhisperForConditionalGeneration.from_pretrained(
        model_args.teacher_model_name_or_path,
        cache_dir=model_args.cache_dir,
        token=model_args.token,
        low_cpu_mem_usage=True,
        torch_dtype=teacher_dtype,
    )

    student_model = WhisperForConditionalGeneration.from_pretrained(
        model_args.model_name_or_path,
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        subfolder=model_args.subfolder,
        token=model_args.token,
        low_cpu_mem_usage=True,
    )

    if student_model.config.decoder_start_token_id is None or teacher_model.config.decoder_start_token_id is None:
        raise ValueError(
            f"Make sure that `config.decoder_start_token_id` is correctly defined for both the "
            f"student and teacher model. Got {student_model.config.decoder_start_token_id} for the "
            f"student and {teacher_model.config.decoder_start_token_id} for the teacher."
        )

    share_hidden_states = training_args.freeze_encoder and student_model.config.d_model == teacher_model.config.d_model

    # enable gradient checkpointing if necessary
    if training_args.gradient_checkpointing:
        student_model.gradient_checkpointing_enable()

    # freeze student encoder if necessary
    if training_args.freeze_encoder:
        student_model.freeze_encoder()
        student_model.model.encoder.gradient_checkpointing = False

    if hasattr(teacher_model.generation_config, "is_multilingual") and teacher_model.generation_config.is_multilingual:
        # We need to set the language and task ids for previously multilingual checkpoints
        tokenizer.set_prefix_tokens(language=data_args.language, task=data_args.task, predict_timestamps=False)
        student_model.generation_config.update(
            **{
                "language": data_args.language,
                "task": data_args.task,
            }
        )
    elif data_args.language is not None:
        raise ValueError(
            "Setting language token for an English-only checkpoint is not permitted. The language argument should "
            "only be set for multilingual checkpoints."
        )

    # 8. Create a single speech processor - make sure all processes wait until data is saved
    if accelerator.is_main_process:
        feature_extractor.save_pretrained(training_args.output_dir)
        tokenizer.save_pretrained(training_args.output_dir)
        # save the config and generation config as well
        config.save_pretrained(training_args.output_dir)
        student_model.generation_config.save_pretrained(training_args.output_dir)

    accelerator.wait_for_everyone()
    processor = WhisperProcessor.from_pretrained(training_args.output_dir)

    # 10. Preprocessing the datasets: we need to read the audio files as arrays and tokenize the targets.
    set_seed(training_args.seed)
    training_datasets = DatasetDict(
        {
            "train": load_dataset(
                data_args.train_dataset_name,
                data_args.train_dataset_config_name,
                split=data_args.train_split_name,
                trust_remote_code=True,
                cache_dir=data_args.dataset_cache_dir,
                token=model_args.token,
                num_proc=data_args.preprocessing_num_workers
            )
        }
    )
    return_timestamps = data_args.return_timestamps if data_args.timestamp_probability > 0 else False
    decoder_start_token_id = student_model.config.decoder_start_token_id  # <|startoftranscript|>
    decoder_prev_token_id = tokenizer.all_special_ids[-3]  # <|startofprev|>

    if not data_args.skip_logmel_transformation:
        def prepare_train_dataset(batch):
            """Pre-process the raw dataset: Convert the audio arrays to log-mel spectrogram inputs"""
            audio = [sample["array"] for sample in batch["audio"]]
            inputs = feature_extractor(audio, sampling_rate=feature_extractor.sampling_rate)
            batch["input_features"] = inputs.input_features
            return batch

        map_fn_train = partial(
            training_datasets["train"].map,
            keep_in_memory=True,
            function=prepare_train_dataset,
            remove_columns=["audio", "text", "whisper_transcript"],
            batched=True,
            batch_size=data_args.preprocessing_batch_size,
        )
        training_datasets = DatasetDict({
            "train": map_fn_train(
                num_proc=data_args.preprocessing_num_workers,
                desc="obtain log-mel feature from audio"
            )
        })
        if data_args.logmel_dataset_name:
            try:
                training_datasets.push_to_hub(
                    data_args.logmel_dataset_name, config_name=data_args.train_dataset_config_name
                )
            except Exception:
                logger.exception(f"Failed to push dataset to {data_args.logmel_dataset_name}.")

    # 12. Define Training Schedule
    # Store some constants
    per_device_train_batch_size = int(training_args.per_device_train_batch_size)
    train_batch_size = per_device_train_batch_size * accelerator.num_processes
    gradient_accumulation_steps = int(training_args.gradient_accumulation_steps)

    if training_args.max_steps < 0:
        num_epochs = int(training_args.num_train_epochs)
        steps_per_epoch = len(training_datasets["train"]) // (train_batch_size * gradient_accumulation_steps)
        total_train_steps = steps_per_epoch * num_epochs
    elif training_args.max_steps > 0:
        logger.info("max_steps is given, it will override any value given in num_train_epochs")
        total_train_steps = int(training_args.max_steps)
        # Setting a very large number of epochs so we go as many times as necessary over the iterator.
        num_epochs = sys.maxsize
        steps_per_epoch = total_train_steps
    else:
        raise ValueError("max_steps must be specified when training with a streaming (iterable) dataset")

    # 13. Define optimizer, LR scheduler, collator
    decay_parameters = get_parameter_names(
        student_model,
        [nn.LayerNorm],
        forbidden_module=[student_model.model.encoder] if training_args.freeze_encoder else None,
    )
    decay_parameters = [name for name in decay_parameters if "bias" not in name]
    optimizer_grouped_parameters = [
        {
            "params": [param for name, param in student_model.named_parameters() if name in decay_parameters],
            "weight_decay": training_args.weight_decay,
        },
        {
            "params": [param for name, param in student_model.named_parameters() if name not in decay_parameters],
            "weight_decay": 0.0,
        },
    ]
    optimizer = torch.optim.AdamW(
        params=optimizer_grouped_parameters,
        lr=training_args.learning_rate,
        betas=(training_args.adam_beta1, training_args.adam_beta2),
        eps=training_args.adam_epsilon,
    )

    # LR scheduler gets stepped by `num_processes` each time -> account for this in warmup / total steps
    lr_scheduler = get_scheduler(
        name=training_args.lr_scheduler_type,
        optimizer=optimizer,
        num_warmup_steps=training_args.warmup_steps * accelerator.num_processes,
        num_training_steps=total_train_steps * accelerator.num_processes,
    )

    max_label_length = (
        data_args.max_label_length if data_args.max_label_length is not None else student_model.config.max_length
    )
    data_collator = DataCollatorSpeechSeq2SeqWithPadding(
        processor=processor,
        decoder_start_token_id=decoder_start_token_id,
        decoder_prev_token_id=decoder_prev_token_id,
        input_padding="longest",
        target_padding="max_length",
        max_target_length=max_label_length,
    )

    # 14. Define generation arguments - we need to do this before we wrap the models in DDP
    # so that we can still access the configs
    num_beams = (
        training_args.generation_num_beams
        if training_args.generation_num_beams is not None
        else getattr(student_model.generation_config, "num_beams", 1)
    )

    gen_kwargs = {
        "max_length": max_label_length,
        "num_beams": num_beams,
        "return_timestamps": return_timestamps,
    }
    if hasattr(teacher_model.generation_config, "is_multilingual") and teacher_model.generation_config.is_multilingual:
        # forcing the language and task tokens helps multilingual models in their generations
        gen_kwargs.update({"language": data_args.language, "task": data_args.task})

    # 15. Prepare everything with accelerate
    student_model, teacher_model, optimizer, lr_scheduler = accelerator.prepare(
        student_model, teacher_model, optimizer, lr_scheduler
    )

    def kl_divergence(target_distribution, log_predicted_distribution, labels):
        kl_loss = nn.KLDivLoss(reduction="none")
        divergence = kl_loss(log_predicted_distribution, target_distribution)
        # ignore padded tokens from divergence, i.e. where labels are not set to -100
        padding_mask = labels >= 0
        padding_mask = padding_mask.unsqueeze(-1)
        divergence = divergence * padding_mask
        # take the average over the mini-batch
        divergence = divergence.sum() / padding_mask.sum()
        return divergence

    # Define gradient update step fn
    def train_step(batch, temperature=2.0,):
        student_model.train()
        teacher_model.eval()

        student_outputs = student_model(**batch)
        with torch.no_grad():
            if share_hidden_states:
                # if the student and teacher share the same frozen encoder then we don't have to recompute the
                # encoder hidden-states for the teacher model, we can just re-use from the student
                encoder_outputs = BaseModelOutput(student_outputs.encoder_last_hidden_state)
                teacher_outputs = teacher_model(encoder_outputs=encoder_outputs, labels=batch["labels"])
            else:
                # do the full forward pass for the teacher model (encoder + decoder)
                teacher_outputs = teacher_model(**batch)

        # CE (data) loss
        ce_loss = student_outputs.loss
        # rescale distribution by temperature to ensure gradients scale correctly
        teacher_distribution = nn.functional.softmax(teacher_outputs.logits / temperature, dim=-1)
        # log softmax of student predictions for numerical stability
        student_distribution = nn.functional.log_softmax(student_outputs.logits / temperature, dim=-1)
        # KL-divergence loss (scaled by temperature)
        kl_loss = kl_divergence(teacher_distribution, student_distribution, batch["labels"]) * temperature**2

        # use Distil-Whisper formulation (fix weight of CE loss and tune KL weight, 1 as default)
        loss = 0.8 * ce_loss + training_args.kl_weight * kl_loss
        metrics = {"loss": loss, "ce_loss": ce_loss, "kl_loss": kl_loss}
        return loss, metrics

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {total_train_steps * train_batch_size * gradient_accumulation_steps}")
    logger.info("  Instantaneous batch size per device =" f" {training_args.per_device_train_batch_size}")
    logger.info("  Gradient accumulation steps =" f" {gradient_accumulation_steps}")
    logger.info(
        f"  Total train batch size (w. parallel & distributed) = {train_batch_size * gradient_accumulation_steps}"
    )
    logger.info(f"  Total optimization steps = {total_train_steps}")

    # ======================== Training ================================
    train_time = 0
    train_start = time.time()
    steps_trained_progress_bar = tqdm(
        range(total_train_steps), desc="Train steps ... ", position=0, disable=not accelerator.is_local_main_process
    )
    continue_training = True
    epochs_trained = 0
    cur_step = 0

    checkpoint = None
    if training_args.resume_from_checkpoint is not None:
        checkpoint = training_args.resume_from_checkpoint
    elif last_checkpoint is not None:
        checkpoint = last_checkpoint

    if checkpoint is not None:
        accelerator.load_state(checkpoint)
        # Find num steps and epoch from saved state string pattern
        pattern = r"checkpoint-(\d+)-epoch-(\d+)"
        match = re.search(pattern, checkpoint)
        cur_step = int(match.group(1))
        epochs_trained = int(match.group(2))

        logger.info("  Continuing training from checkpoint, will skip to saved global_step")
        logger.info(f"  Continuing training from epoch {epochs_trained}")
        logger.info(f"  Continuing training from global step {cur_step}")

        steps_trained_progress_bar.update(cur_step)

        for epoch in range(0, epochs_trained):
            training_datasets["train"] = training_datasets["train"].shuffle(training_args.seed)

        if training_args.max_steps < 0:
            # we know exactly the number of steps per epoch, so can skip through the required number of batches
            resume_step = (cur_step - epochs_trained * steps_per_epoch) * gradient_accumulation_steps
        else:
            # Currently we don't know how many steps we've taken in the current epoch
            # So we just shuffle the dataset one extra time and start from a fresh epoch
            # This is "good enough" for our purposes but not fully correct
            resume_step = None
            training_datasets["train"] = training_datasets["train"].shuffle(training_args.seed)
    else:
        resume_step = None

    for epoch in range(epochs_trained, num_epochs):
        training_datasets["train"] = training_datasets["train"].shuffle(training_args.seed)
        train_dataloader = DataLoader(
            training_datasets["train"],
            collate_fn=data_collator,
            batch_size=per_device_train_batch_size,
            num_workers=training_args.dataloader_num_workers,
            pin_memory=training_args.dataloader_pin_memory,
        )
        train_dataloader = accelerator.prepare(train_dataloader)
        if hasattr(train_dataloader, "dataset") and isinstance(train_dataloader.dataset, IterableDataset):
            train_dataloader.dataset.set_epoch(epoch)

        if resume_step is not None:
            # Skip the first N batches in the dataloader when resuming from a checkpoint
            train_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step)
            resume_step = None

        for batch in train_dataloader:
            with accelerator.accumulate(student_model):
                loss, train_metric = train_step(batch, temperature=training_args.temperature)
                accelerator.backward(loss)
                if accelerator.sync_gradients:
                    accelerator.clip_grad_norm_(student_model.parameters(), training_args.max_grad_norm)
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()

            # Check if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                steps_trained_progress_bar.update(1)
                cur_step += 1

                if cur_step % training_args.logging_steps == 0:
                    steps_trained_progress_bar.write(
                        f"Step... ({cur_step} / {total_train_steps} | Loss:"
                        f" {train_metric['loss']}, Learning Rate:"
                        f" {lr_scheduler.get_last_lr()[0]})"
                    )
                    log_metric(
                        accelerator,
                        metrics=train_metric,
                        learning_rate=lr_scheduler.get_last_lr()[0],
                        train_time=train_time + time.time() - train_start,
                        step=cur_step,
                        epoch=epoch,
                        prefix="train",
                    )

                # save checkpoint and weights after each save_steps and at the end of training
                if (cur_step % training_args.save_steps == 0) or cur_step == total_train_steps:
                    intermediate_dir = os.path.join(training_args.output_dir, f"checkpoint-{cur_step}-epoch-{epoch}")
                    accelerator.save_state(output_dir=intermediate_dir)
                    accelerator.wait_for_everyone()
                    if accelerator.is_main_process:
                        rotate_checkpoints(training_args.save_total_limit, output_dir=training_args.output_dir)

                        if cur_step == total_train_steps:
                            # un-wrap student model for save
                            student_model = accelerator.unwrap_model(student_model)
                            student_model.save_pretrained(training_args.output_dir)
                            # re-wrap student model for final eval
                            student_model = accelerator.prepare(student_model)

                        if training_args.push_to_hub:
                            repo.push_to_hub(
                                commit_message=f"Saving train state of step {cur_step}",
                                blocking=False,
                            )

                # break condition
                if cur_step == total_train_steps:
                    continue_training = False
                    break

        if not continue_training:
            break

    accelerator.end_training()


if __name__ == "__main__":
    main()