--- library_name: peft license: llama3 base_model: yentinglin/Llama-3-Taiwan-8B-Instruct tags: - axolotl - generated_from_trainer datasets: - jasonhuang3/taitung_gemini_v1v3_messages model-index: - name: jason-2k-1 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.7.0` ```yaml base_model: yentinglin/Llama-3-Taiwan-8B-Instruct #trust_remote_code: true load_in_8bit: false load_in_4bit: true strict: false hub_model_id: jasonhuang3/jason-2k-1 hub_strategy: end wandb_name: jason 8b 2k dataset_processes: 16 datasets: - path: jasonhuang3/taitung_gemini_v1v3_messages # - path: jasonhuang3/instruct_output_v1_messages type: chat_template field_messages: messages chat_template: llama3 dataset_prepared_path: last_run_prepared_jason_8b val_set_size: 0.05 # output_dir: ./output/8b/jason/2k-1 save_safetensors: true sequence_len: 2048 # sample_packing: true pad_to_sequence_len: true wandb_project: jasontwllm wandb_watch: wandb_run_id: wandb_log_model: gradient_accumulation_steps: 2 micro_batch_size: 2 # num_epochs: 4 # optimizer: adamw_8bit lr_scheduler: cosine learning_rate: 2e-4 train_on_inputs: true group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 5 # evals_per_epoch: 4 # eval_table_size: saves_per_epoch: 1 save_total_limit: 10 save_steps: debug: deepspeed: deepspeed_configs/zero3_bf16.json weight_decay: 0.0 # fsdp: fsdp_config: # adapter: lora lora_r: 64 lora_alpha: 64 lora_dropout: 0.0 lora_target_modules: - q_proj - v_proj - k_proj - o_proj - gate_proj - down_proj - up_proj #lora_mlp_kernel: true #lora_qkv_kernel: true #lora_o_kernel: true eval_sample_packing: False # ```

# jason-2k-1 This model is a fine-tuned version of [yentinglin/Llama-3-Taiwan-8B-Instruct](https://huggingface.co/yentinglin/Llama-3-Taiwan-8B-Instruct) on the jasonhuang3/taitung_gemini_v1v3_messages dataset. It achieves the following results on the evaluation set: - Loss: 1.6743 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - total_eval_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - num_epochs: 4.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.5468 | 0.0690 | 1 | 2.7452 | | 2.2849 | 0.2759 | 4 | 2.2667 | | 1.8185 | 0.5517 | 8 | 1.9545 | | 1.705 | 0.8276 | 12 | 1.8034 | | 1.5654 | 1.0690 | 16 | 1.7497 | | 1.4897 | 1.3448 | 20 | 1.7219 | | 1.4709 | 1.6207 | 24 | 1.7026 | | 1.4316 | 1.8966 | 28 | 1.6768 | | 1.3117 | 2.1379 | 32 | 1.6765 | | 1.2819 | 2.4138 | 36 | 1.6759 | | 1.2825 | 2.6897 | 40 | 1.6815 | | 1.2934 | 2.9655 | 44 | 1.6787 | | 1.2153 | 3.2069 | 48 | 1.6747 | | 1.2287 | 3.4828 | 52 | 1.6745 | | 1.1894 | 3.7586 | 56 | 1.6743 | ### Framework versions - PEFT 0.14.0 - Transformers 4.48.3 - Pytorch 2.4.0+cu121 - Datasets 3.2.0 - Tokenizers 0.21.1