jbilcke-hf's picture
jbilcke-hf HF Staff
Upload 29 files
1fd882f verified
raw
history blame
25.9 kB
import os
import random
from datetime import datetime
from pathlib import Path
from diffusers.utils import logging
from typing import Optional, List, Union
import yaml
import imageio
import json
import numpy as np
import torch
from safetensors import safe_open
from PIL import Image
import torchvision.transforms.functional as TVF
from transformers import (
T5EncoderModel,
T5Tokenizer,
AutoModelForCausalLM,
AutoProcessor,
AutoTokenizer,
)
from huggingface_hub import hf_hub_download
from dataclasses import dataclass, field
from ltx_video.models.autoencoders.causal_video_autoencoder import (
CausalVideoAutoencoder,
)
from ltx_video.models.transformers.symmetric_patchifier import SymmetricPatchifier
from ltx_video.models.transformers.transformer3d import Transformer3DModel
from ltx_video.pipelines.pipeline_ltx_video import (
ConditioningItem,
LTXVideoPipeline,
LTXMultiScalePipeline,
)
from ltx_video.schedulers.rf import RectifiedFlowScheduler
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
from ltx_video.models.autoencoders.latent_upsampler import LatentUpsampler
import ltx_video.pipelines.crf_compressor as crf_compressor
logger = logging.get_logger("LTX-Video")
def get_total_gpu_memory():
if torch.cuda.is_available():
total_memory = torch.cuda.get_device_properties(0).total_memory / (1024**3)
return total_memory
return 0
def get_device():
if torch.cuda.is_available():
return "cuda"
elif torch.backends.mps.is_available():
return "mps"
return "cpu"
def load_image_to_tensor_with_resize_and_crop(
image_input: Union[str, Image.Image],
target_height: int = 512,
target_width: int = 768,
just_crop: bool = False,
) -> torch.Tensor:
"""Load and process an image into a tensor.
Args:
image_input: Either a file path (str) or a PIL Image object
target_height: Desired height of output tensor
target_width: Desired width of output tensor
just_crop: If True, only crop the image to the target size without resizing
"""
if isinstance(image_input, str):
image = Image.open(image_input).convert("RGB")
elif isinstance(image_input, Image.Image):
image = image_input
else:
raise ValueError("image_input must be either a file path or a PIL Image object")
input_width, input_height = image.size
aspect_ratio_target = target_width / target_height
aspect_ratio_frame = input_width / input_height
if aspect_ratio_frame > aspect_ratio_target:
new_width = int(input_height * aspect_ratio_target)
new_height = input_height
x_start = (input_width - new_width) // 2
y_start = 0
else:
new_width = input_width
new_height = int(input_width / aspect_ratio_target)
x_start = 0
y_start = (input_height - new_height) // 2
image = image.crop((x_start, y_start, x_start + new_width, y_start + new_height))
if not just_crop:
image = image.resize((target_width, target_height))
frame_tensor = TVF.to_tensor(image) # PIL -> tensor (C, H, W), [0,1]
frame_tensor = TVF.gaussian_blur(frame_tensor, kernel_size=3, sigma=1.0)
frame_tensor_hwc = frame_tensor.permute(1, 2, 0) # (C, H, W) -> (H, W, C)
frame_tensor_hwc = crf_compressor.compress(frame_tensor_hwc)
frame_tensor = frame_tensor_hwc.permute(2, 0, 1) * 255.0 # (H, W, C) -> (C, H, W)
frame_tensor = (frame_tensor / 127.5) - 1.0
# Create 5D tensor: (batch_size=1, channels=3, num_frames=1, height, width)
return frame_tensor.unsqueeze(0).unsqueeze(2)
def calculate_padding(
source_height: int, source_width: int, target_height: int, target_width: int
) -> tuple[int, int, int, int]:
# Calculate total padding needed
pad_height = target_height - source_height
pad_width = target_width - source_width
# Calculate padding for each side
pad_top = pad_height // 2
pad_bottom = pad_height - pad_top # Handles odd padding
pad_left = pad_width // 2
pad_right = pad_width - pad_left # Handles odd padding
# Return padded tensor
# Padding format is (left, right, top, bottom)
padding = (pad_left, pad_right, pad_top, pad_bottom)
return padding
def convert_prompt_to_filename(text: str, max_len: int = 20) -> str:
# Remove non-letters and convert to lowercase
clean_text = "".join(
char.lower() for char in text if char.isalpha() or char.isspace()
)
# Split into words
words = clean_text.split()
# Build result string keeping track of length
result = []
current_length = 0
for word in words:
# Add word length plus 1 for underscore (except for first word)
new_length = current_length + len(word)
if new_length <= max_len:
result.append(word)
current_length += len(word)
else:
break
return "-".join(result)
# Generate output video name
def get_unique_filename(
base: str,
ext: str,
prompt: str,
seed: int,
resolution: tuple[int, int, int],
dir: Path,
endswith=None,
index_range=1000,
) -> Path:
base_filename = f"{base}_{convert_prompt_to_filename(prompt, max_len=30)}_{seed}_{resolution[0]}x{resolution[1]}x{resolution[2]}"
for i in range(index_range):
filename = dir / f"{base_filename}_{i}{endswith if endswith else ''}{ext}"
if not os.path.exists(filename):
return filename
raise FileExistsError(
f"Could not find a unique filename after {index_range} attempts."
)
def seed_everething(seed: int):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
if torch.backends.mps.is_available():
torch.mps.manual_seed(seed)
def create_ltx_video_pipeline(
ckpt_path: str,
precision: str,
text_encoder_model_name_or_path: str,
sampler: Optional[str] = None,
device: Optional[str] = None,
enhance_prompt: bool = False,
prompt_enhancer_image_caption_model_name_or_path: Optional[str] = None,
prompt_enhancer_llm_model_name_or_path: Optional[str] = None,
) -> LTXVideoPipeline:
ckpt_path = Path(ckpt_path)
assert os.path.exists(
ckpt_path
), f"Ckpt path provided (--ckpt_path) {ckpt_path} does not exist"
with safe_open(ckpt_path, framework="pt") as f:
metadata = f.metadata()
config_str = metadata.get("config")
configs = json.loads(config_str)
allowed_inference_steps = configs.get("allowed_inference_steps", None)
vae = CausalVideoAutoencoder.from_pretrained(ckpt_path)
transformer = Transformer3DModel.from_pretrained(ckpt_path)
# Use constructor if sampler is specified, otherwise use from_pretrained
if sampler == "from_checkpoint" or not sampler:
scheduler = RectifiedFlowScheduler.from_pretrained(ckpt_path)
else:
scheduler = RectifiedFlowScheduler(
sampler=("Uniform" if sampler.lower() == "uniform" else "LinearQuadratic")
)
text_encoder = T5EncoderModel.from_pretrained(
text_encoder_model_name_or_path, subfolder="text_encoder"
)
patchifier = SymmetricPatchifier(patch_size=1)
tokenizer = T5Tokenizer.from_pretrained(
text_encoder_model_name_or_path, subfolder="tokenizer"
)
transformer = transformer.to(device)
vae = vae.to(device)
text_encoder = text_encoder.to(device)
if enhance_prompt:
prompt_enhancer_image_caption_model = AutoModelForCausalLM.from_pretrained(
prompt_enhancer_image_caption_model_name_or_path, trust_remote_code=True
)
prompt_enhancer_image_caption_processor = AutoProcessor.from_pretrained(
prompt_enhancer_image_caption_model_name_or_path, trust_remote_code=True
)
prompt_enhancer_llm_model = AutoModelForCausalLM.from_pretrained(
prompt_enhancer_llm_model_name_or_path,
torch_dtype="bfloat16",
)
prompt_enhancer_llm_tokenizer = AutoTokenizer.from_pretrained(
prompt_enhancer_llm_model_name_or_path,
)
else:
prompt_enhancer_image_caption_model = None
prompt_enhancer_image_caption_processor = None
prompt_enhancer_llm_model = None
prompt_enhancer_llm_tokenizer = None
vae = vae.to(torch.bfloat16)
if precision == "bfloat16" and transformer.dtype != torch.bfloat16:
transformer = transformer.to(torch.bfloat16)
text_encoder = text_encoder.to(torch.bfloat16)
# Use submodels for the pipeline
submodel_dict = {
"transformer": transformer,
"patchifier": patchifier,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"scheduler": scheduler,
"vae": vae,
"prompt_enhancer_image_caption_model": prompt_enhancer_image_caption_model,
"prompt_enhancer_image_caption_processor": prompt_enhancer_image_caption_processor,
"prompt_enhancer_llm_model": prompt_enhancer_llm_model,
"prompt_enhancer_llm_tokenizer": prompt_enhancer_llm_tokenizer,
"allowed_inference_steps": allowed_inference_steps,
}
pipeline = LTXVideoPipeline(**submodel_dict)
pipeline = pipeline.to(device)
return pipeline
def create_latent_upsampler(latent_upsampler_model_path: str, device: str):
latent_upsampler = LatentUpsampler.from_pretrained(latent_upsampler_model_path)
latent_upsampler.to(device)
latent_upsampler.eval()
return latent_upsampler
def load_pipeline_config(pipeline_config: str):
current_file = Path(__file__)
path = None
if os.path.isfile(current_file.parent / pipeline_config):
path = current_file.parent / pipeline_config
elif os.path.isfile(pipeline_config):
path = pipeline_config
else:
raise ValueError(f"Pipeline config file {pipeline_config} does not exist")
with open(path, "r") as f:
return yaml.safe_load(f)
@dataclass
class InferenceConfig:
prompt: str = field(metadata={"help": "Prompt for the generation"})
output_path: str = field(
default_factory=lambda: Path(
f"outputs/{datetime.today().strftime('%Y-%m-%d')}"
),
metadata={"help": "Path to the folder to save the output video"},
)
# Pipeline settings
pipeline_config: str = field(
default="configs/ltxv-13b-0.9.7-dev.yaml",
metadata={"help": "Path to the pipeline config file"},
)
seed: int = field(
default=171198, metadata={"help": "Random seed for the inference"}
)
height: int = field(
default=704, metadata={"help": "Height of the output video frames"}
)
width: int = field(
default=1216, metadata={"help": "Width of the output video frames"}
)
num_frames: int = field(
default=121,
metadata={"help": "Number of frames to generate in the output video"},
)
frame_rate: int = field(
default=30, metadata={"help": "Frame rate for the output video"}
)
offload_to_cpu: bool = field(
default=False, metadata={"help": "Offloading unnecessary computations to CPU."}
)
negative_prompt: str = field(
default="worst quality, inconsistent motion, blurry, jittery, distorted",
metadata={"help": "Negative prompt for undesired features"},
)
# Video-to-video arguments
input_media_path: Optional[str] = field(
default=None,
metadata={
"help": "Path to the input video (or image) to be modified using the video-to-video pipeline"
},
)
# Conditioning
image_cond_noise_scale: float = field(
default=0.15,
metadata={"help": "Amount of noise to add to the conditioned image"},
)
conditioning_media_paths: Optional[List[str]] = field(
default=None,
metadata={
"help": "List of paths to conditioning media (images or videos). Each path will be used as a conditioning item."
},
)
conditioning_strengths: Optional[List[float]] = field(
default=None,
metadata={
"help": "List of conditioning strengths (between 0 and 1) for each conditioning item. Must match the number of conditioning items."
},
)
conditioning_start_frames: Optional[List[int]] = field(
default=None,
metadata={
"help": "List of frame indices where each conditioning item should be applied. Must match the number of conditioning items."
},
)
def infer(config: InferenceConfig):
pipeline_config = load_pipeline_config(config.pipeline_config)
ltxv_model_name_or_path = pipeline_config["checkpoint_path"]
if not os.path.isfile(ltxv_model_name_or_path):
ltxv_model_path = hf_hub_download(
repo_id="Lightricks/LTX-Video",
filename=ltxv_model_name_or_path,
repo_type="model",
)
else:
ltxv_model_path = ltxv_model_name_or_path
spatial_upscaler_model_name_or_path = pipeline_config.get(
"spatial_upscaler_model_path"
)
if spatial_upscaler_model_name_or_path and not os.path.isfile(
spatial_upscaler_model_name_or_path
):
spatial_upscaler_model_path = hf_hub_download(
repo_id="Lightricks/LTX-Video",
filename=spatial_upscaler_model_name_or_path,
repo_type="model",
)
else:
spatial_upscaler_model_path = spatial_upscaler_model_name_or_path
conditioning_media_paths = config.conditioning_media_paths
conditioning_strengths = config.conditioning_strengths
conditioning_start_frames = config.conditioning_start_frames
# Validate conditioning arguments
if conditioning_media_paths:
# Use default strengths of 1.0
if not conditioning_strengths:
conditioning_strengths = [1.0] * len(conditioning_media_paths)
if not conditioning_start_frames:
raise ValueError(
"If `conditioning_media_paths` is provided, "
"`conditioning_start_frames` must also be provided"
)
if len(conditioning_media_paths) != len(conditioning_strengths) or len(
conditioning_media_paths
) != len(conditioning_start_frames):
raise ValueError(
"`conditioning_media_paths`, `conditioning_strengths`, "
"and `conditioning_start_frames` must have the same length"
)
if any(s < 0 or s > 1 for s in conditioning_strengths):
raise ValueError("All conditioning strengths must be between 0 and 1")
if any(f < 0 or f >= config.num_frames for f in conditioning_start_frames):
raise ValueError(
f"All conditioning start frames must be between 0 and {config.num_frames-1}"
)
seed_everething(config.seed)
if config.offload_to_cpu and not torch.cuda.is_available():
logger.warning(
"offload_to_cpu is set to True, but offloading will not occur since the model is already running on CPU."
)
offload_to_cpu = False
else:
offload_to_cpu = config.offload_to_cpu and get_total_gpu_memory() < 30
output_dir = (
Path(config.output_path)
if config.output_path
else Path(f"outputs/{datetime.today().strftime('%Y-%m-%d')}")
)
output_dir.mkdir(parents=True, exist_ok=True)
# Adjust dimensions to be divisible by 32 and num_frames to be (N * 8 + 1)
height_padded = ((config.height - 1) // 32 + 1) * 32
width_padded = ((config.width - 1) // 32 + 1) * 32
num_frames_padded = ((config.num_frames - 2) // 8 + 1) * 8 + 1
padding = calculate_padding(
config.height, config.width, height_padded, width_padded
)
logger.warning(
f"Padded dimensions: {height_padded}x{width_padded}x{num_frames_padded}"
)
device = get_device()
prompt_enhancement_words_threshold = pipeline_config[
"prompt_enhancement_words_threshold"
]
prompt_word_count = len(config.prompt.split())
enhance_prompt = (
prompt_enhancement_words_threshold > 0
and prompt_word_count < prompt_enhancement_words_threshold
)
if prompt_enhancement_words_threshold > 0 and not enhance_prompt:
logger.info(
f"Prompt has {prompt_word_count} words, which exceeds the threshold of {prompt_enhancement_words_threshold}. Prompt enhancement disabled."
)
precision = pipeline_config["precision"]
text_encoder_model_name_or_path = pipeline_config["text_encoder_model_name_or_path"]
sampler = pipeline_config.get("sampler", None)
prompt_enhancer_image_caption_model_name_or_path = pipeline_config[
"prompt_enhancer_image_caption_model_name_or_path"
]
prompt_enhancer_llm_model_name_or_path = pipeline_config[
"prompt_enhancer_llm_model_name_or_path"
]
pipeline = create_ltx_video_pipeline(
ckpt_path=ltxv_model_path,
precision=precision,
text_encoder_model_name_or_path=text_encoder_model_name_or_path,
sampler=sampler,
device=device,
enhance_prompt=enhance_prompt,
prompt_enhancer_image_caption_model_name_or_path=prompt_enhancer_image_caption_model_name_or_path,
prompt_enhancer_llm_model_name_or_path=prompt_enhancer_llm_model_name_or_path,
)
if pipeline_config.get("pipeline_type", None) == "multi-scale":
if not spatial_upscaler_model_path:
raise ValueError(
"spatial upscaler model path is missing from pipeline config file and is required for multi-scale rendering"
)
latent_upsampler = create_latent_upsampler(
spatial_upscaler_model_path, pipeline.device
)
pipeline = LTXMultiScalePipeline(pipeline, latent_upsampler=latent_upsampler)
media_item = None
if config.input_media_path:
media_item = load_media_file(
media_path=config.input_media_path,
height=config.height,
width=config.width,
max_frames=num_frames_padded,
padding=padding,
)
conditioning_items = (
prepare_conditioning(
conditioning_media_paths=conditioning_media_paths,
conditioning_strengths=conditioning_strengths,
conditioning_start_frames=conditioning_start_frames,
height=config.height,
width=config.width,
num_frames=config.num_frames,
padding=padding,
pipeline=pipeline,
)
if conditioning_media_paths
else None
)
stg_mode = pipeline_config.get("stg_mode", "attention_values")
del pipeline_config["stg_mode"]
if stg_mode.lower() == "stg_av" or stg_mode.lower() == "attention_values":
skip_layer_strategy = SkipLayerStrategy.AttentionValues
elif stg_mode.lower() == "stg_as" or stg_mode.lower() == "attention_skip":
skip_layer_strategy = SkipLayerStrategy.AttentionSkip
elif stg_mode.lower() == "stg_r" or stg_mode.lower() == "residual":
skip_layer_strategy = SkipLayerStrategy.Residual
elif stg_mode.lower() == "stg_t" or stg_mode.lower() == "transformer_block":
skip_layer_strategy = SkipLayerStrategy.TransformerBlock
else:
raise ValueError(f"Invalid spatiotemporal guidance mode: {stg_mode}")
# Prepare input for the pipeline
sample = {
"prompt": config.prompt,
"prompt_attention_mask": None,
"negative_prompt": config.negative_prompt,
"negative_prompt_attention_mask": None,
}
generator = torch.Generator(device=device).manual_seed(config.seed)
images = pipeline(
**pipeline_config,
skip_layer_strategy=skip_layer_strategy,
generator=generator,
output_type="pt",
callback_on_step_end=None,
height=height_padded,
width=width_padded,
num_frames=num_frames_padded,
frame_rate=config.frame_rate,
**sample,
media_items=media_item,
conditioning_items=conditioning_items,
is_video=True,
vae_per_channel_normalize=True,
image_cond_noise_scale=config.image_cond_noise_scale,
mixed_precision=(precision == "mixed_precision"),
offload_to_cpu=offload_to_cpu,
device=device,
enhance_prompt=enhance_prompt,
).images
# Crop the padded images to the desired resolution and number of frames
(pad_left, pad_right, pad_top, pad_bottom) = padding
pad_bottom = -pad_bottom
pad_right = -pad_right
if pad_bottom == 0:
pad_bottom = images.shape[3]
if pad_right == 0:
pad_right = images.shape[4]
images = images[:, :, : config.num_frames, pad_top:pad_bottom, pad_left:pad_right]
for i in range(images.shape[0]):
# Gathering from B, C, F, H, W to C, F, H, W and then permuting to F, H, W, C
video_np = images[i].permute(1, 2, 3, 0).cpu().float().numpy()
# Unnormalizing images to [0, 255] range
video_np = (video_np * 255).astype(np.uint8)
fps = config.frame_rate
height, width = video_np.shape[1:3]
# In case a single image is generated
if video_np.shape[0] == 1:
output_filename = get_unique_filename(
f"image_output_{i}",
".png",
prompt=config.prompt,
seed=config.seed,
resolution=(height, width, config.num_frames),
dir=output_dir,
)
imageio.imwrite(output_filename, video_np[0])
else:
output_filename = get_unique_filename(
f"video_output_{i}",
".mp4",
prompt=config.prompt,
seed=config.seed,
resolution=(height, width, config.num_frames),
dir=output_dir,
)
# Write video
with imageio.get_writer(output_filename, fps=fps) as video:
for frame in video_np:
video.append_data(frame)
logger.warning(f"Output saved to {output_filename}")
def prepare_conditioning(
conditioning_media_paths: List[str],
conditioning_strengths: List[float],
conditioning_start_frames: List[int],
height: int,
width: int,
num_frames: int,
padding: tuple[int, int, int, int],
pipeline: LTXVideoPipeline,
) -> Optional[List[ConditioningItem]]:
"""Prepare conditioning items based on input media paths and their parameters.
Args:
conditioning_media_paths: List of paths to conditioning media (images or videos)
conditioning_strengths: List of conditioning strengths for each media item
conditioning_start_frames: List of frame indices where each item should be applied
height: Height of the output frames
width: Width of the output frames
num_frames: Number of frames in the output video
padding: Padding to apply to the frames
pipeline: LTXVideoPipeline object used for condition video trimming
Returns:
A list of ConditioningItem objects.
"""
conditioning_items = []
for path, strength, start_frame in zip(
conditioning_media_paths, conditioning_strengths, conditioning_start_frames
):
num_input_frames = orig_num_input_frames = get_media_num_frames(path)
if hasattr(pipeline, "trim_conditioning_sequence") and callable(
getattr(pipeline, "trim_conditioning_sequence")
):
num_input_frames = pipeline.trim_conditioning_sequence(
start_frame, orig_num_input_frames, num_frames
)
if num_input_frames < orig_num_input_frames:
logger.warning(
f"Trimming conditioning video {path} from {orig_num_input_frames} to {num_input_frames} frames."
)
media_tensor = load_media_file(
media_path=path,
height=height,
width=width,
max_frames=num_input_frames,
padding=padding,
just_crop=True,
)
conditioning_items.append(ConditioningItem(media_tensor, start_frame, strength))
return conditioning_items
def get_media_num_frames(media_path: str) -> int:
is_video = any(
media_path.lower().endswith(ext) for ext in [".mp4", ".avi", ".mov", ".mkv"]
)
num_frames = 1
if is_video:
reader = imageio.get_reader(media_path)
num_frames = reader.count_frames()
reader.close()
return num_frames
def load_media_file(
media_path: str,
height: int,
width: int,
max_frames: int,
padding: tuple[int, int, int, int],
just_crop: bool = False,
) -> torch.Tensor:
is_video = any(
media_path.lower().endswith(ext) for ext in [".mp4", ".avi", ".mov", ".mkv"]
)
if is_video:
reader = imageio.get_reader(media_path)
num_input_frames = min(reader.count_frames(), max_frames)
# Read and preprocess the relevant frames from the video file.
frames = []
for i in range(num_input_frames):
frame = Image.fromarray(reader.get_data(i))
frame_tensor = load_image_to_tensor_with_resize_and_crop(
frame, height, width, just_crop=just_crop
)
frame_tensor = torch.nn.functional.pad(frame_tensor, padding)
frames.append(frame_tensor)
reader.close()
# Stack frames along the temporal dimension
media_tensor = torch.cat(frames, dim=2)
else: # Input image
media_tensor = load_image_to_tensor_with_resize_and_crop(
media_path, height, width, just_crop=just_crop
)
media_tensor = torch.nn.functional.pad(media_tensor, padding)
return media_tensor