--- license: mit datasets: - starmpcc/Asclepius-Synthetic-Clinical-Notes - akemiH/NoteChat - zhengyun21/PMC-Patients language: - en base_model: microsoft/MediPhi-Clinical library_name: transformers tags: - merge - mergekit - medical - clinical - mlx - mlx-my-repo --- # jc2375/MediPhi-Clinical-mlx-6Bit The Model [jc2375/MediPhi-Clinical-mlx-6Bit](https://huggingface.co/jc2375/MediPhi-Clinical-mlx-6Bit) was converted to MLX format from [microsoft/MediPhi-Clinical](https://huggingface.co/microsoft/MediPhi-Clinical) using mlx-lm version **0.26.4**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("jc2375/MediPhi-Clinical-mlx-6Bit") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```