DBDXSS
commited on
Commit
·
4691746
1
Parent(s):
1c5a443
init
Browse files- cosyvoice.yaml +140 -0
- cosyvoice2.yaml +239 -0
- cosyvoice2_end2end.yaml +236 -0
cosyvoice.yaml
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# set random seed, so that you may reproduce your result.
|
2 |
+
__set_seed1: !apply:random.seed [1986]
|
3 |
+
__set_seed2: !apply:numpy.random.seed [1986]
|
4 |
+
__set_seed3: !apply:torch.manual_seed [1986]
|
5 |
+
__set_seed4: !apply:torch.cuda.manual_seed_all [1986]
|
6 |
+
|
7 |
+
# fixed params
|
8 |
+
sample_rate: 24000
|
9 |
+
llm_input_size: 896
|
10 |
+
llm_output_size: 896
|
11 |
+
spk_embed_dim: 192
|
12 |
+
qwen_pretrain_path: ''
|
13 |
+
|
14 |
+
# model params
|
15 |
+
# for all class/function included in this repo, we use !<name> or !<new> for intialization, so that user may find all corresponding class/function according to one single yaml.
|
16 |
+
# for system/third_party class/function, we do not require this.
|
17 |
+
llm: !new:cosyvoice.llm.llm.Qwen2LM
|
18 |
+
llm_input_size: !ref <llm_input_size>
|
19 |
+
llm_output_size: !ref <llm_output_size>
|
20 |
+
speech_token_size: 6561
|
21 |
+
length_normalized_loss: True
|
22 |
+
lsm_weight: 0
|
23 |
+
llm: !new:cosyvoice.llm.llm.Qwen2Encoder
|
24 |
+
pretrain_path: !ref <qwen_pretrain_path>
|
25 |
+
sampling: !name:cosyvoice.utils.common.ras_sampling
|
26 |
+
top_p: 0.8
|
27 |
+
top_k: 25
|
28 |
+
win_size: 10
|
29 |
+
tau_r: 0.1
|
30 |
+
|
31 |
+
flow: !new:cosyvoice.flow.flow.CausalMaskedDiffWithXvec
|
32 |
+
input_size: 512
|
33 |
+
output_size: 80
|
34 |
+
spk_embed_dim: !ref <spk_embed_dim>
|
35 |
+
output_type: 'mel'
|
36 |
+
vocab_size: 6561
|
37 |
+
input_frame_rate: 25
|
38 |
+
only_mask_loss: True
|
39 |
+
token_mel_ratio: 2
|
40 |
+
pre_lookahead_len: 3
|
41 |
+
encoder: !new:cosyvoice.transformer.upsample_encoder.UpsampleConformerEncoder
|
42 |
+
output_size: 512
|
43 |
+
attention_heads: 8
|
44 |
+
linear_units: 2048
|
45 |
+
num_blocks: 6
|
46 |
+
dropout_rate: 0.1
|
47 |
+
positional_dropout_rate: 0.1
|
48 |
+
attention_dropout_rate: 0.1
|
49 |
+
normalize_before: True
|
50 |
+
input_layer: 'linear'
|
51 |
+
pos_enc_layer_type: 'rel_pos_espnet'
|
52 |
+
selfattention_layer_type: 'rel_selfattn'
|
53 |
+
input_size: 512
|
54 |
+
use_cnn_module: False
|
55 |
+
macaron_style: False
|
56 |
+
decoder: !new:cosyvoice.flow.flow_matching.CausalConditionalCFM
|
57 |
+
in_channels: 240
|
58 |
+
n_spks: 1
|
59 |
+
spk_emb_dim: 80
|
60 |
+
cfm_params: !new:omegaconf.DictConfig
|
61 |
+
content:
|
62 |
+
sigma_min: 1e-06
|
63 |
+
solver: 'euler'
|
64 |
+
t_scheduler: 'cosine'
|
65 |
+
training_cfg_rate: 0.2
|
66 |
+
inference_cfg_rate: 0.7
|
67 |
+
reg_loss_type: 'l1'
|
68 |
+
estimator: !new:cosyvoice.flow.decoder.ConditionalDecoder
|
69 |
+
in_channels: 320
|
70 |
+
out_channels: 80
|
71 |
+
causal: True
|
72 |
+
channels: [256]
|
73 |
+
dropout: 0.0
|
74 |
+
attention_head_dim: 64
|
75 |
+
n_blocks: 4
|
76 |
+
num_mid_blocks: 12
|
77 |
+
num_heads: 8
|
78 |
+
act_fn: 'gelu'
|
79 |
+
|
80 |
+
hift: !new:cosyvoice.hifigan.generator.HiFTGenerator
|
81 |
+
in_channels: 80
|
82 |
+
base_channels: 512
|
83 |
+
nb_harmonics: 8
|
84 |
+
sampling_rate: !ref <sample_rate>
|
85 |
+
nsf_alpha: 0.1
|
86 |
+
nsf_sigma: 0.003
|
87 |
+
nsf_voiced_threshold: 10
|
88 |
+
upsample_rates: [8, 5, 3]
|
89 |
+
upsample_kernel_sizes: [16, 11, 7]
|
90 |
+
istft_params:
|
91 |
+
n_fft: 16
|
92 |
+
hop_len: 4
|
93 |
+
resblock_kernel_sizes: [3, 7, 11]
|
94 |
+
resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]
|
95 |
+
source_resblock_kernel_sizes: [7, 7, 11]
|
96 |
+
source_resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]
|
97 |
+
lrelu_slope: 0.1
|
98 |
+
audio_limit: 0.99
|
99 |
+
f0_predictor: !new:cosyvoice.hifigan.f0_predictor.ConvRNNF0Predictor
|
100 |
+
num_class: 1
|
101 |
+
in_channels: 80
|
102 |
+
cond_channels: 512
|
103 |
+
|
104 |
+
# processor functions
|
105 |
+
parquet_opener: !name:cosyvoice.dataset.processor.parquet_opener
|
106 |
+
get_tokenizer: !name:cosyvoice.tokenizer.tokenizer.get_qwen_tokenizer
|
107 |
+
token_path: !ref <qwen_pretrain_path>
|
108 |
+
skip_special_tokens: True
|
109 |
+
allowed_special: 'all'
|
110 |
+
tokenize: !name:cosyvoice.dataset.processor.tokenize
|
111 |
+
get_tokenizer: !ref <get_tokenizer>
|
112 |
+
allowed_special: !ref <allowed_special>
|
113 |
+
filter: !name:cosyvoice.dataset.processor.filter
|
114 |
+
max_length: 40960
|
115 |
+
min_length: 0
|
116 |
+
token_max_length: 200
|
117 |
+
token_min_length: 1
|
118 |
+
resample: !name:cosyvoice.dataset.processor.resample
|
119 |
+
resample_rate: !ref <sample_rate>
|
120 |
+
feat_extractor: !name:matcha.utils.audio.mel_spectrogram
|
121 |
+
n_fft: 1920
|
122 |
+
num_mels: 80
|
123 |
+
sampling_rate: !ref <sample_rate>
|
124 |
+
hop_size: 480
|
125 |
+
win_size: 1920
|
126 |
+
fmin: 0
|
127 |
+
fmax: 8000
|
128 |
+
center: False
|
129 |
+
compute_fbank: !name:cosyvoice.dataset.processor.compute_fbank
|
130 |
+
feat_extractor: !ref <feat_extractor>
|
131 |
+
parse_embedding: !name:cosyvoice.dataset.processor.parse_embedding
|
132 |
+
normalize: True
|
133 |
+
shuffle: !name:cosyvoice.dataset.processor.shuffle
|
134 |
+
shuffle_size: 1000
|
135 |
+
sort: !name:cosyvoice.dataset.processor.sort
|
136 |
+
sort_size: 500 # sort_size should be less than shuffle_size
|
137 |
+
batch: !name:cosyvoice.dataset.processor.batch
|
138 |
+
batch_type: 'dynamic'
|
139 |
+
max_frames_in_batch: 2000
|
140 |
+
padding: !name:cosyvoice.dataset.processor.padding
|
cosyvoice2.yaml
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# set random seed, so that you may reproduce your result.
|
2 |
+
__set_seed1: !apply:random.seed [1986]
|
3 |
+
__set_seed2: !apply:numpy.random.seed [1986]
|
4 |
+
__set_seed3: !apply:torch.manual_seed [1986]
|
5 |
+
__set_seed4: !apply:torch.cuda.manual_seed_all [1986]
|
6 |
+
|
7 |
+
# fixed params
|
8 |
+
sample_rate: 24000
|
9 |
+
llm_input_size: 896
|
10 |
+
llm_output_size: 896
|
11 |
+
spk_embed_dim: 192
|
12 |
+
qwen_pretrain_path: ''
|
13 |
+
token_frame_rate: 25
|
14 |
+
token_mel_ratio: 2
|
15 |
+
cpm_pretrain_path: ''
|
16 |
+
# cpm_pretrain_path: '/mnt/afs/zhoufangru/agent/end2end/pretrained_models/MiniCPM-o-2_6'
|
17 |
+
|
18 |
+
# stream related params
|
19 |
+
chunk_size: 25 # streaming inference chunk size, in token
|
20 |
+
num_decoding_left_chunks: 1 # streaming inference flow decoder left chunk size, <0 means use all left chunks
|
21 |
+
|
22 |
+
# model params
|
23 |
+
# for all class/function included in this repo, we use !<name> or !<new> for intialization, so that user may find all corresponding class/function according to one single yaml.
|
24 |
+
# for system/third_party class/function, we do not require this.
|
25 |
+
llm: !new:cosyvoice.llm.llm.Qwen2LM
|
26 |
+
llm_input_size: !ref <llm_input_size>
|
27 |
+
llm_output_size: !ref <llm_output_size>
|
28 |
+
speech_token_size: 6561
|
29 |
+
length_normalized_loss: True
|
30 |
+
lsm_weight: 0
|
31 |
+
mix_ratio: [5, 15]
|
32 |
+
chat_path: !ref <cpm_pretrain_path>
|
33 |
+
llm: !new:cosyvoice.llm.llm.Qwen2Encoder
|
34 |
+
pretrain_path: !ref <qwen_pretrain_path>
|
35 |
+
sampling: !name:cosyvoice.utils.common.ras_sampling
|
36 |
+
top_p: 0.8
|
37 |
+
top_k: 25
|
38 |
+
win_size: 10
|
39 |
+
tau_r: 0.1
|
40 |
+
|
41 |
+
flow: !new:cosyvoice.flow.flow.CausalMaskedDiffWithXvec
|
42 |
+
input_size: 512
|
43 |
+
output_size: 80
|
44 |
+
spk_embed_dim: !ref <spk_embed_dim>
|
45 |
+
output_type: 'mel'
|
46 |
+
vocab_size: 6561
|
47 |
+
input_frame_rate: !ref <token_frame_rate>
|
48 |
+
only_mask_loss: True
|
49 |
+
token_mel_ratio: !ref <token_mel_ratio>
|
50 |
+
pre_lookahead_len: 3
|
51 |
+
encoder: !new:cosyvoice.transformer.upsample_encoder.UpsampleConformerEncoder
|
52 |
+
output_size: 512
|
53 |
+
attention_heads: 8
|
54 |
+
linear_units: 2048
|
55 |
+
num_blocks: 6
|
56 |
+
dropout_rate: 0.1
|
57 |
+
positional_dropout_rate: 0.1
|
58 |
+
attention_dropout_rate: 0.1
|
59 |
+
normalize_before: True
|
60 |
+
input_layer: 'linear'
|
61 |
+
pos_enc_layer_type: 'rel_pos_espnet'
|
62 |
+
selfattention_layer_type: 'rel_selfattn'
|
63 |
+
input_size: 512
|
64 |
+
use_cnn_module: False
|
65 |
+
macaron_style: False
|
66 |
+
static_chunk_size: !ref <chunk_size>
|
67 |
+
decoder: !new:cosyvoice.flow.flow_matching.CausalConditionalCFM
|
68 |
+
in_channels: 240
|
69 |
+
n_spks: 1
|
70 |
+
spk_emb_dim: 80
|
71 |
+
cfm_params: !new:omegaconf.DictConfig
|
72 |
+
content:
|
73 |
+
sigma_min: 1e-06
|
74 |
+
solver: 'euler'
|
75 |
+
t_scheduler: 'cosine'
|
76 |
+
training_cfg_rate: 0.2
|
77 |
+
inference_cfg_rate: 0.7
|
78 |
+
reg_loss_type: 'l1'
|
79 |
+
estimator: !new:cosyvoice.flow.decoder.CausalConditionalDecoder
|
80 |
+
in_channels: 320
|
81 |
+
out_channels: 80
|
82 |
+
channels: [256]
|
83 |
+
dropout: 0.0
|
84 |
+
attention_head_dim: 64
|
85 |
+
n_blocks: 4
|
86 |
+
num_mid_blocks: 12
|
87 |
+
num_heads: 8
|
88 |
+
act_fn: 'gelu'
|
89 |
+
static_chunk_size: !ref <chunk_size> * <token_mel_ratio>
|
90 |
+
num_decoding_left_chunks: !ref <num_decoding_left_chunks>
|
91 |
+
|
92 |
+
hift: !new:cosyvoice.hifigan.generator.HiFTGenerator
|
93 |
+
in_channels: 80
|
94 |
+
base_channels: 512
|
95 |
+
nb_harmonics: 8
|
96 |
+
sampling_rate: !ref <sample_rate>
|
97 |
+
nsf_alpha: 0.1
|
98 |
+
nsf_sigma: 0.003
|
99 |
+
nsf_voiced_threshold: 10
|
100 |
+
upsample_rates: [8, 5, 3]
|
101 |
+
upsample_kernel_sizes: [16, 11, 7]
|
102 |
+
istft_params:
|
103 |
+
n_fft: 16
|
104 |
+
hop_len: 4
|
105 |
+
resblock_kernel_sizes: [3, 7, 11]
|
106 |
+
resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]
|
107 |
+
source_resblock_kernel_sizes: [7, 7, 11]
|
108 |
+
source_resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]
|
109 |
+
lrelu_slope: 0.1
|
110 |
+
audio_limit: 0.99
|
111 |
+
f0_predictor: !new:cosyvoice.hifigan.f0_predictor.ConvRNNF0Predictor
|
112 |
+
num_class: 1
|
113 |
+
in_channels: 80
|
114 |
+
cond_channels: 512
|
115 |
+
|
116 |
+
# gan related module
|
117 |
+
mel_spec_transform1: !name:matcha.utils.audio.mel_spectrogram
|
118 |
+
n_fft: 1920
|
119 |
+
num_mels: 80
|
120 |
+
sampling_rate: !ref <sample_rate>
|
121 |
+
hop_size: 480
|
122 |
+
win_size: 1920
|
123 |
+
fmin: 0
|
124 |
+
fmax: null
|
125 |
+
center: False
|
126 |
+
hifigan: !new:cosyvoice.hifigan.hifigan.HiFiGan
|
127 |
+
generator: !ref <hift>
|
128 |
+
discriminator: !new:cosyvoice.hifigan.discriminator.MultipleDiscriminator
|
129 |
+
mpd: !new:matcha.hifigan.models.MultiPeriodDiscriminator
|
130 |
+
mrd: !new:cosyvoice.hifigan.discriminator.MultiResSpecDiscriminator
|
131 |
+
mel_spec_transform: [
|
132 |
+
!ref <mel_spec_transform1>
|
133 |
+
]
|
134 |
+
|
135 |
+
# processor functions
|
136 |
+
parquet_opener: !name:cosyvoice.dataset.processor.parquet_opener
|
137 |
+
get_tokenizer: !name:cosyvoice.tokenizer.tokenizer.get_qwen_tokenizer
|
138 |
+
token_path: !ref <qwen_pretrain_path>
|
139 |
+
skip_special_tokens: True
|
140 |
+
allowed_special: 'all'
|
141 |
+
tokenize: !name:cosyvoice.dataset.processor.tokenize
|
142 |
+
get_tokenizer: !ref <get_tokenizer>
|
143 |
+
allowed_special: !ref <allowed_special>
|
144 |
+
tokenize_llm: !name:cosyvoice.dataset.processor.tokenize_llm
|
145 |
+
tokenizer_path: !ref <cpm_pretrain_path>
|
146 |
+
filter: !name:cosyvoice.dataset.processor.filter
|
147 |
+
max_length: 40960
|
148 |
+
min_length: 100
|
149 |
+
token_max_length: 200
|
150 |
+
token_min_length: 1
|
151 |
+
resample: !name:cosyvoice.dataset.processor.resample
|
152 |
+
resample_rate: !ref <sample_rate>
|
153 |
+
truncate: !name:cosyvoice.dataset.processor.truncate
|
154 |
+
truncate_length: 24480 # must be a multiplier of hop_size
|
155 |
+
feat_extractor: !name:matcha.utils.audio.mel_spectrogram
|
156 |
+
n_fft: 1920
|
157 |
+
num_mels: 80
|
158 |
+
sampling_rate: !ref <sample_rate>
|
159 |
+
hop_size: 480
|
160 |
+
win_size: 1920
|
161 |
+
fmin: 0
|
162 |
+
fmax: 8000
|
163 |
+
center: False
|
164 |
+
compute_fbank: !name:cosyvoice.dataset.processor.compute_fbank
|
165 |
+
feat_extractor: !ref <feat_extractor>
|
166 |
+
compute_f0: !name:cosyvoice.dataset.processor.compute_f0
|
167 |
+
sample_rate: !ref <sample_rate>
|
168 |
+
hop_size: 480
|
169 |
+
parse_embedding: !name:cosyvoice.dataset.processor.parse_embedding
|
170 |
+
normalize: True
|
171 |
+
shuffle: !name:cosyvoice.dataset.processor.shuffle
|
172 |
+
shuffle_size: 1000
|
173 |
+
sort: !name:cosyvoice.dataset.processor.sort
|
174 |
+
sort_size: 500 # sort_size should be less than shuffle_size
|
175 |
+
batch: !name:cosyvoice.dataset.processor.batch
|
176 |
+
batch_type: 'dynamic'
|
177 |
+
max_frames_in_batch: 2000
|
178 |
+
padding: !name:cosyvoice.dataset.processor.padding
|
179 |
+
use_spk_embedding: False # change to True during sft
|
180 |
+
|
181 |
+
|
182 |
+
# dataset processor pipeline
|
183 |
+
data_pipeline: [
|
184 |
+
!ref <parquet_opener>,
|
185 |
+
# !ref <tokenize>,
|
186 |
+
!ref <tokenize_llm>,
|
187 |
+
!ref <filter>,
|
188 |
+
!ref <resample>,
|
189 |
+
!ref <compute_fbank>,
|
190 |
+
!ref <parse_embedding>,
|
191 |
+
!ref <shuffle>,
|
192 |
+
!ref <sort>,
|
193 |
+
!ref <batch>,
|
194 |
+
!ref <padding>,
|
195 |
+
]
|
196 |
+
data_pipeline_gan: [
|
197 |
+
!ref <parquet_opener>,
|
198 |
+
!ref <tokenize>,
|
199 |
+
!ref <filter>,
|
200 |
+
!ref <resample>,
|
201 |
+
!ref <truncate>,
|
202 |
+
!ref <compute_fbank>,
|
203 |
+
!ref <compute_f0>,
|
204 |
+
!ref <parse_embedding>,
|
205 |
+
!ref <shuffle>,
|
206 |
+
!ref <sort>,
|
207 |
+
!ref <batch>,
|
208 |
+
!ref <padding>,
|
209 |
+
]
|
210 |
+
|
211 |
+
# llm flow train conf
|
212 |
+
train_conf:
|
213 |
+
optim: adam
|
214 |
+
optim_conf:
|
215 |
+
lr: 1e-4 # change to 1e-5 during sft
|
216 |
+
scheduler: constantlr # change to constantlr during sft
|
217 |
+
scheduler_conf:
|
218 |
+
warmup_steps: 2500
|
219 |
+
max_epoch: 200
|
220 |
+
grad_clip: 5
|
221 |
+
accum_grad: 2
|
222 |
+
log_interval: 100
|
223 |
+
save_per_step: -1
|
224 |
+
|
225 |
+
# gan train conf
|
226 |
+
train_conf_gan:
|
227 |
+
optim: adam
|
228 |
+
optim_conf:
|
229 |
+
lr: 0.0002 # use small lr for gan training
|
230 |
+
scheduler: constantlr
|
231 |
+
optim_d: adam
|
232 |
+
optim_conf_d:
|
233 |
+
lr: 0.0002 # use small lr for gan training
|
234 |
+
scheduler_d: constantlr
|
235 |
+
max_epoch: 200
|
236 |
+
grad_clip: 5
|
237 |
+
accum_grad: 1 # in gan training, accum_grad must be 1
|
238 |
+
log_interval: 100
|
239 |
+
save_per_step: -1
|
cosyvoice2_end2end.yaml
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# set random seed, so that you may reproduce your result.
|
2 |
+
__set_seed1: !apply:random.seed [1986]
|
3 |
+
__set_seed2: !apply:numpy.random.seed [1986]
|
4 |
+
__set_seed3: !apply:torch.manual_seed [1986]
|
5 |
+
__set_seed4: !apply:torch.cuda.manual_seed_all [1986]
|
6 |
+
|
7 |
+
# fixed params
|
8 |
+
sample_rate: 24000
|
9 |
+
llm_input_size: 896
|
10 |
+
llm_output_size: 896
|
11 |
+
spk_embed_dim: 192
|
12 |
+
qwen_pretrain_path: ''
|
13 |
+
token_frame_rate: 25
|
14 |
+
token_mel_ratio: 2
|
15 |
+
chat_pretrain_path: ''
|
16 |
+
|
17 |
+
# stream related params
|
18 |
+
chunk_size: 25 # streaming inference chunk size, in token
|
19 |
+
num_decoding_left_chunks: 1 # streaming inference flow decoder left chunk size, <0 means use all left chunks
|
20 |
+
|
21 |
+
# model params
|
22 |
+
# for all class/function included in this repo, we use !<name> or !<new> for intialization, so that user may find all corresponding class/function according to one single yaml.
|
23 |
+
# for system/third_party class/function, we do not require this.
|
24 |
+
llm: !new:cosyvoice.llm.llm.Qwen2LM
|
25 |
+
llm_input_size: !ref <llm_input_size>
|
26 |
+
llm_output_size: !ref <llm_output_size>
|
27 |
+
speech_token_size: 6561
|
28 |
+
length_normalized_loss: True
|
29 |
+
lsm_weight: 0
|
30 |
+
mix_ratio: [5, 15]
|
31 |
+
chat: !new:cosyvoice.llm.llm.Qwen2Chat
|
32 |
+
pretrain_path: !ref <chat_pretrain_path>
|
33 |
+
llm: !new:cosyvoice.llm.llm.Qwen2Encoder
|
34 |
+
pretrain_path: !ref <qwen_pretrain_path>
|
35 |
+
sampling: !name:cosyvoice.utils.common.ras_sampling
|
36 |
+
top_p: 0.8
|
37 |
+
top_k: 25
|
38 |
+
win_size: 10
|
39 |
+
tau_r: 0.1
|
40 |
+
|
41 |
+
flow: !new:cosyvoice.flow.flow.CausalMaskedDiffWithXvec
|
42 |
+
input_size: 512
|
43 |
+
output_size: 80
|
44 |
+
spk_embed_dim: !ref <spk_embed_dim>
|
45 |
+
output_type: 'mel'
|
46 |
+
vocab_size: 6561
|
47 |
+
input_frame_rate: !ref <token_frame_rate>
|
48 |
+
only_mask_loss: True
|
49 |
+
token_mel_ratio: !ref <token_mel_ratio>
|
50 |
+
pre_lookahead_len: 3
|
51 |
+
encoder: !new:cosyvoice.transformer.upsample_encoder.UpsampleConformerEncoder
|
52 |
+
output_size: 512
|
53 |
+
attention_heads: 8
|
54 |
+
linear_units: 2048
|
55 |
+
num_blocks: 6
|
56 |
+
dropout_rate: 0.1
|
57 |
+
positional_dropout_rate: 0.1
|
58 |
+
attention_dropout_rate: 0.1
|
59 |
+
normalize_before: True
|
60 |
+
input_layer: 'linear'
|
61 |
+
pos_enc_layer_type: 'rel_pos_espnet'
|
62 |
+
selfattention_layer_type: 'rel_selfattn'
|
63 |
+
input_size: 512
|
64 |
+
use_cnn_module: False
|
65 |
+
macaron_style: False
|
66 |
+
static_chunk_size: !ref <chunk_size>
|
67 |
+
decoder: !new:cosyvoice.flow.flow_matching.CausalConditionalCFM
|
68 |
+
in_channels: 240
|
69 |
+
n_spks: 1
|
70 |
+
spk_emb_dim: 80
|
71 |
+
cfm_params: !new:omegaconf.DictConfig
|
72 |
+
content:
|
73 |
+
sigma_min: 1e-06
|
74 |
+
solver: 'euler'
|
75 |
+
t_scheduler: 'cosine'
|
76 |
+
training_cfg_rate: 0.2
|
77 |
+
inference_cfg_rate: 0.7
|
78 |
+
reg_loss_type: 'l1'
|
79 |
+
estimator: !new:cosyvoice.flow.decoder.CausalConditionalDecoder
|
80 |
+
in_channels: 320
|
81 |
+
out_channels: 80
|
82 |
+
channels: [256]
|
83 |
+
dropout: 0.0
|
84 |
+
attention_head_dim: 64
|
85 |
+
n_blocks: 4
|
86 |
+
num_mid_blocks: 12
|
87 |
+
num_heads: 8
|
88 |
+
act_fn: 'gelu'
|
89 |
+
static_chunk_size: !ref <chunk_size> * <token_mel_ratio>
|
90 |
+
num_decoding_left_chunks: !ref <num_decoding_left_chunks>
|
91 |
+
|
92 |
+
hift: !new:cosyvoice.hifigan.generator.HiFTGenerator
|
93 |
+
in_channels: 80
|
94 |
+
base_channels: 512
|
95 |
+
nb_harmonics: 8
|
96 |
+
sampling_rate: !ref <sample_rate>
|
97 |
+
nsf_alpha: 0.1
|
98 |
+
nsf_sigma: 0.003
|
99 |
+
nsf_voiced_threshold: 10
|
100 |
+
upsample_rates: [8, 5, 3]
|
101 |
+
upsample_kernel_sizes: [16, 11, 7]
|
102 |
+
istft_params:
|
103 |
+
n_fft: 16
|
104 |
+
hop_len: 4
|
105 |
+
resblock_kernel_sizes: [3, 7, 11]
|
106 |
+
resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]
|
107 |
+
source_resblock_kernel_sizes: [7, 7, 11]
|
108 |
+
source_resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]
|
109 |
+
lrelu_slope: 0.1
|
110 |
+
audio_limit: 0.99
|
111 |
+
f0_predictor: !new:cosyvoice.hifigan.f0_predictor.ConvRNNF0Predictor
|
112 |
+
num_class: 1
|
113 |
+
in_channels: 80
|
114 |
+
cond_channels: 512
|
115 |
+
|
116 |
+
# gan related module
|
117 |
+
mel_spec_transform1: !name:matcha.utils.audio.mel_spectrogram
|
118 |
+
n_fft: 1920
|
119 |
+
num_mels: 80
|
120 |
+
sampling_rate: !ref <sample_rate>
|
121 |
+
hop_size: 480
|
122 |
+
win_size: 1920
|
123 |
+
fmin: 0
|
124 |
+
fmax: null
|
125 |
+
center: False
|
126 |
+
hifigan: !new:cosyvoice.hifigan.hifigan.HiFiGan
|
127 |
+
generator: !ref <hift>
|
128 |
+
discriminator: !new:cosyvoice.hifigan.discriminator.MultipleDiscriminator
|
129 |
+
mpd: !new:matcha.hifigan.models.MultiPeriodDiscriminator
|
130 |
+
mrd: !new:cosyvoice.hifigan.discriminator.MultiResSpecDiscriminator
|
131 |
+
mel_spec_transform: [
|
132 |
+
!ref <mel_spec_transform1>
|
133 |
+
]
|
134 |
+
|
135 |
+
# processor functions
|
136 |
+
parquet_opener: !name:cosyvoice.dataset.processor.parquet_opener
|
137 |
+
get_tokenizer: !name:cosyvoice.tokenizer.tokenizer.get_qwen_tokenizer
|
138 |
+
token_path: !ref <qwen_pretrain_path>
|
139 |
+
skip_special_tokens: True
|
140 |
+
allowed_special: 'all'
|
141 |
+
tokenize: !name:cosyvoice.dataset.processor.tokenize
|
142 |
+
get_tokenizer: !ref <get_tokenizer>
|
143 |
+
allowed_special: !ref <allowed_special>
|
144 |
+
tokenize_llm: !name:cosyvoice.dataset.processor.tokenize_llm
|
145 |
+
tokenizer_path: !ref <chat_pretrain_path>
|
146 |
+
filter: !name:cosyvoice.dataset.processor.filter
|
147 |
+
token_max_length: 500
|
148 |
+
token_min_length: 1
|
149 |
+
resample: !name:cosyvoice.dataset.processor.resample
|
150 |
+
resample_rate: !ref <sample_rate>
|
151 |
+
truncate: !name:cosyvoice.dataset.processor.truncate
|
152 |
+
truncate_length: 24480 # must be a multiplier of hop_size
|
153 |
+
feat_extractor: !name:matcha.utils.audio.mel_spectrogram
|
154 |
+
n_fft: 1920
|
155 |
+
num_mels: 80
|
156 |
+
sampling_rate: !ref <sample_rate>
|
157 |
+
hop_size: 480
|
158 |
+
win_size: 1920
|
159 |
+
fmin: 0
|
160 |
+
fmax: 8000
|
161 |
+
center: False
|
162 |
+
compute_fbank: !name:cosyvoice.dataset.processor.compute_fbank
|
163 |
+
feat_extractor: !ref <feat_extractor>
|
164 |
+
compute_f0: !name:cosyvoice.dataset.processor.compute_f0
|
165 |
+
sample_rate: !ref <sample_rate>
|
166 |
+
hop_size: 480
|
167 |
+
parse_embedding: !name:cosyvoice.dataset.processor.parse_embedding
|
168 |
+
normalize: True
|
169 |
+
shuffle: !name:cosyvoice.dataset.processor.shuffle
|
170 |
+
shuffle_size: 1000
|
171 |
+
sort: !name:cosyvoice.dataset.processor.sort
|
172 |
+
sort_size: 500 # sort_size should be less than shuffle_size
|
173 |
+
# batch: !name:cosyvoice.dataset.processor.batch
|
174 |
+
# batch_type: 'dynamic'
|
175 |
+
# max_frames_in_batch: 2000
|
176 |
+
batch: !name:cosyvoice.dataset.processor.batch
|
177 |
+
batch_type: 'static'
|
178 |
+
batch_size: 1
|
179 |
+
padding: !name:cosyvoice.dataset.processor.padding
|
180 |
+
use_spk_embedding: False # change to True during sft
|
181 |
+
|
182 |
+
|
183 |
+
# dataset processor pipeline
|
184 |
+
data_pipeline: [
|
185 |
+
!ref <parquet_opener>,
|
186 |
+
!ref <tokenize_llm>,
|
187 |
+
!ref <filter>,
|
188 |
+
!ref <shuffle>,
|
189 |
+
!ref <sort>,
|
190 |
+
!ref <batch>,
|
191 |
+
!ref <padding>,
|
192 |
+
]
|
193 |
+
data_pipeline_gan: [
|
194 |
+
!ref <parquet_opener>,
|
195 |
+
!ref <tokenize>,
|
196 |
+
!ref <filter>,
|
197 |
+
!ref <resample>,
|
198 |
+
!ref <truncate>,
|
199 |
+
!ref <compute_fbank>,
|
200 |
+
!ref <compute_f0>,
|
201 |
+
!ref <parse_embedding>,
|
202 |
+
!ref <shuffle>,
|
203 |
+
!ref <sort>,
|
204 |
+
!ref <batch>,
|
205 |
+
!ref <padding>,
|
206 |
+
]
|
207 |
+
|
208 |
+
# llm flow train conf
|
209 |
+
train_conf:
|
210 |
+
optim: adam
|
211 |
+
optim_conf:
|
212 |
+
lr: 1e-5 # change to 1e-5 during sft
|
213 |
+
scheduler: constantlr # change to constantlr during sft
|
214 |
+
scheduler_conf:
|
215 |
+
warmup_steps: 2500
|
216 |
+
max_epoch: 5
|
217 |
+
grad_clip: 5
|
218 |
+
accum_grad: 2
|
219 |
+
log_interval: 100
|
220 |
+
save_per_step: -1
|
221 |
+
|
222 |
+
# gan train conf
|
223 |
+
train_conf_gan:
|
224 |
+
optim: adam
|
225 |
+
optim_conf:
|
226 |
+
lr: 0.0002 # use small lr for gan training
|
227 |
+
scheduler: constantlr
|
228 |
+
optim_d: adam
|
229 |
+
optim_conf_d:
|
230 |
+
lr: 0.0002 # use small lr for gan training
|
231 |
+
scheduler_d: constantlr
|
232 |
+
max_epoch: 200
|
233 |
+
grad_clip: 5
|
234 |
+
accum_grad: 1 # in gan training, accum_grad must be 1
|
235 |
+
log_interval: 100
|
236 |
+
save_per_step: -1
|