DBDXSS
commited on
Commit
·
7c564b4
1
Parent(s):
1963011
init
Browse files- Chat/added_tokens.json +59 -0
- Chat/config.json +194 -0
- Chat/configuration_minicpm.py +210 -0
- Chat/generation_config.json +6 -0
- Chat/image_processing_minicpmv.py +407 -0
- Chat/merges.txt +0 -0
- Chat/model.safetensors.index.json +1167 -0
- Chat/modeling_minicpmo.py +1996 -0
- Chat/modeling_navit_siglip.py +940 -0
- Chat/preprocessor_config.json +24 -0
- Chat/processing_minicpmo.py +505 -0
- Chat/resampler.py +871 -0
- Chat/special_tokens_map.json +264 -0
- Chat/tokenization_minicpmo_fast.py +110 -0
- Chat/tokenizer.json +0 -0
- Chat/tokenizer_config.json +523 -0
- Chat/trainer_state.json +0 -0
- Chat/training_args.bin +3 -0
- Chat/utils.py +203 -0
- Chat/vocab.json +0 -0
- Chat/zero_to_fp32.py +604 -0
Chat/added_tokens.json
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</asr>": 151682,
|
3 |
+
"</box>": 151670,
|
4 |
+
"</image>": 151666,
|
5 |
+
"</image_id>": 151678,
|
6 |
+
"</point>": 151674,
|
7 |
+
"</quad>": 151672,
|
8 |
+
"</query>": 151684,
|
9 |
+
"</ref>": 151668,
|
10 |
+
"</slice>": 151676,
|
11 |
+
"</tool_call>": 151658,
|
12 |
+
"</unit>": 151680,
|
13 |
+
"<asr>": 151681,
|
14 |
+
"<box>": 151669,
|
15 |
+
"<image>": 151665,
|
16 |
+
"<image_id>": 151677,
|
17 |
+
"<point>": 151673,
|
18 |
+
"<quad>": 151671,
|
19 |
+
"<query>": 151683,
|
20 |
+
"<ref>": 151667,
|
21 |
+
"<reserved_43>": 151698,
|
22 |
+
"<reserved_53>": 151699,
|
23 |
+
"<slice>": 151675,
|
24 |
+
"<tool_call>": 151657,
|
25 |
+
"<unit>": 151679,
|
26 |
+
"<|audio_end|>": 151687,
|
27 |
+
"<|audio_start|>": 151685,
|
28 |
+
"<|audio|>": 151686,
|
29 |
+
"<|box_end|>": 151649,
|
30 |
+
"<|box_start|>": 151648,
|
31 |
+
"<|endoftext|>": 151643,
|
32 |
+
"<|file_sep|>": 151664,
|
33 |
+
"<|fim_middle|>": 151660,
|
34 |
+
"<|fim_pad|>": 151662,
|
35 |
+
"<|fim_prefix|>": 151659,
|
36 |
+
"<|fim_suffix|>": 151661,
|
37 |
+
"<|im_end|>": 151645,
|
38 |
+
"<|im_start|>": 151644,
|
39 |
+
"<|image_pad|>": 151655,
|
40 |
+
"<|interrupt|>": 151695,
|
41 |
+
"<|listen|>": 151693,
|
42 |
+
"<|object_ref_end|>": 151647,
|
43 |
+
"<|object_ref_start|>": 151646,
|
44 |
+
"<|quad_end|>": 151651,
|
45 |
+
"<|quad_start|>": 151650,
|
46 |
+
"<|repo_name|>": 151663,
|
47 |
+
"<|speak|>": 151694,
|
48 |
+
"<|spk_bos|>": 151688,
|
49 |
+
"<|spk_eos|>": 151690,
|
50 |
+
"<|spk|>": 151689,
|
51 |
+
"<|tts_bos|>": 151691,
|
52 |
+
"<|tts_eos|>": 151692,
|
53 |
+
"<|vad_end|>": 151697,
|
54 |
+
"<|vad_start|>": 151696,
|
55 |
+
"<|video_pad|>": 151656,
|
56 |
+
"<|vision_end|>": 151653,
|
57 |
+
"<|vision_pad|>": 151654,
|
58 |
+
"<|vision_start|>": 151652
|
59 |
+
}
|
Chat/config.json
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "pretrained_models/CosyVoice2-0.5B/Chat",
|
3 |
+
"architectures": [
|
4 |
+
"MiniCPMO"
|
5 |
+
],
|
6 |
+
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"bos_token_id": 151643,
|
9 |
+
"eos_token_id": 151645,
|
10 |
+
"hidden_act": "silu",
|
11 |
+
"hidden_size": 3584,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 18944,
|
14 |
+
"max_position_embeddings": 32768,
|
15 |
+
"max_window_layers": 28,
|
16 |
+
"num_attention_heads": 28,
|
17 |
+
"num_hidden_layers": 28,
|
18 |
+
"num_key_value_heads": 4,
|
19 |
+
"rms_norm_eps": 1e-06,
|
20 |
+
"rope_theta": 1000000.0,
|
21 |
+
"sliding_window": 131072,
|
22 |
+
"tie_word_embeddings": false,
|
23 |
+
"use_sliding_window": false,
|
24 |
+
"vocab_size": 151700,
|
25 |
+
"batch_vision_input": true,
|
26 |
+
"drop_vision_last_layer": false,
|
27 |
+
"image_size": 448,
|
28 |
+
|
29 |
+
"audio_chunk_length": 1.0,
|
30 |
+
"audio_config": {
|
31 |
+
"_name_or_path": "openai/whisper-medium",
|
32 |
+
"architectures": [
|
33 |
+
"MiniCPMWhisperEncoder"
|
34 |
+
],
|
35 |
+
"begin_suppress_tokens": [
|
36 |
+
220,
|
37 |
+
50257
|
38 |
+
],
|
39 |
+
"bos_token_id": 50257,
|
40 |
+
"d_model": 1024,
|
41 |
+
"decoder_attention_heads": 16,
|
42 |
+
"decoder_ffn_dim": 4096,
|
43 |
+
"decoder_layers": 24,
|
44 |
+
"decoder_start_token_id": 50258,
|
45 |
+
"encoder_attention_heads": 16,
|
46 |
+
"encoder_ffn_dim": 4096,
|
47 |
+
"encoder_layers": 24,
|
48 |
+
"eos_token_id": 50257,
|
49 |
+
"forced_decoder_ids": [
|
50 |
+
[
|
51 |
+
1,
|
52 |
+
50259
|
53 |
+
],
|
54 |
+
[
|
55 |
+
2,
|
56 |
+
50359
|
57 |
+
],
|
58 |
+
[
|
59 |
+
3,
|
60 |
+
50363
|
61 |
+
]
|
62 |
+
],
|
63 |
+
"max_length": 448,
|
64 |
+
"model_type": "whisper",
|
65 |
+
"num_hidden_layers": 24,
|
66 |
+
"pad_token_id": 50257,
|
67 |
+
"suppress_tokens": [
|
68 |
+
1,
|
69 |
+
2,
|
70 |
+
7,
|
71 |
+
8,
|
72 |
+
9,
|
73 |
+
10,
|
74 |
+
14,
|
75 |
+
25,
|
76 |
+
26,
|
77 |
+
27,
|
78 |
+
28,
|
79 |
+
29,
|
80 |
+
31,
|
81 |
+
58,
|
82 |
+
59,
|
83 |
+
60,
|
84 |
+
61,
|
85 |
+
62,
|
86 |
+
63,
|
87 |
+
90,
|
88 |
+
91,
|
89 |
+
92,
|
90 |
+
93,
|
91 |
+
359,
|
92 |
+
503,
|
93 |
+
522,
|
94 |
+
542,
|
95 |
+
873,
|
96 |
+
893,
|
97 |
+
902,
|
98 |
+
918,
|
99 |
+
922,
|
100 |
+
931,
|
101 |
+
1350,
|
102 |
+
1853,
|
103 |
+
1982,
|
104 |
+
2460,
|
105 |
+
2627,
|
106 |
+
3246,
|
107 |
+
3253,
|
108 |
+
3268,
|
109 |
+
3536,
|
110 |
+
3846,
|
111 |
+
3961,
|
112 |
+
4183,
|
113 |
+
4667,
|
114 |
+
6585,
|
115 |
+
6647,
|
116 |
+
7273,
|
117 |
+
9061,
|
118 |
+
9383,
|
119 |
+
10428,
|
120 |
+
10929,
|
121 |
+
11938,
|
122 |
+
12033,
|
123 |
+
12331,
|
124 |
+
12562,
|
125 |
+
13793,
|
126 |
+
14157,
|
127 |
+
14635,
|
128 |
+
15265,
|
129 |
+
15618,
|
130 |
+
16553,
|
131 |
+
16604,
|
132 |
+
18362,
|
133 |
+
18956,
|
134 |
+
20075,
|
135 |
+
21675,
|
136 |
+
22520,
|
137 |
+
26130,
|
138 |
+
26161,
|
139 |
+
26435,
|
140 |
+
28279,
|
141 |
+
29464,
|
142 |
+
31650,
|
143 |
+
32302,
|
144 |
+
32470,
|
145 |
+
36865,
|
146 |
+
42863,
|
147 |
+
47425,
|
148 |
+
49870,
|
149 |
+
50254,
|
150 |
+
50258,
|
151 |
+
50358,
|
152 |
+
50359,
|
153 |
+
50360,
|
154 |
+
50361,
|
155 |
+
50362
|
156 |
+
],
|
157 |
+
"torch_dtype": "bfloat16"
|
158 |
+
},
|
159 |
+
"audio_pool_step": 2,
|
160 |
+
"auto_map": {
|
161 |
+
"AutoConfig": "configuration_minicpm.MiniCPMOConfig",
|
162 |
+
"AutoModel": "modeling_minicpmo.MiniCPMO",
|
163 |
+
"AutoModelForCausalLM": "modeling_minicpmo.MiniCPMO"
|
164 |
+
},
|
165 |
+
"chunk_input": true,
|
166 |
+
"listen_speak_type": "asr",
|
167 |
+
"model_type": "minicpmo",
|
168 |
+
"patch_size": 14,
|
169 |
+
"query_num": 64,
|
170 |
+
"slice_config": {
|
171 |
+
"max_slice_nums": 9,
|
172 |
+
"model_type": "minicpmv"
|
173 |
+
},
|
174 |
+
"slice_mode": true,
|
175 |
+
"torch_dtype": "bfloat16",
|
176 |
+
"transformers_version": "4.44.2",
|
177 |
+
"tts_config": {
|
178 |
+
"model_type": "conditional_chattts",
|
179 |
+
"llm_dim": 3584
|
180 |
+
},
|
181 |
+
"use_cache": true,
|
182 |
+
"use_image_id": true,
|
183 |
+
"version": 2.6,
|
184 |
+
"vision_batch_size": 16,
|
185 |
+
"vision_config": {
|
186 |
+
"hidden_size": 1152,
|
187 |
+
"image_size": 980,
|
188 |
+
"intermediate_size": 4304,
|
189 |
+
"model_type": "siglip_vision_model",
|
190 |
+
"num_attention_heads": 16,
|
191 |
+
"num_hidden_layers": 27,
|
192 |
+
"patch_size": 14
|
193 |
+
}
|
194 |
+
}
|
Chat/configuration_minicpm.py
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2025 The OpenBMB Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import os
|
17 |
+
from typing import Union
|
18 |
+
|
19 |
+
from transformers import PretrainedConfig
|
20 |
+
from transformers import Qwen2Config
|
21 |
+
from transformers import WhisperConfig
|
22 |
+
from transformers.utils import logging
|
23 |
+
|
24 |
+
from .modeling_navit_siglip import SiglipVisionConfig
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
|
29 |
+
class MiniCPMVSliceConfig(PretrainedConfig):
|
30 |
+
model_type = "minicpmv"
|
31 |
+
|
32 |
+
def __init__(
|
33 |
+
self,
|
34 |
+
patch_size=14,
|
35 |
+
max_slice_nums=9,
|
36 |
+
scale_resolution=448,
|
37 |
+
**kwargs,
|
38 |
+
):
|
39 |
+
super().__init__(**kwargs)
|
40 |
+
self.patch_size = patch_size
|
41 |
+
self.max_slice_nums = max_slice_nums
|
42 |
+
self.scale_resolution = scale_resolution
|
43 |
+
|
44 |
+
@classmethod
|
45 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
46 |
+
cls._set_token_in_kwargs(kwargs)
|
47 |
+
|
48 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
49 |
+
|
50 |
+
if config_dict.get("model_type") == "minicpmv":
|
51 |
+
config_dict = config_dict["slice_config"]
|
52 |
+
|
53 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
54 |
+
logger.warning(
|
55 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
56 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
57 |
+
)
|
58 |
+
|
59 |
+
return cls.from_dict(config_dict, **kwargs)
|
60 |
+
|
61 |
+
|
62 |
+
class ConditionalChatTTSConfig(PretrainedConfig):
|
63 |
+
model_type = "conditional_chattts"
|
64 |
+
|
65 |
+
def __init__(
|
66 |
+
self,
|
67 |
+
llm_dim: int = 2560,
|
68 |
+
hidden_size: int = 768,
|
69 |
+
intermediate_size: int = 3072,
|
70 |
+
num_attention_heads: int = 12,
|
71 |
+
num_hidden_layers: int = 20,
|
72 |
+
max_position_embeddings: int = 4096,
|
73 |
+
num_audio_tokens: int = 626,
|
74 |
+
num_text_tokens: int = 21178,
|
75 |
+
num_mel_bins: int = 100,
|
76 |
+
num_vq: int = 4,
|
77 |
+
use_speaker_embedding: bool = True,
|
78 |
+
use_llm_hidden_state: bool = False,
|
79 |
+
spk_emb_token_id: int = 21143,
|
80 |
+
num_spk_embs: int = 1,
|
81 |
+
audio_bos_token_id: int = 21132,
|
82 |
+
text_eos_token_id: int = 21133,
|
83 |
+
use_text: bool = True,
|
84 |
+
streaming: bool = True,
|
85 |
+
streaming_text_chunk_size: int = 10,
|
86 |
+
streaming_text_reserved_len: int = 300,
|
87 |
+
streaming_audio_chunk_size: int = 50,
|
88 |
+
attn_implementation: str = "sdpa",
|
89 |
+
use_mlp: bool = True,
|
90 |
+
aug_loss_weight: bool = True,
|
91 |
+
do_sample: bool = True,
|
92 |
+
top_p: float = 0.7,
|
93 |
+
top_k: int = 20,
|
94 |
+
repetition_penalty: float = 1.0,
|
95 |
+
**kwargs,
|
96 |
+
):
|
97 |
+
super().__init__(**kwargs)
|
98 |
+
|
99 |
+
self.llm_dim = llm_dim
|
100 |
+
self.hidden_size = hidden_size
|
101 |
+
self.intermediate_size = intermediate_size
|
102 |
+
self.num_attention_heads = num_attention_heads
|
103 |
+
self.num_hidden_layers = num_hidden_layers
|
104 |
+
self.max_position_embeddings = max_position_embeddings
|
105 |
+
self.num_audio_tokens = num_audio_tokens
|
106 |
+
self.num_text_tokens = num_text_tokens
|
107 |
+
self.num_mel_bins = num_mel_bins
|
108 |
+
self.num_vq = num_vq
|
109 |
+
self.use_speaker_embedding = use_speaker_embedding
|
110 |
+
self.use_llm_hidden_state = use_llm_hidden_state
|
111 |
+
self.spk_emb_token_id = spk_emb_token_id
|
112 |
+
self.num_spk_embs = num_spk_embs
|
113 |
+
self.audio_bos_token_id = audio_bos_token_id
|
114 |
+
self.text_eos_token_id = text_eos_token_id
|
115 |
+
self.use_text = use_text
|
116 |
+
self.streaming = streaming
|
117 |
+
self.streaming_text_chunk_size = streaming_text_chunk_size
|
118 |
+
self.streaming_text_reserved_len = streaming_text_reserved_len
|
119 |
+
self.streaming_audio_chunk_size = streaming_audio_chunk_size
|
120 |
+
self.attn_implementation = attn_implementation
|
121 |
+
self.use_mlp = use_mlp
|
122 |
+
self.aug_loss_weight = aug_loss_weight
|
123 |
+
self.do_sample = do_sample
|
124 |
+
self.top_p = top_p
|
125 |
+
self.top_k = top_k
|
126 |
+
self.repetition_penalty = repetition_penalty
|
127 |
+
|
128 |
+
|
129 |
+
class MiniCPMOConfig(Qwen2Config):
|
130 |
+
model_type = "minicpmo"
|
131 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
132 |
+
|
133 |
+
default_vision_config = {
|
134 |
+
"hidden_size": 1152,
|
135 |
+
"image_size": 980,
|
136 |
+
"intermediate_size": 4304,
|
137 |
+
"model_type": "siglip",
|
138 |
+
"num_attention_heads": 16,
|
139 |
+
"num_hidden_layers": 27,
|
140 |
+
"patch_size": 14,
|
141 |
+
}
|
142 |
+
|
143 |
+
def __init__(
|
144 |
+
self,
|
145 |
+
use_cache=True,
|
146 |
+
query_num=64,
|
147 |
+
image_size=448,
|
148 |
+
drop_vision_last_layer=True,
|
149 |
+
batch_vision_input=True,
|
150 |
+
slice_config=None,
|
151 |
+
vision_config=None,
|
152 |
+
audio_config=None,
|
153 |
+
tts_config=None,
|
154 |
+
use_image_id=True,
|
155 |
+
vision_batch_size=16,
|
156 |
+
audio_pool_step=2,
|
157 |
+
audio_chunk_length=1.0,
|
158 |
+
stream_input=False,
|
159 |
+
init_vision=True,
|
160 |
+
init_audio=True,
|
161 |
+
init_tts=True,
|
162 |
+
**kwargs,
|
163 |
+
):
|
164 |
+
self.use_cache = use_cache
|
165 |
+
self.query_num = query_num
|
166 |
+
self.image_size = image_size
|
167 |
+
self.drop_vision_last_layer = drop_vision_last_layer
|
168 |
+
self.batch_vision_input = batch_vision_input
|
169 |
+
self.use_image_id = use_image_id
|
170 |
+
self.vision_batch_size = vision_batch_size
|
171 |
+
self.audio_pool_step = audio_pool_step
|
172 |
+
self.audio_chunk_length = audio_chunk_length
|
173 |
+
self.stream_input = stream_input
|
174 |
+
self.init_vision = init_vision
|
175 |
+
self.init_audio = init_audio
|
176 |
+
self.init_tts = init_tts
|
177 |
+
|
178 |
+
if slice_config is None:
|
179 |
+
self.slice_config = MiniCPMVSliceConfig(max_slice_nums=1)
|
180 |
+
else:
|
181 |
+
self.slice_config = MiniCPMVSliceConfig(**slice_config)
|
182 |
+
self.slice_mode = True
|
183 |
+
|
184 |
+
# same as HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit add tgt_sizes
|
185 |
+
if vision_config is None:
|
186 |
+
self.vision_config = SiglipVisionConfig(**self.default_vision_config)
|
187 |
+
# logger.info("vision_config is None, using default vision config")
|
188 |
+
elif isinstance(vision_config, dict):
|
189 |
+
self.vision_config = SiglipVisionConfig(**vision_config)
|
190 |
+
elif isinstance(vision_config, SiglipVisionConfig):
|
191 |
+
self.vision_config = vision_config
|
192 |
+
|
193 |
+
# same as openai/whisper-medium add use_cache
|
194 |
+
if audio_config is None:
|
195 |
+
self.audio_config = WhisperConfig()
|
196 |
+
elif isinstance(audio_config, dict):
|
197 |
+
self.audio_config = WhisperConfig(**audio_config)
|
198 |
+
elif isinstance(audio_config, WhisperConfig):
|
199 |
+
self.audio_config = audio_config
|
200 |
+
|
201 |
+
if tts_config is None:
|
202 |
+
self.tts_config = ConditionalChatTTSConfig()
|
203 |
+
elif isinstance(tts_config, dict):
|
204 |
+
self.tts_config = ConditionalChatTTSConfig(**tts_config)
|
205 |
+
elif isinstance(tts_config, ConditionalChatTTSConfig):
|
206 |
+
self.tts_config = tts_config
|
207 |
+
|
208 |
+
self.patch_size = self.vision_config.patch_size
|
209 |
+
|
210 |
+
super().__init__(**kwargs)
|
Chat/generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 151643,
|
4 |
+
"eos_token_id": 151645,
|
5 |
+
"transformers_version": "4.44.2"
|
6 |
+
}
|
Chat/image_processing_minicpmv.py
ADDED
@@ -0,0 +1,407 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2025 The OpenBMB Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import math
|
17 |
+
from typing import Any
|
18 |
+
from typing import Dict
|
19 |
+
from typing import List
|
20 |
+
from typing import Optional
|
21 |
+
from typing import Union
|
22 |
+
|
23 |
+
import numpy as np
|
24 |
+
import PIL
|
25 |
+
import PIL.Image
|
26 |
+
import PIL.ImageSequence
|
27 |
+
import torch
|
28 |
+
from PIL import Image
|
29 |
+
from transformers import AutoImageProcessor
|
30 |
+
from transformers.image_processing_utils import BaseImageProcessor
|
31 |
+
from transformers.image_processing_utils import BatchFeature
|
32 |
+
from transformers.image_transforms import to_channel_dimension_format
|
33 |
+
from transformers.image_utils import ChannelDimension
|
34 |
+
from transformers.image_utils import infer_channel_dimension_format
|
35 |
+
from transformers.image_utils import is_torch_tensor
|
36 |
+
from transformers.image_utils import to_numpy_array
|
37 |
+
from transformers.image_utils import valid_images
|
38 |
+
from transformers.utils import is_torch_device
|
39 |
+
from transformers.utils import is_torch_dtype
|
40 |
+
from transformers.utils import requires_backends
|
41 |
+
from transformers.utils import TensorType
|
42 |
+
|
43 |
+
|
44 |
+
def recursive_converter(converter, value):
|
45 |
+
if isinstance(value, list):
|
46 |
+
new_value = []
|
47 |
+
for v in value:
|
48 |
+
new_value += [recursive_converter(converter, v)]
|
49 |
+
return new_value
|
50 |
+
else:
|
51 |
+
return converter(value)
|
52 |
+
|
53 |
+
|
54 |
+
class MiniCPMOBatchFeature(BatchFeature):
|
55 |
+
r"""
|
56 |
+
Extend from BatchFeature for supporting various image size
|
57 |
+
"""
|
58 |
+
|
59 |
+
def __init__(self, data: Optional[Dict[str, Any]] = None, tensor_type: Union[None, str, TensorType] = None):
|
60 |
+
super().__init__(data)
|
61 |
+
self.convert_to_tensors(tensor_type=tensor_type)
|
62 |
+
|
63 |
+
def convert_to_tensors(self, tensor_type: Optional[Union[str, TensorType]] = None):
|
64 |
+
if tensor_type is None:
|
65 |
+
return self
|
66 |
+
|
67 |
+
is_tensor, as_tensor = self._get_is_as_tensor_fns(tensor_type)
|
68 |
+
|
69 |
+
def converter(value):
|
70 |
+
try:
|
71 |
+
if not is_tensor(value):
|
72 |
+
tensor = as_tensor(value)
|
73 |
+
return tensor
|
74 |
+
except: # noqa E722
|
75 |
+
if key == "overflowing_values":
|
76 |
+
raise ValueError("Unable to create tensor returning overflowing values of different lengths. ")
|
77 |
+
raise ValueError(
|
78 |
+
"Unable to create tensor, you should probably activate padding "
|
79 |
+
"with 'padding=True' to have batched tensors with the same length."
|
80 |
+
)
|
81 |
+
|
82 |
+
for key, value in self.items():
|
83 |
+
self[key] = recursive_converter(converter, value)
|
84 |
+
return self
|
85 |
+
|
86 |
+
def to(self, *args, **kwargs) -> "MiniCPMOBatchFeature":
|
87 |
+
requires_backends(self, ["torch"])
|
88 |
+
import torch
|
89 |
+
|
90 |
+
def cast_tensor(v):
|
91 |
+
# check if v is a floating point
|
92 |
+
if torch.is_floating_point(v):
|
93 |
+
# cast and send to device
|
94 |
+
return v.to(*args, **kwargs)
|
95 |
+
elif device is not None:
|
96 |
+
return v.to(device=device)
|
97 |
+
else:
|
98 |
+
return v
|
99 |
+
|
100 |
+
new_data = {}
|
101 |
+
device = kwargs.get("device")
|
102 |
+
# Check if the args are a device or a dtype
|
103 |
+
if device is None and len(args) > 0:
|
104 |
+
# device should be always the first argument
|
105 |
+
arg = args[0]
|
106 |
+
if is_torch_dtype(arg):
|
107 |
+
# The first argument is a dtype
|
108 |
+
pass
|
109 |
+
elif isinstance(arg, str) or is_torch_device(arg) or isinstance(arg, int):
|
110 |
+
device = arg
|
111 |
+
else:
|
112 |
+
# it's something else
|
113 |
+
raise ValueError(f"Attempting to cast a BatchFeature to type {str(arg)}. This is not supported.")
|
114 |
+
# We cast only floating point tensors to avoid issues with tokenizers casting `LongTensor` to `FloatTensor`
|
115 |
+
for k, v in self.items():
|
116 |
+
new_data[k] = recursive_converter(cast_tensor, v)
|
117 |
+
self.data = new_data
|
118 |
+
return self
|
119 |
+
|
120 |
+
|
121 |
+
class MiniCPMVImageProcessor(BaseImageProcessor):
|
122 |
+
model_input_names = ["pixel_values"]
|
123 |
+
|
124 |
+
def __init__(self, max_slice_nums=9, scale_resolution=448, patch_size=14, **kwargs):
|
125 |
+
super().__init__(**kwargs)
|
126 |
+
self.max_slice_nums = max_slice_nums
|
127 |
+
self.scale_resolution = scale_resolution
|
128 |
+
self.patch_size = patch_size
|
129 |
+
self.use_image_id = kwargs.pop("use_image_id", False)
|
130 |
+
self.image_feature_size = kwargs.pop("image_feature_size", 64)
|
131 |
+
self.im_start_token = kwargs.pop("im_start", "<image>")
|
132 |
+
self.im_end_token = kwargs.pop("im_end", "</image>")
|
133 |
+
self.slice_start_token = kwargs.pop("slice_start", "<slice>")
|
134 |
+
self.slice_end_token = kwargs.pop("slice_end", "</slice>")
|
135 |
+
self.unk_token = kwargs.pop("unk", "<unk>")
|
136 |
+
self.im_id_start = kwargs.pop("im_id_start", "<image_id>")
|
137 |
+
self.im_id_end = kwargs.pop("im_id_end", "</image_id>")
|
138 |
+
self.slice_mode = kwargs.pop("slice_mode", True)
|
139 |
+
|
140 |
+
self.mean = np.array(kwargs.pop("norm_mean", [0.5, 0.5, 0.5]))
|
141 |
+
self.std = np.array(kwargs.pop("norm_std", [0.5, 0.5, 0.5]))
|
142 |
+
self.version = kwargs.pop("version", 2.0)
|
143 |
+
|
144 |
+
def ensure_divide(self, length, patch_size):
|
145 |
+
return max(round(length / patch_size) * patch_size, patch_size)
|
146 |
+
|
147 |
+
def find_best_resize(self, original_size, scale_resolution, patch_size, allow_upscale=False):
|
148 |
+
width, height = original_size
|
149 |
+
if (width * height > scale_resolution * scale_resolution) or allow_upscale:
|
150 |
+
r = width / height
|
151 |
+
height = int(scale_resolution / math.sqrt(r))
|
152 |
+
width = int(height * r)
|
153 |
+
best_width = self.ensure_divide(width, patch_size)
|
154 |
+
best_height = self.ensure_divide(height, patch_size)
|
155 |
+
return (best_width, best_height)
|
156 |
+
|
157 |
+
def get_refine_size(self, original_size, grid, scale_resolution, patch_size, allow_upscale=False):
|
158 |
+
width, height = original_size
|
159 |
+
grid_x, grid_y = grid
|
160 |
+
|
161 |
+
refine_width = self.ensure_divide(width, grid_x)
|
162 |
+
refine_height = self.ensure_divide(height, grid_y)
|
163 |
+
|
164 |
+
grid_width = refine_width / grid_x
|
165 |
+
grid_height = refine_height / grid_y
|
166 |
+
|
167 |
+
best_grid_size = self.find_best_resize(
|
168 |
+
(grid_width, grid_height), scale_resolution, patch_size, allow_upscale=allow_upscale
|
169 |
+
)
|
170 |
+
refine_size = (best_grid_size[0] * grid_x, best_grid_size[1] * grid_y)
|
171 |
+
return refine_size
|
172 |
+
|
173 |
+
def split_to_patches(self, image, grid):
|
174 |
+
patches = []
|
175 |
+
width, height = image.size
|
176 |
+
grid_x = int(width / grid[0])
|
177 |
+
grid_y = int(height / grid[1])
|
178 |
+
for i in range(0, height, grid_y):
|
179 |
+
images = []
|
180 |
+
for j in range(0, width, grid_x):
|
181 |
+
box = (j, i, j + grid_x, i + grid_y)
|
182 |
+
patch = image.crop(box)
|
183 |
+
images.append(patch)
|
184 |
+
patches.append(images)
|
185 |
+
return patches
|
186 |
+
|
187 |
+
def slice_image(self, image, max_slice_nums=9, scale_resolution=448, patch_size=14, never_split=False):
|
188 |
+
original_size = image.size
|
189 |
+
source_image = None
|
190 |
+
best_grid = self.get_sliced_grid(original_size, max_slice_nums, never_split)
|
191 |
+
patches = []
|
192 |
+
|
193 |
+
if best_grid is None:
|
194 |
+
# dont need to slice, upsample
|
195 |
+
best_size = self.find_best_resize(original_size, scale_resolution, patch_size, allow_upscale=True)
|
196 |
+
source_image = image.resize(best_size, resample=Image.Resampling.BICUBIC)
|
197 |
+
else:
|
198 |
+
# source image, down-sampling and ensure divided by patch_size
|
199 |
+
best_resize = self.find_best_resize(original_size, scale_resolution, patch_size)
|
200 |
+
source_image = image.copy().resize(best_resize, resample=Image.Resampling.BICUBIC)
|
201 |
+
refine_size = self.get_refine_size(
|
202 |
+
original_size, best_grid, scale_resolution, patch_size, allow_upscale=True
|
203 |
+
)
|
204 |
+
refine_image = image.resize(refine_size, resample=Image.Resampling.BICUBIC)
|
205 |
+
patches = self.split_to_patches(refine_image, best_grid)
|
206 |
+
|
207 |
+
return source_image, patches, best_grid
|
208 |
+
|
209 |
+
def get_grid_placeholder(self, grid):
|
210 |
+
if grid is None:
|
211 |
+
return ""
|
212 |
+
slice_image_placeholder = (
|
213 |
+
self.slice_start_token + self.unk_token * self.image_feature_size + self.slice_end_token
|
214 |
+
)
|
215 |
+
|
216 |
+
cols = grid[0]
|
217 |
+
rows = grid[1]
|
218 |
+
slices = []
|
219 |
+
for i in range(rows):
|
220 |
+
lines = []
|
221 |
+
for j in range(cols):
|
222 |
+
lines.append(slice_image_placeholder)
|
223 |
+
slices.append("".join(lines))
|
224 |
+
|
225 |
+
slice_placeholder = "\n".join(slices)
|
226 |
+
return slice_placeholder
|
227 |
+
|
228 |
+
def get_image_id_placeholder(self, idx=0):
|
229 |
+
return f"{self.im_id_start}{idx}{self.im_id_end}"
|
230 |
+
|
231 |
+
def get_sliced_images(self, image, max_slice_nums=None):
|
232 |
+
slice_images = []
|
233 |
+
|
234 |
+
if not self.slice_mode:
|
235 |
+
return [image]
|
236 |
+
|
237 |
+
max_slice_nums = self.max_slice_nums if max_slice_nums is None else int(max_slice_nums)
|
238 |
+
assert max_slice_nums > 0
|
239 |
+
source_image, patches, sliced_grid = self.slice_image(
|
240 |
+
image, max_slice_nums, self.scale_resolution, self.patch_size # default: 9 # default: 448 # default: 14
|
241 |
+
)
|
242 |
+
|
243 |
+
slice_images.append(source_image)
|
244 |
+
if len(patches) > 0:
|
245 |
+
for i in range(len(patches)):
|
246 |
+
for j in range(len(patches[0])):
|
247 |
+
slice_images.append(patches[i][j])
|
248 |
+
return slice_images
|
249 |
+
|
250 |
+
def get_sliced_grid(self, image_size, max_slice_nums, nerver_split=False):
|
251 |
+
original_width, original_height = image_size
|
252 |
+
log_ratio = math.log(original_width / original_height)
|
253 |
+
ratio = original_width * original_height / (self.scale_resolution * self.scale_resolution)
|
254 |
+
multiple = min(math.ceil(ratio), max_slice_nums)
|
255 |
+
if multiple <= 1 or nerver_split:
|
256 |
+
return None
|
257 |
+
candidate_split_grids_nums = []
|
258 |
+
for i in [multiple - 1, multiple, multiple + 1]:
|
259 |
+
if i == 1 or i > max_slice_nums:
|
260 |
+
continue
|
261 |
+
candidate_split_grids_nums.append(i)
|
262 |
+
|
263 |
+
candidate_grids = []
|
264 |
+
for split_grids_nums in candidate_split_grids_nums:
|
265 |
+
m = 1
|
266 |
+
while m <= split_grids_nums:
|
267 |
+
if split_grids_nums % m == 0:
|
268 |
+
candidate_grids.append([m, split_grids_nums // m])
|
269 |
+
m += 1
|
270 |
+
|
271 |
+
best_grid = [1, 1]
|
272 |
+
min_error = float("inf")
|
273 |
+
for grid in candidate_grids:
|
274 |
+
error = abs(log_ratio - math.log(grid[0] / grid[1]))
|
275 |
+
if error < min_error:
|
276 |
+
best_grid = grid
|
277 |
+
min_error = error
|
278 |
+
|
279 |
+
return best_grid
|
280 |
+
|
281 |
+
def get_slice_image_placeholder(self, image_size, image_idx=0, max_slice_nums=None, use_image_id=None):
|
282 |
+
max_slice_nums = self.max_slice_nums if max_slice_nums is None else int(max_slice_nums)
|
283 |
+
assert max_slice_nums > 0
|
284 |
+
grid = self.get_sliced_grid(image_size=image_size, max_slice_nums=max_slice_nums)
|
285 |
+
|
286 |
+
image_placeholder = self.im_start_token + self.unk_token * self.image_feature_size + self.im_end_token
|
287 |
+
use_image_id = self.use_image_id if use_image_id is None else bool(use_image_id)
|
288 |
+
if use_image_id:
|
289 |
+
final_placeholder = self.get_image_id_placeholder(image_idx) + image_placeholder
|
290 |
+
else:
|
291 |
+
final_placeholder = image_placeholder
|
292 |
+
|
293 |
+
if self.slice_mode:
|
294 |
+
final_placeholder = final_placeholder + self.get_grid_placeholder(grid=grid)
|
295 |
+
return final_placeholder
|
296 |
+
|
297 |
+
def to_pil_image(self, image, rescale=None) -> PIL.Image.Image:
|
298 |
+
"""
|
299 |
+
Converts `image` to a PIL Image. Optionally rescales it and puts the channel dimension back as the last axis if
|
300 |
+
needed.
|
301 |
+
|
302 |
+
Args:
|
303 |
+
image (`PIL.Image.Image` or `numpy.ndarray` or `torch.Tensor`):
|
304 |
+
The image to convert to the PIL Image format.
|
305 |
+
rescale (`bool`, *optional*):
|
306 |
+
Whether or not to apply the scaling factor (to make pixel values integers between 0 and 255). Will
|
307 |
+
default to `True` if the image type is a floating type, `False` otherwise.
|
308 |
+
"""
|
309 |
+
if isinstance(image, PIL.Image.Image):
|
310 |
+
return image
|
311 |
+
if is_torch_tensor(image):
|
312 |
+
image = image.numpy()
|
313 |
+
|
314 |
+
if isinstance(image, np.ndarray):
|
315 |
+
if rescale is None:
|
316 |
+
# rescale default to the array being of floating type.
|
317 |
+
rescale = isinstance(image.flat[0], np.floating)
|
318 |
+
# If the channel as been moved to first dim, we put it back at the end.
|
319 |
+
if image.ndim == 3 and image.shape[0] in [1, 3]:
|
320 |
+
image = image.transpose(1, 2, 0)
|
321 |
+
if rescale:
|
322 |
+
image = image * 255
|
323 |
+
image = image.astype(np.uint8)
|
324 |
+
return PIL.Image.fromarray(image)
|
325 |
+
return image
|
326 |
+
|
327 |
+
def reshape_by_patch(self, image):
|
328 |
+
"""
|
329 |
+
:param image: shape [3, H, W]
|
330 |
+
:param patch_size:
|
331 |
+
:return: [3, patch_size, HW/patch_size]
|
332 |
+
"""
|
333 |
+
image = torch.from_numpy(image)
|
334 |
+
patch_size = self.patch_size
|
335 |
+
patches = torch.nn.functional.unfold(image, (patch_size, patch_size), stride=(patch_size, patch_size))
|
336 |
+
|
337 |
+
patches = patches.reshape(image.size(0), patch_size, patch_size, -1)
|
338 |
+
patches = patches.permute(0, 1, 3, 2).reshape(image.size(0), patch_size, -1)
|
339 |
+
return patches.numpy()
|
340 |
+
|
341 |
+
def preprocess(
|
342 |
+
self,
|
343 |
+
images: Union[Image.Image, List[Image.Image], List[List[Image.Image]]],
|
344 |
+
do_pad: Optional[bool] = True,
|
345 |
+
max_slice_nums: int = None,
|
346 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
347 |
+
**kwargs,
|
348 |
+
) -> MiniCPMOBatchFeature:
|
349 |
+
if isinstance(images, Image.Image):
|
350 |
+
images_list = [[images]]
|
351 |
+
elif isinstance(images[0], Image.Image):
|
352 |
+
images_list = [images]
|
353 |
+
else:
|
354 |
+
images_list = images
|
355 |
+
|
356 |
+
new_images_list = []
|
357 |
+
image_sizes_list = []
|
358 |
+
tgt_sizes_list = []
|
359 |
+
|
360 |
+
for _images in images_list:
|
361 |
+
if _images is None or len(_images) == 0:
|
362 |
+
new_images_list.append([])
|
363 |
+
image_sizes_list.append([])
|
364 |
+
tgt_sizes_list.append([])
|
365 |
+
continue
|
366 |
+
if not valid_images(_images):
|
367 |
+
raise ValueError(
|
368 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
369 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
370 |
+
)
|
371 |
+
|
372 |
+
_images = [self.to_pil_image(image).convert("RGB") for image in _images]
|
373 |
+
input_data_format = infer_channel_dimension_format(np.array(_images[0]))
|
374 |
+
|
375 |
+
new_images = []
|
376 |
+
image_sizes = [image.size for image in _images]
|
377 |
+
tgt_sizes = []
|
378 |
+
for image in _images:
|
379 |
+
image_patches = self.get_sliced_images(image, max_slice_nums)
|
380 |
+
image_patches = [to_numpy_array(image).astype(np.float32) / 255 for image in image_patches]
|
381 |
+
image_patches = [
|
382 |
+
self.normalize(image=image, mean=self.mean, std=self.std, input_data_format=input_data_format)
|
383 |
+
for image in image_patches
|
384 |
+
]
|
385 |
+
image_patches = [
|
386 |
+
to_channel_dimension_format(image, ChannelDimension.FIRST, input_channel_dim=input_data_format)
|
387 |
+
for image in image_patches
|
388 |
+
]
|
389 |
+
for slice_image in image_patches:
|
390 |
+
new_images.append(self.reshape_by_patch(slice_image))
|
391 |
+
tgt_sizes.append(
|
392 |
+
np.array((slice_image.shape[1] // self.patch_size, slice_image.shape[2] // self.patch_size))
|
393 |
+
)
|
394 |
+
|
395 |
+
if tgt_sizes:
|
396 |
+
tgt_sizes = np.vstack(tgt_sizes)
|
397 |
+
|
398 |
+
new_images_list.append(new_images)
|
399 |
+
image_sizes_list.append(image_sizes)
|
400 |
+
tgt_sizes_list.append(tgt_sizes)
|
401 |
+
return MiniCPMOBatchFeature(
|
402 |
+
data={"pixel_values": new_images_list, "image_sizes": image_sizes_list, "tgt_sizes": tgt_sizes_list},
|
403 |
+
tensor_type=return_tensors,
|
404 |
+
)
|
405 |
+
|
406 |
+
|
407 |
+
AutoImageProcessor.register("MiniCPMVImageProcessor", MiniCPMVImageProcessor)
|
Chat/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Chat/model.safetensors.index.json
ADDED
@@ -0,0 +1,1167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 17349994056
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"apm.conv1.bias": "model-00004-of-00004.safetensors",
|
7 |
+
"apm.conv1.weight": "model-00004-of-00004.safetensors",
|
8 |
+
"apm.conv2.bias": "model-00004-of-00004.safetensors",
|
9 |
+
"apm.conv2.weight": "model-00004-of-00004.safetensors",
|
10 |
+
"apm.embed_positions.weight": "model-00004-of-00004.safetensors",
|
11 |
+
"apm.layer_norm.bias": "model-00004-of-00004.safetensors",
|
12 |
+
"apm.layer_norm.weight": "model-00004-of-00004.safetensors",
|
13 |
+
"apm.layers.0.fc1.bias": "model-00004-of-00004.safetensors",
|
14 |
+
"apm.layers.0.fc1.weight": "model-00004-of-00004.safetensors",
|
15 |
+
"apm.layers.0.fc2.bias": "model-00004-of-00004.safetensors",
|
16 |
+
"apm.layers.0.fc2.weight": "model-00004-of-00004.safetensors",
|
17 |
+
"apm.layers.0.final_layer_norm.bias": "model-00004-of-00004.safetensors",
|
18 |
+
"apm.layers.0.final_layer_norm.weight": "model-00004-of-00004.safetensors",
|
19 |
+
"apm.layers.0.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
20 |
+
"apm.layers.0.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
21 |
+
"apm.layers.0.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
22 |
+
"apm.layers.0.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
23 |
+
"apm.layers.0.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
24 |
+
"apm.layers.0.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
25 |
+
"apm.layers.0.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
26 |
+
"apm.layers.0.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
|
27 |
+
"apm.layers.0.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
|
28 |
+
"apm.layers.1.fc1.bias": "model-00004-of-00004.safetensors",
|
29 |
+
"apm.layers.1.fc1.weight": "model-00004-of-00004.safetensors",
|
30 |
+
"apm.layers.1.fc2.bias": "model-00004-of-00004.safetensors",
|
31 |
+
"apm.layers.1.fc2.weight": "model-00004-of-00004.safetensors",
|
32 |
+
"apm.layers.1.final_layer_norm.bias": "model-00004-of-00004.safetensors",
|
33 |
+
"apm.layers.1.final_layer_norm.weight": "model-00004-of-00004.safetensors",
|
34 |
+
"apm.layers.1.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
35 |
+
"apm.layers.1.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
36 |
+
"apm.layers.1.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
37 |
+
"apm.layers.1.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
38 |
+
"apm.layers.1.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
39 |
+
"apm.layers.1.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
40 |
+
"apm.layers.1.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
41 |
+
"apm.layers.1.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
|
42 |
+
"apm.layers.1.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
|
43 |
+
"apm.layers.10.fc1.bias": "model-00004-of-00004.safetensors",
|
44 |
+
"apm.layers.10.fc1.weight": "model-00004-of-00004.safetensors",
|
45 |
+
"apm.layers.10.fc2.bias": "model-00004-of-00004.safetensors",
|
46 |
+
"apm.layers.10.fc2.weight": "model-00004-of-00004.safetensors",
|
47 |
+
"apm.layers.10.final_layer_norm.bias": "model-00004-of-00004.safetensors",
|
48 |
+
"apm.layers.10.final_layer_norm.weight": "model-00004-of-00004.safetensors",
|
49 |
+
"apm.layers.10.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
50 |
+
"apm.layers.10.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
51 |
+
"apm.layers.10.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
52 |
+
"apm.layers.10.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
53 |
+
"apm.layers.10.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
54 |
+
"apm.layers.10.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
55 |
+
"apm.layers.10.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
56 |
+
"apm.layers.10.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
|
57 |
+
"apm.layers.10.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
|
58 |
+
"apm.layers.11.fc1.bias": "model-00004-of-00004.safetensors",
|
59 |
+
"apm.layers.11.fc1.weight": "model-00004-of-00004.safetensors",
|
60 |
+
"apm.layers.11.fc2.bias": "model-00004-of-00004.safetensors",
|
61 |
+
"apm.layers.11.fc2.weight": "model-00004-of-00004.safetensors",
|
62 |
+
"apm.layers.11.final_layer_norm.bias": "model-00004-of-00004.safetensors",
|
63 |
+
"apm.layers.11.final_layer_norm.weight": "model-00004-of-00004.safetensors",
|
64 |
+
"apm.layers.11.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
65 |
+
"apm.layers.11.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
66 |
+
"apm.layers.11.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
67 |
+
"apm.layers.11.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
68 |
+
"apm.layers.11.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
69 |
+
"apm.layers.11.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
70 |
+
"apm.layers.11.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
71 |
+
"apm.layers.11.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
|
72 |
+
"apm.layers.11.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
|
73 |
+
"apm.layers.12.fc1.bias": "model-00004-of-00004.safetensors",
|
74 |
+
"apm.layers.12.fc1.weight": "model-00004-of-00004.safetensors",
|
75 |
+
"apm.layers.12.fc2.bias": "model-00004-of-00004.safetensors",
|
76 |
+
"apm.layers.12.fc2.weight": "model-00004-of-00004.safetensors",
|
77 |
+
"apm.layers.12.final_layer_norm.bias": "model-00004-of-00004.safetensors",
|
78 |
+
"apm.layers.12.final_layer_norm.weight": "model-00004-of-00004.safetensors",
|
79 |
+
"apm.layers.12.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
80 |
+
"apm.layers.12.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
81 |
+
"apm.layers.12.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
82 |
+
"apm.layers.12.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
83 |
+
"apm.layers.12.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
84 |
+
"apm.layers.12.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
85 |
+
"apm.layers.12.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
86 |
+
"apm.layers.12.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
|
87 |
+
"apm.layers.12.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
|
88 |
+
"apm.layers.13.fc1.bias": "model-00004-of-00004.safetensors",
|
89 |
+
"apm.layers.13.fc1.weight": "model-00004-of-00004.safetensors",
|
90 |
+
"apm.layers.13.fc2.bias": "model-00004-of-00004.safetensors",
|
91 |
+
"apm.layers.13.fc2.weight": "model-00004-of-00004.safetensors",
|
92 |
+
"apm.layers.13.final_layer_norm.bias": "model-00004-of-00004.safetensors",
|
93 |
+
"apm.layers.13.final_layer_norm.weight": "model-00004-of-00004.safetensors",
|
94 |
+
"apm.layers.13.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
95 |
+
"apm.layers.13.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
96 |
+
"apm.layers.13.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
97 |
+
"apm.layers.13.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
98 |
+
"apm.layers.13.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
99 |
+
"apm.layers.13.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
100 |
+
"apm.layers.13.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
101 |
+
"apm.layers.13.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
|
102 |
+
"apm.layers.13.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
|
103 |
+
"apm.layers.14.fc1.bias": "model-00004-of-00004.safetensors",
|
104 |
+
"apm.layers.14.fc1.weight": "model-00004-of-00004.safetensors",
|
105 |
+
"apm.layers.14.fc2.bias": "model-00004-of-00004.safetensors",
|
106 |
+
"apm.layers.14.fc2.weight": "model-00004-of-00004.safetensors",
|
107 |
+
"apm.layers.14.final_layer_norm.bias": "model-00004-of-00004.safetensors",
|
108 |
+
"apm.layers.14.final_layer_norm.weight": "model-00004-of-00004.safetensors",
|
109 |
+
"apm.layers.14.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
110 |
+
"apm.layers.14.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
111 |
+
"apm.layers.14.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
112 |
+
"apm.layers.14.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
113 |
+
"apm.layers.14.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
114 |
+
"apm.layers.14.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
115 |
+
"apm.layers.14.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
116 |
+
"apm.layers.14.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
|
117 |
+
"apm.layers.14.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
|
118 |
+
"apm.layers.15.fc1.bias": "model-00004-of-00004.safetensors",
|
119 |
+
"apm.layers.15.fc1.weight": "model-00004-of-00004.safetensors",
|
120 |
+
"apm.layers.15.fc2.bias": "model-00004-of-00004.safetensors",
|
121 |
+
"apm.layers.15.fc2.weight": "model-00004-of-00004.safetensors",
|
122 |
+
"apm.layers.15.final_layer_norm.bias": "model-00004-of-00004.safetensors",
|
123 |
+
"apm.layers.15.final_layer_norm.weight": "model-00004-of-00004.safetensors",
|
124 |
+
"apm.layers.15.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
125 |
+
"apm.layers.15.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
126 |
+
"apm.layers.15.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
127 |
+
"apm.layers.15.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
128 |
+
"apm.layers.15.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
129 |
+
"apm.layers.15.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
130 |
+
"apm.layers.15.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
131 |
+
"apm.layers.15.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
|
132 |
+
"apm.layers.15.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
|
133 |
+
"apm.layers.16.fc1.bias": "model-00004-of-00004.safetensors",
|
134 |
+
"apm.layers.16.fc1.weight": "model-00004-of-00004.safetensors",
|
135 |
+
"apm.layers.16.fc2.bias": "model-00004-of-00004.safetensors",
|
136 |
+
"apm.layers.16.fc2.weight": "model-00004-of-00004.safetensors",
|
137 |
+
"apm.layers.16.final_layer_norm.bias": "model-00004-of-00004.safetensors",
|
138 |
+
"apm.layers.16.final_layer_norm.weight": "model-00004-of-00004.safetensors",
|
139 |
+
"apm.layers.16.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
140 |
+
"apm.layers.16.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
141 |
+
"apm.layers.16.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
142 |
+
"apm.layers.16.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
143 |
+
"apm.layers.16.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
144 |
+
"apm.layers.16.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
145 |
+
"apm.layers.16.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
146 |
+
"apm.layers.16.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
|
147 |
+
"apm.layers.16.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
|
148 |
+
"apm.layers.17.fc1.bias": "model-00004-of-00004.safetensors",
|
149 |
+
"apm.layers.17.fc1.weight": "model-00004-of-00004.safetensors",
|
150 |
+
"apm.layers.17.fc2.bias": "model-00004-of-00004.safetensors",
|
151 |
+
"apm.layers.17.fc2.weight": "model-00004-of-00004.safetensors",
|
152 |
+
"apm.layers.17.final_layer_norm.bias": "model-00004-of-00004.safetensors",
|
153 |
+
"apm.layers.17.final_layer_norm.weight": "model-00004-of-00004.safetensors",
|
154 |
+
"apm.layers.17.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
155 |
+
"apm.layers.17.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
156 |
+
"apm.layers.17.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
157 |
+
"apm.layers.17.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
158 |
+
"apm.layers.17.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
159 |
+
"apm.layers.17.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
160 |
+
"apm.layers.17.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
161 |
+
"apm.layers.17.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
|
162 |
+
"apm.layers.17.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
|
163 |
+
"apm.layers.18.fc1.bias": "model-00004-of-00004.safetensors",
|
164 |
+
"apm.layers.18.fc1.weight": "model-00004-of-00004.safetensors",
|
165 |
+
"apm.layers.18.fc2.bias": "model-00004-of-00004.safetensors",
|
166 |
+
"apm.layers.18.fc2.weight": "model-00004-of-00004.safetensors",
|
167 |
+
"apm.layers.18.final_layer_norm.bias": "model-00004-of-00004.safetensors",
|
168 |
+
"apm.layers.18.final_layer_norm.weight": "model-00004-of-00004.safetensors",
|
169 |
+
"apm.layers.18.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
170 |
+
"apm.layers.18.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
171 |
+
"apm.layers.18.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
172 |
+
"apm.layers.18.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
173 |
+
"apm.layers.18.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
174 |
+
"apm.layers.18.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
175 |
+
"apm.layers.18.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
176 |
+
"apm.layers.18.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
|
177 |
+
"apm.layers.18.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
|
178 |
+
"apm.layers.19.fc1.bias": "model-00004-of-00004.safetensors",
|
179 |
+
"apm.layers.19.fc1.weight": "model-00004-of-00004.safetensors",
|
180 |
+
"apm.layers.19.fc2.bias": "model-00004-of-00004.safetensors",
|
181 |
+
"apm.layers.19.fc2.weight": "model-00004-of-00004.safetensors",
|
182 |
+
"apm.layers.19.final_layer_norm.bias": "model-00004-of-00004.safetensors",
|
183 |
+
"apm.layers.19.final_layer_norm.weight": "model-00004-of-00004.safetensors",
|
184 |
+
"apm.layers.19.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
185 |
+
"apm.layers.19.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
186 |
+
"apm.layers.19.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
187 |
+
"apm.layers.19.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
188 |
+
"apm.layers.19.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
189 |
+
"apm.layers.19.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
190 |
+
"apm.layers.19.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
191 |
+
"apm.layers.19.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
|
192 |
+
"apm.layers.19.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
|
193 |
+
"apm.layers.2.fc1.bias": "model-00004-of-00004.safetensors",
|
194 |
+
"apm.layers.2.fc1.weight": "model-00004-of-00004.safetensors",
|
195 |
+
"apm.layers.2.fc2.bias": "model-00004-of-00004.safetensors",
|
196 |
+
"apm.layers.2.fc2.weight": "model-00004-of-00004.safetensors",
|
197 |
+
"apm.layers.2.final_layer_norm.bias": "model-00004-of-00004.safetensors",
|
198 |
+
"apm.layers.2.final_layer_norm.weight": "model-00004-of-00004.safetensors",
|
199 |
+
"apm.layers.2.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
200 |
+
"apm.layers.2.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
201 |
+
"apm.layers.2.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
202 |
+
"apm.layers.2.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
203 |
+
"apm.layers.2.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
204 |
+
"apm.layers.2.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
205 |
+
"apm.layers.2.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
206 |
+
"apm.layers.2.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
|
207 |
+
"apm.layers.2.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
|
208 |
+
"apm.layers.20.fc1.bias": "model-00004-of-00004.safetensors",
|
209 |
+
"apm.layers.20.fc1.weight": "model-00004-of-00004.safetensors",
|
210 |
+
"apm.layers.20.fc2.bias": "model-00004-of-00004.safetensors",
|
211 |
+
"apm.layers.20.fc2.weight": "model-00004-of-00004.safetensors",
|
212 |
+
"apm.layers.20.final_layer_norm.bias": "model-00004-of-00004.safetensors",
|
213 |
+
"apm.layers.20.final_layer_norm.weight": "model-00004-of-00004.safetensors",
|
214 |
+
"apm.layers.20.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
215 |
+
"apm.layers.20.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
216 |
+
"apm.layers.20.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
217 |
+
"apm.layers.20.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
218 |
+
"apm.layers.20.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
219 |
+
"apm.layers.20.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
220 |
+
"apm.layers.20.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
221 |
+
"apm.layers.20.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
|
222 |
+
"apm.layers.20.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
|
223 |
+
"apm.layers.21.fc1.bias": "model-00004-of-00004.safetensors",
|
224 |
+
"apm.layers.21.fc1.weight": "model-00004-of-00004.safetensors",
|
225 |
+
"apm.layers.21.fc2.bias": "model-00004-of-00004.safetensors",
|
226 |
+
"apm.layers.21.fc2.weight": "model-00004-of-00004.safetensors",
|
227 |
+
"apm.layers.21.final_layer_norm.bias": "model-00004-of-00004.safetensors",
|
228 |
+
"apm.layers.21.final_layer_norm.weight": "model-00004-of-00004.safetensors",
|
229 |
+
"apm.layers.21.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
230 |
+
"apm.layers.21.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
231 |
+
"apm.layers.21.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
232 |
+
"apm.layers.21.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
233 |
+
"apm.layers.21.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
234 |
+
"apm.layers.21.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
235 |
+
"apm.layers.21.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
236 |
+
"apm.layers.21.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
|
237 |
+
"apm.layers.21.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
|
238 |
+
"apm.layers.22.fc1.bias": "model-00004-of-00004.safetensors",
|
239 |
+
"apm.layers.22.fc1.weight": "model-00004-of-00004.safetensors",
|
240 |
+
"apm.layers.22.fc2.bias": "model-00004-of-00004.safetensors",
|
241 |
+
"apm.layers.22.fc2.weight": "model-00004-of-00004.safetensors",
|
242 |
+
"apm.layers.22.final_layer_norm.bias": "model-00004-of-00004.safetensors",
|
243 |
+
"apm.layers.22.final_layer_norm.weight": "model-00004-of-00004.safetensors",
|
244 |
+
"apm.layers.22.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
245 |
+
"apm.layers.22.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
246 |
+
"apm.layers.22.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
247 |
+
"apm.layers.22.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
248 |
+
"apm.layers.22.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
249 |
+
"apm.layers.22.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
250 |
+
"apm.layers.22.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
251 |
+
"apm.layers.22.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
|
252 |
+
"apm.layers.22.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
|
253 |
+
"apm.layers.23.fc1.bias": "model-00004-of-00004.safetensors",
|
254 |
+
"apm.layers.23.fc1.weight": "model-00004-of-00004.safetensors",
|
255 |
+
"apm.layers.23.fc2.bias": "model-00004-of-00004.safetensors",
|
256 |
+
"apm.layers.23.fc2.weight": "model-00004-of-00004.safetensors",
|
257 |
+
"apm.layers.23.final_layer_norm.bias": "model-00004-of-00004.safetensors",
|
258 |
+
"apm.layers.23.final_layer_norm.weight": "model-00004-of-00004.safetensors",
|
259 |
+
"apm.layers.23.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
260 |
+
"apm.layers.23.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
261 |
+
"apm.layers.23.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
262 |
+
"apm.layers.23.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
263 |
+
"apm.layers.23.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
264 |
+
"apm.layers.23.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
265 |
+
"apm.layers.23.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
266 |
+
"apm.layers.23.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
|
267 |
+
"apm.layers.23.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
|
268 |
+
"apm.layers.3.fc1.bias": "model-00004-of-00004.safetensors",
|
269 |
+
"apm.layers.3.fc1.weight": "model-00004-of-00004.safetensors",
|
270 |
+
"apm.layers.3.fc2.bias": "model-00004-of-00004.safetensors",
|
271 |
+
"apm.layers.3.fc2.weight": "model-00004-of-00004.safetensors",
|
272 |
+
"apm.layers.3.final_layer_norm.bias": "model-00004-of-00004.safetensors",
|
273 |
+
"apm.layers.3.final_layer_norm.weight": "model-00004-of-00004.safetensors",
|
274 |
+
"apm.layers.3.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
275 |
+
"apm.layers.3.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
276 |
+
"apm.layers.3.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
277 |
+
"apm.layers.3.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
278 |
+
"apm.layers.3.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
279 |
+
"apm.layers.3.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
280 |
+
"apm.layers.3.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
281 |
+
"apm.layers.3.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
|
282 |
+
"apm.layers.3.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
|
283 |
+
"apm.layers.4.fc1.bias": "model-00004-of-00004.safetensors",
|
284 |
+
"apm.layers.4.fc1.weight": "model-00004-of-00004.safetensors",
|
285 |
+
"apm.layers.4.fc2.bias": "model-00004-of-00004.safetensors",
|
286 |
+
"apm.layers.4.fc2.weight": "model-00004-of-00004.safetensors",
|
287 |
+
"apm.layers.4.final_layer_norm.bias": "model-00004-of-00004.safetensors",
|
288 |
+
"apm.layers.4.final_layer_norm.weight": "model-00004-of-00004.safetensors",
|
289 |
+
"apm.layers.4.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
290 |
+
"apm.layers.4.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
291 |
+
"apm.layers.4.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
292 |
+
"apm.layers.4.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
293 |
+
"apm.layers.4.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
294 |
+
"apm.layers.4.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
295 |
+
"apm.layers.4.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
296 |
+
"apm.layers.4.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
|
297 |
+
"apm.layers.4.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
|
298 |
+
"apm.layers.5.fc1.bias": "model-00004-of-00004.safetensors",
|
299 |
+
"apm.layers.5.fc1.weight": "model-00004-of-00004.safetensors",
|
300 |
+
"apm.layers.5.fc2.bias": "model-00004-of-00004.safetensors",
|
301 |
+
"apm.layers.5.fc2.weight": "model-00004-of-00004.safetensors",
|
302 |
+
"apm.layers.5.final_layer_norm.bias": "model-00004-of-00004.safetensors",
|
303 |
+
"apm.layers.5.final_layer_norm.weight": "model-00004-of-00004.safetensors",
|
304 |
+
"apm.layers.5.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
305 |
+
"apm.layers.5.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
306 |
+
"apm.layers.5.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
307 |
+
"apm.layers.5.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
308 |
+
"apm.layers.5.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
309 |
+
"apm.layers.5.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
310 |
+
"apm.layers.5.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
311 |
+
"apm.layers.5.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
|
312 |
+
"apm.layers.5.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
|
313 |
+
"apm.layers.6.fc1.bias": "model-00004-of-00004.safetensors",
|
314 |
+
"apm.layers.6.fc1.weight": "model-00004-of-00004.safetensors",
|
315 |
+
"apm.layers.6.fc2.bias": "model-00004-of-00004.safetensors",
|
316 |
+
"apm.layers.6.fc2.weight": "model-00004-of-00004.safetensors",
|
317 |
+
"apm.layers.6.final_layer_norm.bias": "model-00004-of-00004.safetensors",
|
318 |
+
"apm.layers.6.final_layer_norm.weight": "model-00004-of-00004.safetensors",
|
319 |
+
"apm.layers.6.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
320 |
+
"apm.layers.6.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
321 |
+
"apm.layers.6.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
322 |
+
"apm.layers.6.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
323 |
+
"apm.layers.6.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
324 |
+
"apm.layers.6.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
325 |
+
"apm.layers.6.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
326 |
+
"apm.layers.6.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
|
327 |
+
"apm.layers.6.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
|
328 |
+
"apm.layers.7.fc1.bias": "model-00004-of-00004.safetensors",
|
329 |
+
"apm.layers.7.fc1.weight": "model-00004-of-00004.safetensors",
|
330 |
+
"apm.layers.7.fc2.bias": "model-00004-of-00004.safetensors",
|
331 |
+
"apm.layers.7.fc2.weight": "model-00004-of-00004.safetensors",
|
332 |
+
"apm.layers.7.final_layer_norm.bias": "model-00004-of-00004.safetensors",
|
333 |
+
"apm.layers.7.final_layer_norm.weight": "model-00004-of-00004.safetensors",
|
334 |
+
"apm.layers.7.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
335 |
+
"apm.layers.7.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
336 |
+
"apm.layers.7.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
337 |
+
"apm.layers.7.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
338 |
+
"apm.layers.7.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
339 |
+
"apm.layers.7.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
340 |
+
"apm.layers.7.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
341 |
+
"apm.layers.7.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
|
342 |
+
"apm.layers.7.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
|
343 |
+
"apm.layers.8.fc1.bias": "model-00004-of-00004.safetensors",
|
344 |
+
"apm.layers.8.fc1.weight": "model-00004-of-00004.safetensors",
|
345 |
+
"apm.layers.8.fc2.bias": "model-00004-of-00004.safetensors",
|
346 |
+
"apm.layers.8.fc2.weight": "model-00004-of-00004.safetensors",
|
347 |
+
"apm.layers.8.final_layer_norm.bias": "model-00004-of-00004.safetensors",
|
348 |
+
"apm.layers.8.final_layer_norm.weight": "model-00004-of-00004.safetensors",
|
349 |
+
"apm.layers.8.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
350 |
+
"apm.layers.8.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
351 |
+
"apm.layers.8.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
352 |
+
"apm.layers.8.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
353 |
+
"apm.layers.8.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
354 |
+
"apm.layers.8.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
355 |
+
"apm.layers.8.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
356 |
+
"apm.layers.8.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
|
357 |
+
"apm.layers.8.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
|
358 |
+
"apm.layers.9.fc1.bias": "model-00004-of-00004.safetensors",
|
359 |
+
"apm.layers.9.fc1.weight": "model-00004-of-00004.safetensors",
|
360 |
+
"apm.layers.9.fc2.bias": "model-00004-of-00004.safetensors",
|
361 |
+
"apm.layers.9.fc2.weight": "model-00004-of-00004.safetensors",
|
362 |
+
"apm.layers.9.final_layer_norm.bias": "model-00004-of-00004.safetensors",
|
363 |
+
"apm.layers.9.final_layer_norm.weight": "model-00004-of-00004.safetensors",
|
364 |
+
"apm.layers.9.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
365 |
+
"apm.layers.9.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
366 |
+
"apm.layers.9.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
367 |
+
"apm.layers.9.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
368 |
+
"apm.layers.9.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
369 |
+
"apm.layers.9.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
370 |
+
"apm.layers.9.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
371 |
+
"apm.layers.9.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
|
372 |
+
"apm.layers.9.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
|
373 |
+
"audio_projection_layer.linear1.bias": "model-00004-of-00004.safetensors",
|
374 |
+
"audio_projection_layer.linear1.weight": "model-00004-of-00004.safetensors",
|
375 |
+
"audio_projection_layer.linear2.bias": "model-00004-of-00004.safetensors",
|
376 |
+
"audio_projection_layer.linear2.weight": "model-00004-of-00004.safetensors",
|
377 |
+
"llm.lm_head.weight": "model-00004-of-00004.safetensors",
|
378 |
+
"llm.model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
379 |
+
"llm.model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
380 |
+
"llm.model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
381 |
+
"llm.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
382 |
+
"llm.model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
383 |
+
"llm.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
384 |
+
"llm.model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
385 |
+
"llm.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
386 |
+
"llm.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
387 |
+
"llm.model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
388 |
+
"llm.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
389 |
+
"llm.model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
390 |
+
"llm.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
391 |
+
"llm.model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
392 |
+
"llm.model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
393 |
+
"llm.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
394 |
+
"llm.model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
395 |
+
"llm.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
396 |
+
"llm.model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
397 |
+
"llm.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
398 |
+
"llm.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
399 |
+
"llm.model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
400 |
+
"llm.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
401 |
+
"llm.model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
402 |
+
"llm.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
403 |
+
"llm.model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
404 |
+
"llm.model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
405 |
+
"llm.model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
406 |
+
"llm.model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
407 |
+
"llm.model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
408 |
+
"llm.model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
409 |
+
"llm.model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
410 |
+
"llm.model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
411 |
+
"llm.model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
412 |
+
"llm.model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
413 |
+
"llm.model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
414 |
+
"llm.model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
415 |
+
"llm.model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
416 |
+
"llm.model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
417 |
+
"llm.model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
418 |
+
"llm.model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
419 |
+
"llm.model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
420 |
+
"llm.model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
421 |
+
"llm.model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
422 |
+
"llm.model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
423 |
+
"llm.model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
424 |
+
"llm.model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
425 |
+
"llm.model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
426 |
+
"llm.model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
427 |
+
"llm.model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
428 |
+
"llm.model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
429 |
+
"llm.model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
430 |
+
"llm.model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
431 |
+
"llm.model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
432 |
+
"llm.model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
433 |
+
"llm.model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
434 |
+
"llm.model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
435 |
+
"llm.model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
436 |
+
"llm.model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
437 |
+
"llm.model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
438 |
+
"llm.model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
439 |
+
"llm.model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
440 |
+
"llm.model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
441 |
+
"llm.model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
442 |
+
"llm.model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
443 |
+
"llm.model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
444 |
+
"llm.model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
445 |
+
"llm.model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
446 |
+
"llm.model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
447 |
+
"llm.model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
448 |
+
"llm.model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
449 |
+
"llm.model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
450 |
+
"llm.model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
451 |
+
"llm.model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
452 |
+
"llm.model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
453 |
+
"llm.model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
454 |
+
"llm.model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
455 |
+
"llm.model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
456 |
+
"llm.model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
457 |
+
"llm.model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
458 |
+
"llm.model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
459 |
+
"llm.model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
460 |
+
"llm.model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
461 |
+
"llm.model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
462 |
+
"llm.model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
463 |
+
"llm.model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
464 |
+
"llm.model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
465 |
+
"llm.model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
466 |
+
"llm.model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
467 |
+
"llm.model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
468 |
+
"llm.model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
469 |
+
"llm.model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
470 |
+
"llm.model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
471 |
+
"llm.model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
472 |
+
"llm.model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
473 |
+
"llm.model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
474 |
+
"llm.model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
475 |
+
"llm.model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
476 |
+
"llm.model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
477 |
+
"llm.model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
478 |
+
"llm.model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
479 |
+
"llm.model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
480 |
+
"llm.model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
481 |
+
"llm.model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
482 |
+
"llm.model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
483 |
+
"llm.model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
484 |
+
"llm.model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
485 |
+
"llm.model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
486 |
+
"llm.model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
487 |
+
"llm.model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
488 |
+
"llm.model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
489 |
+
"llm.model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
490 |
+
"llm.model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
491 |
+
"llm.model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
492 |
+
"llm.model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
493 |
+
"llm.model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
494 |
+
"llm.model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
495 |
+
"llm.model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
496 |
+
"llm.model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
497 |
+
"llm.model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
498 |
+
"llm.model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
499 |
+
"llm.model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
500 |
+
"llm.model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
501 |
+
"llm.model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
502 |
+
"llm.model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
503 |
+
"llm.model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
504 |
+
"llm.model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
505 |
+
"llm.model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
506 |
+
"llm.model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
507 |
+
"llm.model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
508 |
+
"llm.model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
509 |
+
"llm.model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
510 |
+
"llm.model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
511 |
+
"llm.model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
512 |
+
"llm.model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
513 |
+
"llm.model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
514 |
+
"llm.model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
515 |
+
"llm.model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
516 |
+
"llm.model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
517 |
+
"llm.model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
518 |
+
"llm.model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
519 |
+
"llm.model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
520 |
+
"llm.model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
521 |
+
"llm.model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
522 |
+
"llm.model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
523 |
+
"llm.model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
524 |
+
"llm.model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
525 |
+
"llm.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
526 |
+
"llm.model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
527 |
+
"llm.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
528 |
+
"llm.model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
529 |
+
"llm.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
530 |
+
"llm.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
531 |
+
"llm.model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
532 |
+
"llm.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
533 |
+
"llm.model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
534 |
+
"llm.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
535 |
+
"llm.model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
536 |
+
"llm.model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
537 |
+
"llm.model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
538 |
+
"llm.model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
539 |
+
"llm.model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
540 |
+
"llm.model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
541 |
+
"llm.model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
542 |
+
"llm.model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
543 |
+
"llm.model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
544 |
+
"llm.model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
545 |
+
"llm.model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
546 |
+
"llm.model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
547 |
+
"llm.model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
548 |
+
"llm.model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
549 |
+
"llm.model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
550 |
+
"llm.model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
551 |
+
"llm.model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
552 |
+
"llm.model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
553 |
+
"llm.model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
554 |
+
"llm.model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
555 |
+
"llm.model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
556 |
+
"llm.model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
557 |
+
"llm.model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
558 |
+
"llm.model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
559 |
+
"llm.model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
560 |
+
"llm.model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
561 |
+
"llm.model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
562 |
+
"llm.model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
563 |
+
"llm.model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
564 |
+
"llm.model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
565 |
+
"llm.model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
566 |
+
"llm.model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
567 |
+
"llm.model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
568 |
+
"llm.model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
569 |
+
"llm.model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
570 |
+
"llm.model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
571 |
+
"llm.model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
572 |
+
"llm.model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
573 |
+
"llm.model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
574 |
+
"llm.model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
575 |
+
"llm.model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
576 |
+
"llm.model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
577 |
+
"llm.model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
578 |
+
"llm.model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
579 |
+
"llm.model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
580 |
+
"llm.model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
581 |
+
"llm.model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
582 |
+
"llm.model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
583 |
+
"llm.model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
584 |
+
"llm.model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
585 |
+
"llm.model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
586 |
+
"llm.model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
587 |
+
"llm.model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
588 |
+
"llm.model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
589 |
+
"llm.model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
590 |
+
"llm.model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
591 |
+
"llm.model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
592 |
+
"llm.model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
593 |
+
"llm.model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
594 |
+
"llm.model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
595 |
+
"llm.model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
596 |
+
"llm.model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
597 |
+
"llm.model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
598 |
+
"llm.model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
599 |
+
"llm.model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
600 |
+
"llm.model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
601 |
+
"llm.model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
602 |
+
"llm.model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
603 |
+
"llm.model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
604 |
+
"llm.model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
605 |
+
"llm.model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
606 |
+
"llm.model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
607 |
+
"llm.model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
608 |
+
"llm.model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
609 |
+
"llm.model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
610 |
+
"llm.model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
611 |
+
"llm.model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
612 |
+
"llm.model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
613 |
+
"llm.model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
614 |
+
"llm.model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
615 |
+
"llm.model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
616 |
+
"llm.model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
617 |
+
"llm.model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
618 |
+
"llm.model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
619 |
+
"llm.model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
620 |
+
"llm.model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
621 |
+
"llm.model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
622 |
+
"llm.model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
623 |
+
"llm.model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
624 |
+
"llm.model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
625 |
+
"llm.model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
626 |
+
"llm.model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
627 |
+
"llm.model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
628 |
+
"llm.model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
629 |
+
"llm.model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
630 |
+
"llm.model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
631 |
+
"llm.model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
632 |
+
"llm.model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
633 |
+
"llm.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
634 |
+
"llm.model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
635 |
+
"llm.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
636 |
+
"llm.model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
637 |
+
"llm.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
638 |
+
"llm.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
639 |
+
"llm.model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
640 |
+
"llm.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
641 |
+
"llm.model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
642 |
+
"llm.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
643 |
+
"llm.model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
644 |
+
"llm.model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
645 |
+
"llm.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
646 |
+
"llm.model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
647 |
+
"llm.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
648 |
+
"llm.model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
649 |
+
"llm.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
650 |
+
"llm.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
651 |
+
"llm.model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
652 |
+
"llm.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
653 |
+
"llm.model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
654 |
+
"llm.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
655 |
+
"llm.model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
656 |
+
"llm.model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
657 |
+
"llm.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
658 |
+
"llm.model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
659 |
+
"llm.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
660 |
+
"llm.model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
661 |
+
"llm.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
662 |
+
"llm.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
663 |
+
"llm.model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
664 |
+
"llm.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
665 |
+
"llm.model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
666 |
+
"llm.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
667 |
+
"llm.model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
668 |
+
"llm.model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
669 |
+
"llm.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
670 |
+
"llm.model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
671 |
+
"llm.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
672 |
+
"llm.model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
673 |
+
"llm.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
674 |
+
"llm.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
675 |
+
"llm.model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
676 |
+
"llm.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
677 |
+
"llm.model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
678 |
+
"llm.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
679 |
+
"llm.model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
680 |
+
"llm.model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
681 |
+
"llm.model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
682 |
+
"llm.model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
683 |
+
"llm.model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
684 |
+
"llm.model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
685 |
+
"llm.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
686 |
+
"llm.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
687 |
+
"llm.model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
688 |
+
"llm.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
689 |
+
"llm.model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
690 |
+
"llm.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
691 |
+
"llm.model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
692 |
+
"llm.model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
693 |
+
"llm.model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
694 |
+
"llm.model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
695 |
+
"llm.model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
696 |
+
"llm.model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
697 |
+
"llm.model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
698 |
+
"llm.model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
699 |
+
"llm.model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
700 |
+
"llm.model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
701 |
+
"llm.model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
702 |
+
"llm.model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
703 |
+
"llm.model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
704 |
+
"llm.model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
705 |
+
"llm.model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
706 |
+
"llm.model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
707 |
+
"llm.model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
708 |
+
"llm.model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
709 |
+
"llm.model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
710 |
+
"llm.model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
711 |
+
"llm.model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
712 |
+
"llm.model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
713 |
+
"llm.model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
714 |
+
"llm.model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
715 |
+
"llm.model.norm.weight": "model-00003-of-00004.safetensors",
|
716 |
+
"resampler.attn.in_proj_bias": "model-00004-of-00004.safetensors",
|
717 |
+
"resampler.attn.in_proj_weight": "model-00004-of-00004.safetensors",
|
718 |
+
"resampler.attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
719 |
+
"resampler.attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
720 |
+
"resampler.kv_proj.weight": "model-00004-of-00004.safetensors",
|
721 |
+
"resampler.ln_kv.bias": "model-00004-of-00004.safetensors",
|
722 |
+
"resampler.ln_kv.weight": "model-00004-of-00004.safetensors",
|
723 |
+
"resampler.ln_post.bias": "model-00004-of-00004.safetensors",
|
724 |
+
"resampler.ln_post.weight": "model-00004-of-00004.safetensors",
|
725 |
+
"resampler.ln_q.bias": "model-00004-of-00004.safetensors",
|
726 |
+
"resampler.ln_q.weight": "model-00004-of-00004.safetensors",
|
727 |
+
"resampler.proj": "model-00004-of-00004.safetensors",
|
728 |
+
"resampler.query": "model-00004-of-00004.safetensors",
|
729 |
+
"vpm.embeddings.patch_embedding.bias": "model-00004-of-00004.safetensors",
|
730 |
+
"vpm.embeddings.patch_embedding.weight": "model-00004-of-00004.safetensors",
|
731 |
+
"vpm.embeddings.position_embedding.weight": "model-00004-of-00004.safetensors",
|
732 |
+
"vpm.encoder.layers.0.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
733 |
+
"vpm.encoder.layers.0.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
734 |
+
"vpm.encoder.layers.0.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
735 |
+
"vpm.encoder.layers.0.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
736 |
+
"vpm.encoder.layers.0.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
737 |
+
"vpm.encoder.layers.0.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
738 |
+
"vpm.encoder.layers.0.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
739 |
+
"vpm.encoder.layers.0.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
740 |
+
"vpm.encoder.layers.0.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
741 |
+
"vpm.encoder.layers.0.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
742 |
+
"vpm.encoder.layers.0.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
743 |
+
"vpm.encoder.layers.0.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
744 |
+
"vpm.encoder.layers.0.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
745 |
+
"vpm.encoder.layers.0.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
746 |
+
"vpm.encoder.layers.0.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
747 |
+
"vpm.encoder.layers.0.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
748 |
+
"vpm.encoder.layers.1.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
749 |
+
"vpm.encoder.layers.1.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
750 |
+
"vpm.encoder.layers.1.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
751 |
+
"vpm.encoder.layers.1.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
752 |
+
"vpm.encoder.layers.1.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
753 |
+
"vpm.encoder.layers.1.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
754 |
+
"vpm.encoder.layers.1.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
755 |
+
"vpm.encoder.layers.1.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
756 |
+
"vpm.encoder.layers.1.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
757 |
+
"vpm.encoder.layers.1.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
758 |
+
"vpm.encoder.layers.1.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
759 |
+
"vpm.encoder.layers.1.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
760 |
+
"vpm.encoder.layers.1.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
761 |
+
"vpm.encoder.layers.1.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
762 |
+
"vpm.encoder.layers.1.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
763 |
+
"vpm.encoder.layers.1.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
764 |
+
"vpm.encoder.layers.10.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
765 |
+
"vpm.encoder.layers.10.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
766 |
+
"vpm.encoder.layers.10.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
767 |
+
"vpm.encoder.layers.10.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
768 |
+
"vpm.encoder.layers.10.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
769 |
+
"vpm.encoder.layers.10.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
770 |
+
"vpm.encoder.layers.10.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
771 |
+
"vpm.encoder.layers.10.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
772 |
+
"vpm.encoder.layers.10.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
773 |
+
"vpm.encoder.layers.10.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
774 |
+
"vpm.encoder.layers.10.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
775 |
+
"vpm.encoder.layers.10.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
776 |
+
"vpm.encoder.layers.10.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
777 |
+
"vpm.encoder.layers.10.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
778 |
+
"vpm.encoder.layers.10.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
779 |
+
"vpm.encoder.layers.10.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
780 |
+
"vpm.encoder.layers.11.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
781 |
+
"vpm.encoder.layers.11.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
782 |
+
"vpm.encoder.layers.11.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
783 |
+
"vpm.encoder.layers.11.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
784 |
+
"vpm.encoder.layers.11.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
785 |
+
"vpm.encoder.layers.11.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
786 |
+
"vpm.encoder.layers.11.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
787 |
+
"vpm.encoder.layers.11.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
788 |
+
"vpm.encoder.layers.11.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
789 |
+
"vpm.encoder.layers.11.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
790 |
+
"vpm.encoder.layers.11.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
791 |
+
"vpm.encoder.layers.11.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
792 |
+
"vpm.encoder.layers.11.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
793 |
+
"vpm.encoder.layers.11.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
794 |
+
"vpm.encoder.layers.11.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
795 |
+
"vpm.encoder.layers.11.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
796 |
+
"vpm.encoder.layers.12.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
797 |
+
"vpm.encoder.layers.12.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
798 |
+
"vpm.encoder.layers.12.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
799 |
+
"vpm.encoder.layers.12.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
800 |
+
"vpm.encoder.layers.12.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
801 |
+
"vpm.encoder.layers.12.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
802 |
+
"vpm.encoder.layers.12.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
803 |
+
"vpm.encoder.layers.12.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
804 |
+
"vpm.encoder.layers.12.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
805 |
+
"vpm.encoder.layers.12.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
806 |
+
"vpm.encoder.layers.12.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
807 |
+
"vpm.encoder.layers.12.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
808 |
+
"vpm.encoder.layers.12.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
809 |
+
"vpm.encoder.layers.12.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
810 |
+
"vpm.encoder.layers.12.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
811 |
+
"vpm.encoder.layers.12.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
812 |
+
"vpm.encoder.layers.13.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
813 |
+
"vpm.encoder.layers.13.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
814 |
+
"vpm.encoder.layers.13.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
815 |
+
"vpm.encoder.layers.13.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
816 |
+
"vpm.encoder.layers.13.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
817 |
+
"vpm.encoder.layers.13.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
818 |
+
"vpm.encoder.layers.13.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
819 |
+
"vpm.encoder.layers.13.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
820 |
+
"vpm.encoder.layers.13.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
821 |
+
"vpm.encoder.layers.13.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
822 |
+
"vpm.encoder.layers.13.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
823 |
+
"vpm.encoder.layers.13.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
824 |
+
"vpm.encoder.layers.13.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
825 |
+
"vpm.encoder.layers.13.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
826 |
+
"vpm.encoder.layers.13.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
827 |
+
"vpm.encoder.layers.13.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
828 |
+
"vpm.encoder.layers.14.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
829 |
+
"vpm.encoder.layers.14.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
830 |
+
"vpm.encoder.layers.14.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
831 |
+
"vpm.encoder.layers.14.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
832 |
+
"vpm.encoder.layers.14.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
833 |
+
"vpm.encoder.layers.14.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
834 |
+
"vpm.encoder.layers.14.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
835 |
+
"vpm.encoder.layers.14.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
836 |
+
"vpm.encoder.layers.14.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
837 |
+
"vpm.encoder.layers.14.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
838 |
+
"vpm.encoder.layers.14.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
839 |
+
"vpm.encoder.layers.14.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
840 |
+
"vpm.encoder.layers.14.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
841 |
+
"vpm.encoder.layers.14.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
842 |
+
"vpm.encoder.layers.14.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
843 |
+
"vpm.encoder.layers.14.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
844 |
+
"vpm.encoder.layers.15.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
845 |
+
"vpm.encoder.layers.15.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
846 |
+
"vpm.encoder.layers.15.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
847 |
+
"vpm.encoder.layers.15.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
848 |
+
"vpm.encoder.layers.15.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
849 |
+
"vpm.encoder.layers.15.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
850 |
+
"vpm.encoder.layers.15.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
851 |
+
"vpm.encoder.layers.15.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
852 |
+
"vpm.encoder.layers.15.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
853 |
+
"vpm.encoder.layers.15.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
854 |
+
"vpm.encoder.layers.15.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
855 |
+
"vpm.encoder.layers.15.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
856 |
+
"vpm.encoder.layers.15.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
857 |
+
"vpm.encoder.layers.15.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
858 |
+
"vpm.encoder.layers.15.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
859 |
+
"vpm.encoder.layers.15.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
860 |
+
"vpm.encoder.layers.16.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
861 |
+
"vpm.encoder.layers.16.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
862 |
+
"vpm.encoder.layers.16.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
863 |
+
"vpm.encoder.layers.16.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
864 |
+
"vpm.encoder.layers.16.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
865 |
+
"vpm.encoder.layers.16.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
866 |
+
"vpm.encoder.layers.16.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
867 |
+
"vpm.encoder.layers.16.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
868 |
+
"vpm.encoder.layers.16.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
869 |
+
"vpm.encoder.layers.16.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
870 |
+
"vpm.encoder.layers.16.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
871 |
+
"vpm.encoder.layers.16.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
872 |
+
"vpm.encoder.layers.16.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
873 |
+
"vpm.encoder.layers.16.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
874 |
+
"vpm.encoder.layers.16.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
875 |
+
"vpm.encoder.layers.16.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
876 |
+
"vpm.encoder.layers.17.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
877 |
+
"vpm.encoder.layers.17.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
878 |
+
"vpm.encoder.layers.17.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
879 |
+
"vpm.encoder.layers.17.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
880 |
+
"vpm.encoder.layers.17.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
881 |
+
"vpm.encoder.layers.17.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
882 |
+
"vpm.encoder.layers.17.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
883 |
+
"vpm.encoder.layers.17.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
884 |
+
"vpm.encoder.layers.17.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
885 |
+
"vpm.encoder.layers.17.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
886 |
+
"vpm.encoder.layers.17.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
887 |
+
"vpm.encoder.layers.17.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
888 |
+
"vpm.encoder.layers.17.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
889 |
+
"vpm.encoder.layers.17.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
890 |
+
"vpm.encoder.layers.17.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
891 |
+
"vpm.encoder.layers.17.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
892 |
+
"vpm.encoder.layers.18.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
893 |
+
"vpm.encoder.layers.18.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
894 |
+
"vpm.encoder.layers.18.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
895 |
+
"vpm.encoder.layers.18.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
896 |
+
"vpm.encoder.layers.18.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
897 |
+
"vpm.encoder.layers.18.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
898 |
+
"vpm.encoder.layers.18.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
899 |
+
"vpm.encoder.layers.18.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
900 |
+
"vpm.encoder.layers.18.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
901 |
+
"vpm.encoder.layers.18.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
902 |
+
"vpm.encoder.layers.18.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
903 |
+
"vpm.encoder.layers.18.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
904 |
+
"vpm.encoder.layers.18.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
905 |
+
"vpm.encoder.layers.18.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
906 |
+
"vpm.encoder.layers.18.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
907 |
+
"vpm.encoder.layers.18.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
908 |
+
"vpm.encoder.layers.19.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
909 |
+
"vpm.encoder.layers.19.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
910 |
+
"vpm.encoder.layers.19.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
911 |
+
"vpm.encoder.layers.19.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
912 |
+
"vpm.encoder.layers.19.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
913 |
+
"vpm.encoder.layers.19.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
914 |
+
"vpm.encoder.layers.19.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
915 |
+
"vpm.encoder.layers.19.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
916 |
+
"vpm.encoder.layers.19.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
917 |
+
"vpm.encoder.layers.19.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
918 |
+
"vpm.encoder.layers.19.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
919 |
+
"vpm.encoder.layers.19.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
920 |
+
"vpm.encoder.layers.19.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
921 |
+
"vpm.encoder.layers.19.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
922 |
+
"vpm.encoder.layers.19.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
923 |
+
"vpm.encoder.layers.19.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
924 |
+
"vpm.encoder.layers.2.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
925 |
+
"vpm.encoder.layers.2.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
926 |
+
"vpm.encoder.layers.2.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
927 |
+
"vpm.encoder.layers.2.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
928 |
+
"vpm.encoder.layers.2.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
929 |
+
"vpm.encoder.layers.2.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
930 |
+
"vpm.encoder.layers.2.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
931 |
+
"vpm.encoder.layers.2.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
932 |
+
"vpm.encoder.layers.2.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
933 |
+
"vpm.encoder.layers.2.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
934 |
+
"vpm.encoder.layers.2.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
935 |
+
"vpm.encoder.layers.2.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
936 |
+
"vpm.encoder.layers.2.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
937 |
+
"vpm.encoder.layers.2.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
938 |
+
"vpm.encoder.layers.2.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
939 |
+
"vpm.encoder.layers.2.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
940 |
+
"vpm.encoder.layers.20.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
941 |
+
"vpm.encoder.layers.20.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
942 |
+
"vpm.encoder.layers.20.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
943 |
+
"vpm.encoder.layers.20.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
944 |
+
"vpm.encoder.layers.20.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
945 |
+
"vpm.encoder.layers.20.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
946 |
+
"vpm.encoder.layers.20.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
947 |
+
"vpm.encoder.layers.20.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
948 |
+
"vpm.encoder.layers.20.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
949 |
+
"vpm.encoder.layers.20.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
950 |
+
"vpm.encoder.layers.20.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
951 |
+
"vpm.encoder.layers.20.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
952 |
+
"vpm.encoder.layers.20.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
953 |
+
"vpm.encoder.layers.20.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
954 |
+
"vpm.encoder.layers.20.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
955 |
+
"vpm.encoder.layers.20.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
956 |
+
"vpm.encoder.layers.21.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
957 |
+
"vpm.encoder.layers.21.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
958 |
+
"vpm.encoder.layers.21.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
959 |
+
"vpm.encoder.layers.21.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
960 |
+
"vpm.encoder.layers.21.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
961 |
+
"vpm.encoder.layers.21.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
962 |
+
"vpm.encoder.layers.21.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
963 |
+
"vpm.encoder.layers.21.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
964 |
+
"vpm.encoder.layers.21.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
965 |
+
"vpm.encoder.layers.21.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
966 |
+
"vpm.encoder.layers.21.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
967 |
+
"vpm.encoder.layers.21.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
968 |
+
"vpm.encoder.layers.21.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
969 |
+
"vpm.encoder.layers.21.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
970 |
+
"vpm.encoder.layers.21.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
971 |
+
"vpm.encoder.layers.21.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
972 |
+
"vpm.encoder.layers.22.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
973 |
+
"vpm.encoder.layers.22.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
974 |
+
"vpm.encoder.layers.22.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
975 |
+
"vpm.encoder.layers.22.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
976 |
+
"vpm.encoder.layers.22.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
977 |
+
"vpm.encoder.layers.22.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
978 |
+
"vpm.encoder.layers.22.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
979 |
+
"vpm.encoder.layers.22.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
980 |
+
"vpm.encoder.layers.22.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
981 |
+
"vpm.encoder.layers.22.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
982 |
+
"vpm.encoder.layers.22.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
983 |
+
"vpm.encoder.layers.22.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
984 |
+
"vpm.encoder.layers.22.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
985 |
+
"vpm.encoder.layers.22.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
986 |
+
"vpm.encoder.layers.22.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
987 |
+
"vpm.encoder.layers.22.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
988 |
+
"vpm.encoder.layers.23.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
989 |
+
"vpm.encoder.layers.23.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
990 |
+
"vpm.encoder.layers.23.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
991 |
+
"vpm.encoder.layers.23.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
992 |
+
"vpm.encoder.layers.23.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
993 |
+
"vpm.encoder.layers.23.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
994 |
+
"vpm.encoder.layers.23.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
995 |
+
"vpm.encoder.layers.23.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
996 |
+
"vpm.encoder.layers.23.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
997 |
+
"vpm.encoder.layers.23.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
998 |
+
"vpm.encoder.layers.23.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
999 |
+
"vpm.encoder.layers.23.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
1000 |
+
"vpm.encoder.layers.23.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
1001 |
+
"vpm.encoder.layers.23.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
1002 |
+
"vpm.encoder.layers.23.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
1003 |
+
"vpm.encoder.layers.23.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
1004 |
+
"vpm.encoder.layers.24.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
1005 |
+
"vpm.encoder.layers.24.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
1006 |
+
"vpm.encoder.layers.24.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
1007 |
+
"vpm.encoder.layers.24.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
1008 |
+
"vpm.encoder.layers.24.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
1009 |
+
"vpm.encoder.layers.24.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
1010 |
+
"vpm.encoder.layers.24.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
1011 |
+
"vpm.encoder.layers.24.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
1012 |
+
"vpm.encoder.layers.24.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
1013 |
+
"vpm.encoder.layers.24.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
1014 |
+
"vpm.encoder.layers.24.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
1015 |
+
"vpm.encoder.layers.24.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
1016 |
+
"vpm.encoder.layers.24.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
1017 |
+
"vpm.encoder.layers.24.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
1018 |
+
"vpm.encoder.layers.24.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
1019 |
+
"vpm.encoder.layers.24.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
1020 |
+
"vpm.encoder.layers.25.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
1021 |
+
"vpm.encoder.layers.25.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
1022 |
+
"vpm.encoder.layers.25.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
1023 |
+
"vpm.encoder.layers.25.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
1024 |
+
"vpm.encoder.layers.25.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
1025 |
+
"vpm.encoder.layers.25.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
1026 |
+
"vpm.encoder.layers.25.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
1027 |
+
"vpm.encoder.layers.25.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
1028 |
+
"vpm.encoder.layers.25.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
1029 |
+
"vpm.encoder.layers.25.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
1030 |
+
"vpm.encoder.layers.25.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
1031 |
+
"vpm.encoder.layers.25.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
1032 |
+
"vpm.encoder.layers.25.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
1033 |
+
"vpm.encoder.layers.25.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
1034 |
+
"vpm.encoder.layers.25.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
1035 |
+
"vpm.encoder.layers.25.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
1036 |
+
"vpm.encoder.layers.26.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
1037 |
+
"vpm.encoder.layers.26.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
1038 |
+
"vpm.encoder.layers.26.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
1039 |
+
"vpm.encoder.layers.26.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
1040 |
+
"vpm.encoder.layers.26.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
1041 |
+
"vpm.encoder.layers.26.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
1042 |
+
"vpm.encoder.layers.26.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
1043 |
+
"vpm.encoder.layers.26.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
1044 |
+
"vpm.encoder.layers.26.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
1045 |
+
"vpm.encoder.layers.26.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
1046 |
+
"vpm.encoder.layers.26.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
1047 |
+
"vpm.encoder.layers.26.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
1048 |
+
"vpm.encoder.layers.26.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
1049 |
+
"vpm.encoder.layers.26.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
1050 |
+
"vpm.encoder.layers.26.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
1051 |
+
"vpm.encoder.layers.26.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
1052 |
+
"vpm.encoder.layers.3.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
1053 |
+
"vpm.encoder.layers.3.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
1054 |
+
"vpm.encoder.layers.3.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
1055 |
+
"vpm.encoder.layers.3.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
1056 |
+
"vpm.encoder.layers.3.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
1057 |
+
"vpm.encoder.layers.3.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
1058 |
+
"vpm.encoder.layers.3.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
1059 |
+
"vpm.encoder.layers.3.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
1060 |
+
"vpm.encoder.layers.3.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
1061 |
+
"vpm.encoder.layers.3.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
1062 |
+
"vpm.encoder.layers.3.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
1063 |
+
"vpm.encoder.layers.3.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
1064 |
+
"vpm.encoder.layers.3.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
1065 |
+
"vpm.encoder.layers.3.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
1066 |
+
"vpm.encoder.layers.3.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
1067 |
+
"vpm.encoder.layers.3.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
1068 |
+
"vpm.encoder.layers.4.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
1069 |
+
"vpm.encoder.layers.4.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
1070 |
+
"vpm.encoder.layers.4.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
1071 |
+
"vpm.encoder.layers.4.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
1072 |
+
"vpm.encoder.layers.4.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
1073 |
+
"vpm.encoder.layers.4.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
1074 |
+
"vpm.encoder.layers.4.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
1075 |
+
"vpm.encoder.layers.4.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
1076 |
+
"vpm.encoder.layers.4.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
1077 |
+
"vpm.encoder.layers.4.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
1078 |
+
"vpm.encoder.layers.4.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
1079 |
+
"vpm.encoder.layers.4.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
1080 |
+
"vpm.encoder.layers.4.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
1081 |
+
"vpm.encoder.layers.4.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
1082 |
+
"vpm.encoder.layers.4.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
1083 |
+
"vpm.encoder.layers.4.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
1084 |
+
"vpm.encoder.layers.5.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
1085 |
+
"vpm.encoder.layers.5.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
1086 |
+
"vpm.encoder.layers.5.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
1087 |
+
"vpm.encoder.layers.5.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
1088 |
+
"vpm.encoder.layers.5.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
1089 |
+
"vpm.encoder.layers.5.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
1090 |
+
"vpm.encoder.layers.5.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
1091 |
+
"vpm.encoder.layers.5.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
1092 |
+
"vpm.encoder.layers.5.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
1093 |
+
"vpm.encoder.layers.5.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
1094 |
+
"vpm.encoder.layers.5.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
1095 |
+
"vpm.encoder.layers.5.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
1096 |
+
"vpm.encoder.layers.5.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
1097 |
+
"vpm.encoder.layers.5.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
1098 |
+
"vpm.encoder.layers.5.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
1099 |
+
"vpm.encoder.layers.5.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
1100 |
+
"vpm.encoder.layers.6.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
1101 |
+
"vpm.encoder.layers.6.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
1102 |
+
"vpm.encoder.layers.6.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
1103 |
+
"vpm.encoder.layers.6.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
1104 |
+
"vpm.encoder.layers.6.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
1105 |
+
"vpm.encoder.layers.6.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
1106 |
+
"vpm.encoder.layers.6.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
1107 |
+
"vpm.encoder.layers.6.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
1108 |
+
"vpm.encoder.layers.6.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
1109 |
+
"vpm.encoder.layers.6.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
1110 |
+
"vpm.encoder.layers.6.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
1111 |
+
"vpm.encoder.layers.6.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
1112 |
+
"vpm.encoder.layers.6.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
1113 |
+
"vpm.encoder.layers.6.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
1114 |
+
"vpm.encoder.layers.6.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
1115 |
+
"vpm.encoder.layers.6.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
1116 |
+
"vpm.encoder.layers.7.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
1117 |
+
"vpm.encoder.layers.7.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
1118 |
+
"vpm.encoder.layers.7.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
1119 |
+
"vpm.encoder.layers.7.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
1120 |
+
"vpm.encoder.layers.7.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
1121 |
+
"vpm.encoder.layers.7.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
1122 |
+
"vpm.encoder.layers.7.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
1123 |
+
"vpm.encoder.layers.7.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
1124 |
+
"vpm.encoder.layers.7.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
1125 |
+
"vpm.encoder.layers.7.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
1126 |
+
"vpm.encoder.layers.7.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
1127 |
+
"vpm.encoder.layers.7.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
1128 |
+
"vpm.encoder.layers.7.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
1129 |
+
"vpm.encoder.layers.7.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
1130 |
+
"vpm.encoder.layers.7.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
1131 |
+
"vpm.encoder.layers.7.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
1132 |
+
"vpm.encoder.layers.8.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
1133 |
+
"vpm.encoder.layers.8.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
1134 |
+
"vpm.encoder.layers.8.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
1135 |
+
"vpm.encoder.layers.8.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
1136 |
+
"vpm.encoder.layers.8.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
1137 |
+
"vpm.encoder.layers.8.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
1138 |
+
"vpm.encoder.layers.8.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
1139 |
+
"vpm.encoder.layers.8.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
1140 |
+
"vpm.encoder.layers.8.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
1141 |
+
"vpm.encoder.layers.8.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
1142 |
+
"vpm.encoder.layers.8.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
1143 |
+
"vpm.encoder.layers.8.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
1144 |
+
"vpm.encoder.layers.8.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
1145 |
+
"vpm.encoder.layers.8.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
1146 |
+
"vpm.encoder.layers.8.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
1147 |
+
"vpm.encoder.layers.8.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
1148 |
+
"vpm.encoder.layers.9.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
1149 |
+
"vpm.encoder.layers.9.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
1150 |
+
"vpm.encoder.layers.9.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
1151 |
+
"vpm.encoder.layers.9.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
1152 |
+
"vpm.encoder.layers.9.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
1153 |
+
"vpm.encoder.layers.9.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
1154 |
+
"vpm.encoder.layers.9.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
1155 |
+
"vpm.encoder.layers.9.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
1156 |
+
"vpm.encoder.layers.9.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
1157 |
+
"vpm.encoder.layers.9.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
1158 |
+
"vpm.encoder.layers.9.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
1159 |
+
"vpm.encoder.layers.9.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
1160 |
+
"vpm.encoder.layers.9.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
1161 |
+
"vpm.encoder.layers.9.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
1162 |
+
"vpm.encoder.layers.9.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
1163 |
+
"vpm.encoder.layers.9.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
1164 |
+
"vpm.post_layernorm.bias": "model-00004-of-00004.safetensors",
|
1165 |
+
"vpm.post_layernorm.weight": "model-00004-of-00004.safetensors"
|
1166 |
+
}
|
1167 |
+
}
|
Chat/modeling_minicpmo.py
ADDED
@@ -0,0 +1,1996 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2025 The OpenBMB Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import json
|
17 |
+
import logging
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import types
|
21 |
+
from collections.abc import Iterator
|
22 |
+
from copy import deepcopy
|
23 |
+
from dataclasses import dataclass
|
24 |
+
from threading import Thread
|
25 |
+
from typing import List
|
26 |
+
from typing import Literal
|
27 |
+
from typing import Optional
|
28 |
+
from typing import Tuple
|
29 |
+
from typing import Union
|
30 |
+
|
31 |
+
import numpy as np
|
32 |
+
import soundfile as sf
|
33 |
+
import torch
|
34 |
+
import torch.nn as nn
|
35 |
+
import torch.nn.functional as F
|
36 |
+
import torch.nn.utils.parametrize as P
|
37 |
+
from huggingface_hub import hf_hub_download
|
38 |
+
from PIL import Image
|
39 |
+
from torch.nn.utils.parametrizations import weight_norm
|
40 |
+
from tqdm import tqdm
|
41 |
+
from transformers import AutoProcessor
|
42 |
+
from transformers import BertTokenizerFast
|
43 |
+
from transformers import LlamaConfig
|
44 |
+
from transformers import LlamaModel
|
45 |
+
# from transformers import LogitsWarper
|
46 |
+
from transformers import LogitsProcessor
|
47 |
+
from transformers import PreTrainedModel
|
48 |
+
from transformers import Qwen2ForCausalLM
|
49 |
+
from transformers import Qwen2PreTrainedModel
|
50 |
+
from transformers import TextIteratorStreamer
|
51 |
+
from transformers import TopKLogitsWarper
|
52 |
+
from transformers import TopPLogitsWarper
|
53 |
+
from transformers.cache_utils import Cache
|
54 |
+
from transformers.cache_utils import DynamicCache
|
55 |
+
from transformers.cache_utils import EncoderDecoderCache
|
56 |
+
from transformers.cache_utils import StaticCache
|
57 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast
|
58 |
+
from transformers.modeling_outputs import ModelOutput
|
59 |
+
from transformers.models.whisper.modeling_whisper import ACT2FN
|
60 |
+
from transformers.models.whisper.modeling_whisper import WHISPER_ATTENTION_CLASSES
|
61 |
+
from transformers.models.whisper.modeling_whisper import WhisperConfig
|
62 |
+
from transformers.models.whisper.modeling_whisper import WhisperEncoder
|
63 |
+
|
64 |
+
try:
|
65 |
+
from vector_quantize_pytorch import GroupedResidualFSQ
|
66 |
+
from vocos import Vocos
|
67 |
+
from vocos.pretrained import instantiate_class
|
68 |
+
|
69 |
+
_tts_deps = True
|
70 |
+
except:
|
71 |
+
_tts_deps = False
|
72 |
+
|
73 |
+
from .configuration_minicpm import ConditionalChatTTSConfig
|
74 |
+
from .configuration_minicpm import MiniCPMOConfig
|
75 |
+
from .modeling_navit_siglip import SiglipVisionTransformer
|
76 |
+
from .image_processing_minicpmv import MiniCPMOBatchFeature
|
77 |
+
from .resampler import Resampler
|
78 |
+
from .utils import NumberToTextConverter
|
79 |
+
from .utils import sentence_end
|
80 |
+
from .utils import VoiceChecker
|
81 |
+
|
82 |
+
logger = logging.getLogger(__name__)
|
83 |
+
|
84 |
+
|
85 |
+
@dataclass
|
86 |
+
class OmniOutput(ModelOutput):
|
87 |
+
text: Optional[Union[str, List[str], Iterator]] = None
|
88 |
+
spk_embeds: Optional[torch.FloatTensor] = None
|
89 |
+
audio_wav: Optional[np.ndarray] = None
|
90 |
+
sampling_rate: Optional[int] = None
|
91 |
+
|
92 |
+
|
93 |
+
class MiniCPMOPreTrainedModel(Qwen2PreTrainedModel):
|
94 |
+
config_class = MiniCPMOConfig
|
95 |
+
|
96 |
+
|
97 |
+
class MiniCPMO(MiniCPMOPreTrainedModel):
|
98 |
+
def __init__(self, config):
|
99 |
+
super().__init__(config)
|
100 |
+
self.llm = Qwen2ForCausalLM(config)
|
101 |
+
self.llm.prepare_inputs_for_generation = types.MethodType(prepare_inputs_for_generation, self.llm) # patch llm
|
102 |
+
|
103 |
+
self.embed_dim = self.llm.config.hidden_size
|
104 |
+
# init vision module
|
105 |
+
if self.config.init_vision:
|
106 |
+
self.vpm = self.init_vision_module()
|
107 |
+
self.vision_dim = self.vpm.embed_dim
|
108 |
+
self.resampler = self.init_resampler(self.embed_dim, self.vision_dim)
|
109 |
+
|
110 |
+
# init audio module
|
111 |
+
if self.config.init_audio:
|
112 |
+
self.apm = self.init_audio_module()
|
113 |
+
audio_output_dim = int(self.apm.config.encoder_ffn_dim // 4)
|
114 |
+
self.audio_avg_pooler = nn.AvgPool1d(self.config.audio_pool_step, stride=self.config.audio_pool_step)
|
115 |
+
self.audio_projection_layer = MultiModalProjector(in_dim=audio_output_dim, out_dim=self.embed_dim)
|
116 |
+
self.audio_encoder_layer = -1
|
117 |
+
|
118 |
+
# init tts module
|
119 |
+
# if self.config.init_tts:
|
120 |
+
# assert _tts_deps, "please make sure vector_quantize_pytorch and vocos are installed."
|
121 |
+
# self.tts = self.init_tts_module()
|
122 |
+
|
123 |
+
self.processor = AutoProcessor.from_pretrained(self.config._name_or_path, trust_remote_code=True)
|
124 |
+
|
125 |
+
self.terminators = ["<|im_end|>", "<|endoftext|>"]
|
126 |
+
|
127 |
+
self.default_tts_chat_template = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n<|spk_bos|><|spk|><|spk_eos|><|tts_bos|>' }}{% endif %}"
|
128 |
+
self.force_no_stop = False
|
129 |
+
|
130 |
+
# for stream api
|
131 |
+
self.reset_session()
|
132 |
+
|
133 |
+
def reset_session(self):
|
134 |
+
self.session_id = None
|
135 |
+
self.new_user_msg = True
|
136 |
+
self.llm_generated = False
|
137 |
+
self.llm_generate_completed = False
|
138 |
+
self.llm_past_key_values = None
|
139 |
+
self.audio_past_key_values = None # apm kv cache
|
140 |
+
|
141 |
+
def init_tts(
|
142 |
+
self,
|
143 |
+
tts_text_tokenizer_path=None,
|
144 |
+
vocos_ckpt_path=None,
|
145 |
+
):
|
146 |
+
"""
|
147 |
+
load tts tokenizer and vocos
|
148 |
+
1. try load form local 2. try load from huggingface
|
149 |
+
"""
|
150 |
+
from .processing_minicpmo import ChatTTSProcessor
|
151 |
+
|
152 |
+
if tts_text_tokenizer_path is None:
|
153 |
+
tts_text_tokenizer_path = os.path.join(self.config._name_or_path, "assets/chattts_tokenizer")
|
154 |
+
if not os.path.exists(tts_text_tokenizer_path):
|
155 |
+
# try from hf model_id
|
156 |
+
tts_text_tokenizer_path = "openbmb/chattts_tokenizer"
|
157 |
+
|
158 |
+
tts_text_tokenizer = BertTokenizerFast.from_pretrained(tts_text_tokenizer_path)
|
159 |
+
self.tts_processor = ChatTTSProcessor(text_tokenizer=tts_text_tokenizer)
|
160 |
+
|
161 |
+
if vocos_ckpt_path is None:
|
162 |
+
vocos_ckpt_path = os.path.join(self.config._name_or_path, "assets/Vocos.pt")
|
163 |
+
if not os.path.exists(vocos_ckpt_path):
|
164 |
+
vocos_ckpt_path = hf_hub_download(repo_id="openbmb/MiniCPM-o-2_6", subfolder="assets", filename="Vocos.pt")
|
165 |
+
|
166 |
+
assert os.path.exists(vocos_ckpt_path)
|
167 |
+
self.vocos = self.initialize_vocos(vocos_ckpt_path)
|
168 |
+
|
169 |
+
def initialize_vocos(self, ckpt_path):
|
170 |
+
feature_extractor = instantiate_class(
|
171 |
+
args=(),
|
172 |
+
init={
|
173 |
+
"class_path": "vocos.feature_extractors.MelSpectrogramFeatures",
|
174 |
+
"init_args": {"sample_rate": 24000, "n_fft": 1024, "hop_length": 256, "n_mels": 100},
|
175 |
+
},
|
176 |
+
)
|
177 |
+
backbone = instantiate_class(
|
178 |
+
args=(),
|
179 |
+
init={
|
180 |
+
"class_path": "vocos.models.VocosBackbone",
|
181 |
+
"init_args": {"input_channels": 100, "dim": 512, "intermediate_dim": 1536, "num_layers": 8},
|
182 |
+
},
|
183 |
+
)
|
184 |
+
head = instantiate_class(
|
185 |
+
args=(),
|
186 |
+
init={"class_path": "vocos.heads.ISTFTHead", "init_args": {"dim": 512, "n_fft": 1024, "hop_length": 256}},
|
187 |
+
)
|
188 |
+
vocos = Vocos(feature_extractor, backbone, head).to("cuda").eval().to(torch.float32)
|
189 |
+
vocos.load_state_dict(torch.load(ckpt_path, weights_only=True, mmap=True))
|
190 |
+
return vocos
|
191 |
+
|
192 |
+
def init_vision_module(self):
|
193 |
+
if self.config._attn_implementation == "flash_attention_2":
|
194 |
+
self.config.vision_config._attn_implementation = "flash_attention_2"
|
195 |
+
else:
|
196 |
+
self.config.vision_config._attn_implementation = "eager"
|
197 |
+
model = SiglipVisionTransformer(self.config.vision_config)
|
198 |
+
if self.config.drop_vision_last_layer:
|
199 |
+
model.encoder.layers = model.encoder.layers[:-1]
|
200 |
+
|
201 |
+
setattr(model, "embed_dim", model.embeddings.embed_dim)
|
202 |
+
setattr(model, "patch_size", model.embeddings.patch_size)
|
203 |
+
|
204 |
+
return model
|
205 |
+
|
206 |
+
def init_resampler(self, embed_dim, vision_dim):
|
207 |
+
return Resampler(
|
208 |
+
num_queries=self.config.query_num,
|
209 |
+
embed_dim=embed_dim,
|
210 |
+
num_heads=embed_dim // 128,
|
211 |
+
kv_dim=vision_dim,
|
212 |
+
adaptive=True,
|
213 |
+
)
|
214 |
+
|
215 |
+
def init_audio_module(self):
|
216 |
+
model = MiniCPMWhisperEncoder(self.config.audio_config)
|
217 |
+
return model
|
218 |
+
|
219 |
+
def init_tts_module(self):
|
220 |
+
model = ConditionalChatTTS(self.config.tts_config)
|
221 |
+
return model
|
222 |
+
|
223 |
+
def get_input_embeddings(self):
|
224 |
+
return self.llm.get_input_embeddings()
|
225 |
+
|
226 |
+
def set_input_embeddings(self, value):
|
227 |
+
self.llm.embed_tokens = value
|
228 |
+
|
229 |
+
def get_output_embeddings(self):
|
230 |
+
return self.llm.lm_head
|
231 |
+
|
232 |
+
def set_output_embeddings(self, new_embeddings):
|
233 |
+
self.llm.lm_head = new_embeddings
|
234 |
+
|
235 |
+
def set_decoder(self, decoder):
|
236 |
+
self.llm = decoder
|
237 |
+
|
238 |
+
def get_decoder(self):
|
239 |
+
return self.llm
|
240 |
+
|
241 |
+
def subsequent_chunk_mask(
|
242 |
+
self,
|
243 |
+
size: int,
|
244 |
+
chunk_size: int,
|
245 |
+
num_left_chunks: int = -1,
|
246 |
+
device: torch.device = torch.device("cpu"),
|
247 |
+
num_lookhead: int = 0,
|
248 |
+
) -> torch.Tensor:
|
249 |
+
"""Create mask for subsequent steps (size, size) with chunk size,
|
250 |
+
this is for streaming encoder
|
251 |
+
|
252 |
+
Args:
|
253 |
+
size (int): size of mask
|
254 |
+
chunk_size (int): size of chunk
|
255 |
+
num_left_chunks (int): number of left chunks
|
256 |
+
<0: use full chunk
|
257 |
+
>=0: use num_left_chunks
|
258 |
+
device (torch.device): "cpu" or "cuda" or torch.Tensor.device
|
259 |
+
|
260 |
+
Returns:
|
261 |
+
torch.Tensor: mask
|
262 |
+
|
263 |
+
Examples:
|
264 |
+
>>> subsequent_chunk_mask(4, 2)
|
265 |
+
[[1, 1, 0, 0],
|
266 |
+
[1, 1, 0, 0],
|
267 |
+
[1, 1, 1, 1],
|
268 |
+
[1, 1, 1, 1]]
|
269 |
+
"""
|
270 |
+
ret = torch.zeros(size, size, device=device, dtype=torch.bool)
|
271 |
+
for i in range(size):
|
272 |
+
if num_left_chunks < 0:
|
273 |
+
start = 0
|
274 |
+
else:
|
275 |
+
start = max((i // chunk_size - num_left_chunks) * chunk_size, 0)
|
276 |
+
ending = min((i // chunk_size + 1) * chunk_size + num_lookhead, size)
|
277 |
+
ret[i, start:ending] = True
|
278 |
+
return ret
|
279 |
+
|
280 |
+
def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor):
|
281 |
+
"""
|
282 |
+
Computes the output length of the convolutional layers and the output length of the audio encoder
|
283 |
+
"""
|
284 |
+
input_lengths_after_cnn = (input_lengths - 1) // 2 + 1
|
285 |
+
input_lengths_after_pooling = (
|
286 |
+
input_lengths_after_cnn - self.config.audio_pool_step
|
287 |
+
) // self.config.audio_pool_step + 1
|
288 |
+
input_lengths_after_pooling = input_lengths_after_pooling.to(dtype=torch.int32)
|
289 |
+
|
290 |
+
return input_lengths_after_cnn, input_lengths_after_pooling
|
291 |
+
|
292 |
+
def get_vllm_embedding(self, data):
|
293 |
+
"""
|
294 |
+
Compute all visual embeddings, and set into llm embeddings.
|
295 |
+
Args:
|
296 |
+
data: Dict
|
297 |
+
tgt_sizes: image size after patch embedding
|
298 |
+
pixel_values: image features
|
299 |
+
image_bound: position of each picture corresponding to input_ids
|
300 |
+
input_ids: full input_ids, include placeholder
|
301 |
+
Returns:
|
302 |
+
embedding with vision, vision_hidden_states
|
303 |
+
"""
|
304 |
+
if "vision_hidden_states" not in data:
|
305 |
+
dtype = self.llm.model.embed_tokens.weight.dtype
|
306 |
+
device = self.llm.model.embed_tokens.weight.device
|
307 |
+
tgt_sizes = data["tgt_sizes"]
|
308 |
+
pixel_values_list = data["pixel_values"]
|
309 |
+
vision_hidden_states = []
|
310 |
+
all_pixel_values = []
|
311 |
+
img_cnt = []
|
312 |
+
for pixel_values in pixel_values_list:
|
313 |
+
img_cnt.append(len(pixel_values))
|
314 |
+
all_pixel_values.extend([i.flatten(end_dim=1).permute(1, 0) for i in pixel_values])
|
315 |
+
|
316 |
+
# exist image
|
317 |
+
if all_pixel_values:
|
318 |
+
tgt_sizes = [tgt_size for tgt_size in tgt_sizes if isinstance(tgt_size, torch.Tensor)]
|
319 |
+
tgt_sizes = torch.vstack(tgt_sizes).type(torch.int32)
|
320 |
+
|
321 |
+
max_patches = torch.max(tgt_sizes[:, 0] * tgt_sizes[:, 1])
|
322 |
+
|
323 |
+
all_pixel_values = torch.nn.utils.rnn.pad_sequence(
|
324 |
+
all_pixel_values, batch_first=True, padding_value=0.0
|
325 |
+
)
|
326 |
+
B, L, _ = all_pixel_values.shape
|
327 |
+
all_pixel_values = all_pixel_values.permute(0, 2, 1).reshape(B, 3, -1, L)
|
328 |
+
|
329 |
+
patch_attn_mask = torch.zeros((B, 1, max_patches), dtype=torch.bool, device=device)
|
330 |
+
for i in range(B):
|
331 |
+
patch_attn_mask[i, 0, : tgt_sizes[i][0] * tgt_sizes[i][1]] = True
|
332 |
+
|
333 |
+
vision_batch_size = self.config.vision_batch_size
|
334 |
+
all_pixel_values = all_pixel_values.type(dtype)
|
335 |
+
if B > vision_batch_size:
|
336 |
+
hs = []
|
337 |
+
for i in range(0, B, vision_batch_size):
|
338 |
+
start_idx = i
|
339 |
+
end_idx = i + vision_batch_size
|
340 |
+
tmp_hs = self.vpm(
|
341 |
+
all_pixel_values[start_idx:end_idx],
|
342 |
+
patch_attention_mask=patch_attn_mask[start_idx:end_idx],
|
343 |
+
tgt_sizes=tgt_sizes[start_idx:end_idx],
|
344 |
+
).last_hidden_state
|
345 |
+
hs.append(tmp_hs)
|
346 |
+
vision_embedding = torch.cat(hs, dim=0)
|
347 |
+
else:
|
348 |
+
vision_embedding = self.vpm(
|
349 |
+
all_pixel_values, patch_attention_mask=patch_attn_mask, tgt_sizes=tgt_sizes
|
350 |
+
).last_hidden_state
|
351 |
+
vision_embedding = self.resampler(vision_embedding, tgt_sizes)
|
352 |
+
|
353 |
+
start = 0
|
354 |
+
for pixel_values in pixel_values_list:
|
355 |
+
img_cnt = len(pixel_values)
|
356 |
+
if img_cnt > 0:
|
357 |
+
vision_hidden_states.append(vision_embedding[start : start + img_cnt])
|
358 |
+
start += img_cnt
|
359 |
+
else:
|
360 |
+
vision_hidden_states.append([])
|
361 |
+
else: # no image
|
362 |
+
if self.training:
|
363 |
+
dummy_image = torch.zeros((1, 3, 224, 224), device=device, dtype=dtype)
|
364 |
+
tgt_sizes = torch.Tensor(
|
365 |
+
[[(224 // self.config.patch_size), math.ceil(224 / self.config.patch_size)]]
|
366 |
+
).type(torch.int32)
|
367 |
+
dummy_feature = self.resampler(self.vpm(dummy_image).last_hidden_state, tgt_sizes)
|
368 |
+
else:
|
369 |
+
dummy_feature = []
|
370 |
+
for _ in range(len(pixel_values_list)):
|
371 |
+
vision_hidden_states.append(dummy_feature)
|
372 |
+
|
373 |
+
else:
|
374 |
+
vision_hidden_states = data["vision_hidden_states"]
|
375 |
+
|
376 |
+
if hasattr(self.llm.config, "scale_emb"):
|
377 |
+
vllm_embedding = self.llm.model.embed_tokens(data["input_ids"]) * self.llm.config.scale_emb
|
378 |
+
else:
|
379 |
+
vllm_embedding = self.llm.model.embed_tokens(data["input_ids"])
|
380 |
+
|
381 |
+
new_vllm_embedding = vllm_embedding.clone()
|
382 |
+
|
383 |
+
vision_hidden_states = [
|
384 |
+
i.type(vllm_embedding.dtype) if isinstance(i, torch.Tensor) else i for i in vision_hidden_states
|
385 |
+
]
|
386 |
+
|
387 |
+
bs = len(data["input_ids"])
|
388 |
+
for i in range(bs):
|
389 |
+
cur_vs_hs = vision_hidden_states[i]
|
390 |
+
if len(cur_vs_hs) > 0:
|
391 |
+
cur_vllm_emb = vllm_embedding[i]
|
392 |
+
cur_image_bound = data["image_bound"][i]
|
393 |
+
if len(cur_image_bound) > 0:
|
394 |
+
image_indices = torch.stack(
|
395 |
+
[torch.arange(r[0], r[1], dtype=torch.long) for r in cur_image_bound]
|
396 |
+
).to(vllm_embedding.device)
|
397 |
+
|
398 |
+
new_vllm_embedding[i] = cur_vllm_emb.scatter(
|
399 |
+
0,
|
400 |
+
image_indices.view(-1, 1).repeat(1, cur_vllm_emb.shape[-1]),
|
401 |
+
cur_vs_hs.view(-1, cur_vs_hs.shape[-1]),
|
402 |
+
)
|
403 |
+
|
404 |
+
elif self.training:
|
405 |
+
new_vllm_embedding[i] += cur_vs_hs[0].mean() * 0
|
406 |
+
|
407 |
+
return new_vllm_embedding, vision_hidden_states
|
408 |
+
|
409 |
+
def get_audio_embedding_streaming(self, data):
|
410 |
+
r"""
|
411 |
+
Extract audio embeddings in a streaming manner using cached key-value pairs.
|
412 |
+
|
413 |
+
This method processes incoming audio features incrementally and stores/updates `past_key_values`
|
414 |
+
for faster inference on subsequent audio frames. It only supports batch_size=1 and is intended
|
415 |
+
for streaming scenarios.
|
416 |
+
|
417 |
+
Args:
|
418 |
+
data (dict):
|
419 |
+
- **"audio_features"** (`torch.FloatTensor`): Input mel-spectrograms of shape `(batch_size, 80, frames)`.
|
420 |
+
- **"audio_feature_lens"** (List[List[int]]): Lengths of each audio segment for each item in the batch.
|
421 |
+
|
422 |
+
Returns:
|
423 |
+
List[List[torch.Tensor]]: audio embeddings
|
424 |
+
"""
|
425 |
+
wavforms = data.get("audio_features", []) # (bs, 80, frames) or [], multi audios need filled in advance
|
426 |
+
audio_feature_lens_raw = data.get("audio_feature_lens", []) # list, [[x1, x2], [y1], [z1]]
|
427 |
+
|
428 |
+
# exist audio
|
429 |
+
if len(wavforms) > 0:
|
430 |
+
audio_feature_lens = torch.hstack(audio_feature_lens_raw)
|
431 |
+
batch_size, _, max_mel_seq_len = wavforms.shape
|
432 |
+
assert batch_size == 1
|
433 |
+
max_seq_len = (max_mel_seq_len - 1) // 2 + 1
|
434 |
+
|
435 |
+
if self.audio_past_key_values is not None:
|
436 |
+
cache_length = self.audio_past_key_values[0][0].shape[2]
|
437 |
+
apm_max_len = self.apm.embed_positions.weight.shape[0]
|
438 |
+
if cache_length + max_seq_len >= apm_max_len:
|
439 |
+
logger.warning(
|
440 |
+
f"audio_past_key_values length {cache_length + max_seq_len} exceed {apm_max_len}, reset."
|
441 |
+
)
|
442 |
+
self.audio_past_key_values = None
|
443 |
+
|
444 |
+
audio_outputs = self.apm(wavforms, past_key_values=self.audio_past_key_values, use_cache=True)
|
445 |
+
audio_states = audio_outputs.last_hidden_state # [:, :audio_feat_lengths, :]
|
446 |
+
self.audio_past_key_values = audio_outputs.past_key_values
|
447 |
+
|
448 |
+
audio_embeds = self.audio_projection_layer(audio_states)
|
449 |
+
|
450 |
+
audio_embeds = audio_embeds.transpose(1, 2)
|
451 |
+
audio_embeds = self.audio_avg_pooler(audio_embeds)
|
452 |
+
audio_embeds = audio_embeds.transpose(1, 2)
|
453 |
+
|
454 |
+
_, feature_lens_after_pooling = self._get_feat_extract_output_lengths(audio_feature_lens)
|
455 |
+
|
456 |
+
num_audio_tokens = feature_lens_after_pooling
|
457 |
+
|
458 |
+
final_audio_embeds = []
|
459 |
+
idx = 0
|
460 |
+
for i in range(len(audio_feature_lens_raw)):
|
461 |
+
target_audio_embeds = []
|
462 |
+
for _ in range(len(audio_feature_lens_raw[i])):
|
463 |
+
target_audio_embeds.append(audio_embeds[idx, : num_audio_tokens[idx], :])
|
464 |
+
idx += 1
|
465 |
+
final_audio_embeds.append(target_audio_embeds)
|
466 |
+
return final_audio_embeds
|
467 |
+
else:
|
468 |
+
return []
|
469 |
+
|
470 |
+
def get_audio_embedding(self, data, chunk_length=-1, dummy=True):
|
471 |
+
r"""
|
472 |
+
Extract full audio embeddings with optional chunk-based attention.
|
473 |
+
|
474 |
+
This method computes embeddings for all audio frames at once, either using full attention (when
|
475 |
+
`chunk_length` is -1) or chunk-based attention (when `chunk_length` is a positive number). It does
|
476 |
+
not use key-value caching and is suitable for non-streaming inference.
|
477 |
+
|
478 |
+
Args:
|
479 |
+
data (dict):
|
480 |
+
- **"audio_features"** (`torch.FloatTensor`): Input mel-spectrograms of shape `(batch_size, 80, frames)`.
|
481 |
+
- **"audio_feature_lens"** (List[List[int]]): Lengths of each audio segment for each item in the batch.
|
482 |
+
chunk_length (int, optional): Determines whether to use full attention (-1) or chunk-based
|
483 |
+
attention (>0) during embedding computation.
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
List[List[torch.Tensor]]: audio embeddings
|
487 |
+
"""
|
488 |
+
|
489 |
+
wavforms = data.get("audio_features", []) # (bs, 80, frames) or [], multi audios need filled in advance
|
490 |
+
audio_feature_lens_raw = data.get("audio_feature_lens", []) # list, [[x1, x2], [y1], [z1]]
|
491 |
+
|
492 |
+
# exist audio
|
493 |
+
if len(wavforms) > 0:
|
494 |
+
audio_feature_lens = torch.hstack(audio_feature_lens_raw)
|
495 |
+
batch_size, _, max_mel_seq_len = wavforms.shape
|
496 |
+
max_seq_len = (max_mel_seq_len - 1) // 2 + 1
|
497 |
+
|
498 |
+
# Create a sequence tensor of shape (batch_size, max_seq_len)
|
499 |
+
seq_range = (
|
500 |
+
torch.arange(0, max_seq_len, dtype=audio_feature_lens.dtype, device=audio_feature_lens.device)
|
501 |
+
.unsqueeze(0)
|
502 |
+
.expand(batch_size, max_seq_len)
|
503 |
+
)
|
504 |
+
lengths_expand = audio_feature_lens.unsqueeze(1).expand(batch_size, max_seq_len)
|
505 |
+
# Create mask
|
506 |
+
padding_mask = seq_range >= lengths_expand # 1 for padded values
|
507 |
+
|
508 |
+
audio_attention_mask_ = padding_mask.view(batch_size, 1, 1, max_seq_len).expand(
|
509 |
+
batch_size, 1, max_seq_len, max_seq_len
|
510 |
+
)
|
511 |
+
audio_attention_mask = audio_attention_mask_.to(
|
512 |
+
dtype=self.apm.conv1.weight.dtype, device=self.apm.conv1.weight.device
|
513 |
+
)
|
514 |
+
|
515 |
+
if chunk_length > 0:
|
516 |
+
chunk_num_frame = int(chunk_length * 50)
|
517 |
+
chunk_mask = self.subsequent_chunk_mask(
|
518 |
+
size=max_seq_len,
|
519 |
+
chunk_size=chunk_num_frame,
|
520 |
+
num_left_chunks=-1,
|
521 |
+
device=audio_attention_mask_.device,
|
522 |
+
)
|
523 |
+
audio_attention_mask_ = torch.logical_or(audio_attention_mask_, torch.logical_not(chunk_mask))
|
524 |
+
|
525 |
+
audio_attention_mask[audio_attention_mask_] = float("-inf")
|
526 |
+
audio_states = self.apm(
|
527 |
+
wavforms, output_hidden_states=True, attention_mask=audio_attention_mask
|
528 |
+
).hidden_states[self.audio_encoder_layer]
|
529 |
+
audio_embeds = self.audio_projection_layer(audio_states)
|
530 |
+
|
531 |
+
audio_embeds = audio_embeds.transpose(1, 2)
|
532 |
+
audio_embeds = self.audio_avg_pooler(audio_embeds)
|
533 |
+
audio_embeds = audio_embeds.transpose(1, 2)
|
534 |
+
|
535 |
+
_, feature_lens_after_pooling = self._get_feat_extract_output_lengths(audio_feature_lens)
|
536 |
+
|
537 |
+
num_audio_tokens = feature_lens_after_pooling
|
538 |
+
|
539 |
+
final_audio_embeds = []
|
540 |
+
idx = 0
|
541 |
+
for i in range(len(audio_feature_lens_raw)):
|
542 |
+
target_audio_embeds = []
|
543 |
+
for _ in range(len(audio_feature_lens_raw[i])):
|
544 |
+
target_audio_embeds.append(audio_embeds[idx, : num_audio_tokens[idx], :])
|
545 |
+
idx += 1
|
546 |
+
final_audio_embeds.append(target_audio_embeds)
|
547 |
+
return final_audio_embeds
|
548 |
+
elif self.training and dummy:
|
549 |
+
dtype = self.apm.embed_positions.weight.dtype
|
550 |
+
device = self.apm.embed_positions.weight.device
|
551 |
+
|
552 |
+
dummy_wavs = torch.zeros((1, 80, 100), device=device, dtype=dtype)
|
553 |
+
audio_states = self.apm(dummy_wavs, output_hidden_states=True).hidden_states[self.audio_encoder_layer]
|
554 |
+
|
555 |
+
audio_embeds = self.audio_projection_layer(audio_states)
|
556 |
+
|
557 |
+
audio_embeds = audio_embeds.transpose(1, 2)
|
558 |
+
audio_embeds = self.audio_avg_pooler(audio_embeds)
|
559 |
+
audio_embeds = audio_embeds.transpose(1, 2)
|
560 |
+
return [audio_embeds]
|
561 |
+
|
562 |
+
else:
|
563 |
+
return []
|
564 |
+
|
565 |
+
def get_omni_embedding(self, data, input_embeddings, chunk_length=-1, stream_input=False):
|
566 |
+
"""
|
567 |
+
Args:
|
568 |
+
data:
|
569 |
+
input_embeddings:
|
570 |
+
chunk_length: whisper use full attention or chunk attention
|
571 |
+
stream_input: use streaming audio embedding
|
572 |
+
Returns:
|
573 |
+
final embeddings with audio feature
|
574 |
+
"""
|
575 |
+
if stream_input:
|
576 |
+
audio_embeddings = self.get_audio_embedding_streaming(data)
|
577 |
+
else:
|
578 |
+
audio_embeddings = self.get_audio_embedding(data, chunk_length)
|
579 |
+
|
580 |
+
bs = len(input_embeddings)
|
581 |
+
if len(data.get("audio_features", [])) > 0:
|
582 |
+
assert len(audio_embeddings) == len(input_embeddings)
|
583 |
+
if len(audio_embeddings) > 0:
|
584 |
+
audio_bounds = data["audio_bounds"]
|
585 |
+
|
586 |
+
if self.config.chunk_input:
|
587 |
+
for i in range(bs):
|
588 |
+
if not audio_embeddings[i]:
|
589 |
+
continue
|
590 |
+
audio_embs = torch.cat(audio_embeddings[i], dim=0).to(
|
591 |
+
device=input_embeddings.device, dtype=input_embeddings.dtype
|
592 |
+
)
|
593 |
+
audio_start_pos = 0
|
594 |
+
for bound in audio_bounds[i]:
|
595 |
+
audio_len = bound[1] - bound[0]
|
596 |
+
input_embeddings[i, bound[0] : bound[1]] = audio_embs[
|
597 |
+
audio_start_pos : audio_start_pos + audio_len, :
|
598 |
+
]
|
599 |
+
audio_start_pos += audio_len
|
600 |
+
else:
|
601 |
+
for i in range(bs):
|
602 |
+
audio_embs = audio_embeddings[i]
|
603 |
+
bounds = audio_bounds[i]
|
604 |
+
for embs, bound in zip(audio_embs, bounds):
|
605 |
+
audio_indices = torch.arange(bound[0], bound[1], dtype=torch.long).to(
|
606 |
+
input_embeddings.device
|
607 |
+
)
|
608 |
+
|
609 |
+
if embs.shape[0] != len(audio_indices):
|
610 |
+
raise ValueError(
|
611 |
+
f"Shape mismatch: Trying to assign embeddings of shape {embs.shape} "
|
612 |
+
f"to input indices of length {len(audio_indices)}"
|
613 |
+
)
|
614 |
+
input_embeddings[i, audio_indices] = embs.to(input_embeddings.dtype)
|
615 |
+
elif self.training:
|
616 |
+
for i in range(bs):
|
617 |
+
# dummy audio_embeddings
|
618 |
+
input_embeddings = input_embeddings + audio_embeddings[0].mean() * 0
|
619 |
+
|
620 |
+
return input_embeddings
|
621 |
+
|
622 |
+
def forward(self, data, **kwargs):
|
623 |
+
vllm_embedding, vision_hidden_states = self.get_vllm_embedding(data)
|
624 |
+
|
625 |
+
if self.config.init_audio:
|
626 |
+
vllm_embedding = self.get_omni_embedding(
|
627 |
+
data, input_embeddings=vllm_embedding, chunk_length=self.config.audio_chunk_length
|
628 |
+
)
|
629 |
+
|
630 |
+
position_ids = data["position_ids"]
|
631 |
+
if position_ids.dtype != torch.int64:
|
632 |
+
position_ids = position_ids.long()
|
633 |
+
|
634 |
+
# compatible with llama factory
|
635 |
+
for key in ["input_ids", "inputs_embeds", "position_ids"]:
|
636 |
+
if key in kwargs:
|
637 |
+
del kwargs[key]
|
638 |
+
|
639 |
+
return self.llm(input_ids=None, position_ids=position_ids, inputs_embeds=vllm_embedding, **kwargs)
|
640 |
+
|
641 |
+
def _decode(self, inputs_embeds, tokenizer, attention_mask, **kwargs):
|
642 |
+
kwargs.pop("output_hidden_states", None)
|
643 |
+
kwargs.pop("return_dict_in_generate", None)
|
644 |
+
terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators]
|
645 |
+
outputs = self.llm.generate(
|
646 |
+
inputs_embeds=inputs_embeds,
|
647 |
+
pad_token_id=0,
|
648 |
+
eos_token_id=terminators,
|
649 |
+
attention_mask=attention_mask,
|
650 |
+
output_hidden_states=True,
|
651 |
+
return_dict_in_generate=True,
|
652 |
+
**kwargs,
|
653 |
+
)
|
654 |
+
|
655 |
+
return outputs
|
656 |
+
|
657 |
+
def _decode_stream(self, inputs_embeds, tokenizer, **kwargs):
|
658 |
+
terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators]
|
659 |
+
streamer = TextIteratorStreamer(tokenizer=tokenizer)
|
660 |
+
generation_kwargs = {
|
661 |
+
"inputs_embeds": inputs_embeds,
|
662 |
+
"pad_token_id": 0,
|
663 |
+
"eos_token_id": terminators,
|
664 |
+
"streamer": streamer,
|
665 |
+
}
|
666 |
+
generation_kwargs.update(kwargs)
|
667 |
+
|
668 |
+
thread = Thread(target=self.llm.generate, kwargs=generation_kwargs)
|
669 |
+
thread.start()
|
670 |
+
|
671 |
+
return streamer
|
672 |
+
|
673 |
+
def _decode_text(self, result_ids, tokenizer):
|
674 |
+
terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators]
|
675 |
+
result_text = []
|
676 |
+
for result in result_ids:
|
677 |
+
result = result[result != 0]
|
678 |
+
if result[0] == tokenizer.bos_id:
|
679 |
+
result = result[1:]
|
680 |
+
if result[-1] in terminators:
|
681 |
+
result = result[:-1]
|
682 |
+
result_text.append(tokenizer.decode(result))
|
683 |
+
return result_text
|
684 |
+
|
685 |
+
def get_sys_prompt(self, ref_audio=None, mode="default", language="zh"):
|
686 |
+
"""
|
687 |
+
Choose different system prompts according to different tasks
|
688 |
+
Args:
|
689 |
+
ref_audio: if ref_audio is not None, will use the voice cloning prompts, and the voice
|
690 |
+
generated by the model will refer to the timbre of ref audio
|
691 |
+
mode:
|
692 |
+
"default": default system prompt and not refer to any task
|
693 |
+
"omni": input video and audio simultaneously
|
694 |
+
"audio_assistant": Default voice-only mode, the model will use the ref_audio's voice to reply user's question as a helpful assistant.
|
695 |
+
"audio_roleplay": Roleplay voice-only mode, the model will use the ref_audio's voice to reply, and also role-play the character based on the audio prompt.
|
696 |
+
"voice_cloning": TTS mode, the model will clone the voice of ref_audio.
|
697 |
+
language: prompts language, the model has the ability to automatically select the response language
|
698 |
+
based on the question language
|
699 |
+
Returns:
|
700 |
+
|
701 |
+
"""
|
702 |
+
if ref_audio is not None:
|
703 |
+
assert isinstance(ref_audio, np.ndarray), "ref_audio error"
|
704 |
+
if mode == "omni":
|
705 |
+
if language == "zh":
|
706 |
+
sys_prompt = "你是一个AI助手。你能接受视频,音频和文本输入并输出语音和文本。"
|
707 |
+
vc_prompt_prefix = sys_prompt + "模仿输入音频中的声音特征。"
|
708 |
+
vc_prompt_suffix = "作为助手,你将使用这种声音风格说话。"
|
709 |
+
else:
|
710 |
+
sys_prompt = "You are a helpful assistant. You can accept video, audio and text input and output voice and text. "
|
711 |
+
vc_prompt_prefix = sys_prompt + "Clone the voice in the provided audio prompt."
|
712 |
+
vc_prompt_suffix = "As an assistant, you will speak using this voice style."
|
713 |
+
|
714 |
+
if ref_audio is not None:
|
715 |
+
sys_msgs = {"role": "user", "content": [vc_prompt_prefix, ref_audio, vc_prompt_suffix]}
|
716 |
+
|
717 |
+
else:
|
718 |
+
sys_msgs = {"role": "user", "content": [sys_prompt]}
|
719 |
+
|
720 |
+
return sys_msgs
|
721 |
+
elif mode == "audio_assistant":
|
722 |
+
if language == "zh":
|
723 |
+
vc_prompt_prefix = "模仿输入音频中的声音特征。"
|
724 |
+
vc_prompt_suffix = "作为助手,你将使用这种声音风格说话。"
|
725 |
+
else:
|
726 |
+
vc_prompt_prefix = "Use the voice in the audio prompt to synthesize new content."
|
727 |
+
vc_prompt_suffix = "You are a helpful assistant with the above voice style."
|
728 |
+
|
729 |
+
if ref_audio is not None:
|
730 |
+
sys_msgs = {"role": "user", "content": [vc_prompt_prefix, ref_audio, vc_prompt_suffix]}
|
731 |
+
|
732 |
+
else:
|
733 |
+
logger.warning(
|
734 |
+
"Warning: ref_audio is None, speech generation will be performed based on the default voice."
|
735 |
+
)
|
736 |
+
sys_msgs = {"role": "user", "content": ["Use the <reserved_53> voice.", vc_prompt_suffix]}
|
737 |
+
|
738 |
+
return sys_msgs
|
739 |
+
elif mode == "audio_roleplay":
|
740 |
+
if language == "zh":
|
741 |
+
vc_prompt_prefix = "模仿输入音频中的声音特征。"
|
742 |
+
vc_prompt_suffix = "假装你是上述音频中的人物,与我进行对话。"
|
743 |
+
else:
|
744 |
+
vc_prompt_prefix = "Clone the voice in the provided audio prompt."
|
745 |
+
vc_prompt_suffix = "Try to role-play the character based on the audio prompt above."
|
746 |
+
|
747 |
+
if ref_audio is not None:
|
748 |
+
sys_msgs = {"role": "user", "content": [vc_prompt_prefix, ref_audio, vc_prompt_suffix]}
|
749 |
+
else:
|
750 |
+
print("Warning: ref_audio is None, speech generation will be performed based on the default voice.")
|
751 |
+
sys_msgs = {"role": "user", "content": ["Use the <reserved_53> voice.", vc_prompt_suffix]}
|
752 |
+
|
753 |
+
return sys_msgs
|
754 |
+
elif mode == "voice_cloning":
|
755 |
+
if language == "zh":
|
756 |
+
vc_prompt_prefix = "模仿输入音频中的声音特征。"
|
757 |
+
else:
|
758 |
+
vc_prompt_prefix = "Clone the voice in the provided audio prompt."
|
759 |
+
|
760 |
+
if ref_audio is not None:
|
761 |
+
sys_msgs = {"role": "user", "content": [vc_prompt_prefix, ref_audio]}
|
762 |
+
else:
|
763 |
+
raise ValueError("ref_audio con't be None in voice_cloning mode.")
|
764 |
+
|
765 |
+
return sys_msgs
|
766 |
+
else:
|
767 |
+
sys_prompt = "You are a helpful assistant. You can accept audio and text input and output voice and text."
|
768 |
+
sys_msgs = {"role": "user", "content": [sys_prompt]}
|
769 |
+
|
770 |
+
return sys_msgs
|
771 |
+
|
772 |
+
def generate(
|
773 |
+
self,
|
774 |
+
input_ids=None,
|
775 |
+
pixel_values=None,
|
776 |
+
tgt_sizes=None,
|
777 |
+
audio_features=[],
|
778 |
+
audio_feature_lens=None,
|
779 |
+
image_bound=None,
|
780 |
+
audio_bounds=None,
|
781 |
+
spk_bounds=None,
|
782 |
+
attention_mask=None,
|
783 |
+
tokenizer=None,
|
784 |
+
vision_hidden_states=None,
|
785 |
+
stream=False,
|
786 |
+
decode_text=True,
|
787 |
+
**kwargs,
|
788 |
+
):
|
789 |
+
assert input_ids is not None
|
790 |
+
assert len(input_ids) == len(pixel_values)
|
791 |
+
|
792 |
+
model_inputs = {
|
793 |
+
"input_ids": input_ids,
|
794 |
+
"audio_features": audio_features,
|
795 |
+
"audio_feature_lens": audio_feature_lens,
|
796 |
+
"image_bound": image_bound,
|
797 |
+
"audio_bounds": audio_bounds,
|
798 |
+
"spk_bounds": spk_bounds,
|
799 |
+
}
|
800 |
+
|
801 |
+
if vision_hidden_states is None:
|
802 |
+
model_inputs["pixel_values"] = pixel_values
|
803 |
+
model_inputs["tgt_sizes"] = tgt_sizes
|
804 |
+
else:
|
805 |
+
model_inputs["vision_hidden_states"] = vision_hidden_states
|
806 |
+
|
807 |
+
model_output = {}
|
808 |
+
with torch.inference_mode():
|
809 |
+
model_inputs["inputs_embeds"], vision_hidden_states = self.get_vllm_embedding(model_inputs)
|
810 |
+
model_inputs["inputs_embeds"] = self.get_omni_embedding(
|
811 |
+
model_inputs,
|
812 |
+
input_embeddings=model_inputs["inputs_embeds"],
|
813 |
+
chunk_length=self.config.audio_chunk_length,
|
814 |
+
)
|
815 |
+
|
816 |
+
if stream:
|
817 |
+
result = self._decode_stream(model_inputs["inputs_embeds"], tokenizer, **kwargs)
|
818 |
+
# if stream return TextIteratorStreamer and output is empty
|
819 |
+
outputs = {}
|
820 |
+
else:
|
821 |
+
outputs = self._decode(model_inputs["inputs_embeds"], tokenizer, attention_mask, **kwargs) #怎么每次要调用config
|
822 |
+
|
823 |
+
result = self._decode_text(outputs.sequences, tokenizer)
|
824 |
+
|
825 |
+
if decode_text is False:
|
826 |
+
return outputs
|
827 |
+
|
828 |
+
|
829 |
+
return result, outputs
|
830 |
+
|
831 |
+
def chat(
|
832 |
+
self,
|
833 |
+
image=None,
|
834 |
+
msgs=None,
|
835 |
+
tokenizer=None,
|
836 |
+
processor=None,
|
837 |
+
vision_hidden_states=None,
|
838 |
+
max_new_tokens=2048,
|
839 |
+
min_new_tokens=0,
|
840 |
+
sampling=True,
|
841 |
+
max_inp_length=32768,
|
842 |
+
stream=False,
|
843 |
+
chunk_input=True,
|
844 |
+
omni_input=False,
|
845 |
+
max_slice_nums=None,
|
846 |
+
use_image_id=None,
|
847 |
+
use_tts_template=False,
|
848 |
+
generate_audio=False,
|
849 |
+
return_spk_embed=False,
|
850 |
+
return_dict=False,
|
851 |
+
output_audio_path=None,
|
852 |
+
**kwargs,
|
853 |
+
):
|
854 |
+
"""
|
855 |
+
Unified chat function
|
856 |
+
|
857 |
+
Args:
|
858 |
+
image: use for batch_size=1 vqa, It is not recommended to continue to use this parameter
|
859 |
+
msgs: the input chat msgs, support text: (string) / image: (PIL.Image) / audio (numpy.ndarray)
|
860 |
+
tokenizer: tokenizer for llm
|
861 |
+
processor: if None, use the default processor
|
862 |
+
max_new_tokens: the maximum length of the generation
|
863 |
+
min_new_tokens: the minimum length of the generation
|
864 |
+
sampling: whether to use sampling decoding or beam search decoding
|
865 |
+
max_inp_length: the maximum length of input
|
866 |
+
stream: whether to return generator, only used when tts is not required
|
867 |
+
chunk_input: whether to split audio into 1s chunks
|
868 |
+
omni_input: determine whether it is omni mode
|
869 |
+
max_slice_nums: control the maximum number of image slices
|
870 |
+
use_image_id: for video understanding or omni understanding, use_image_id should be False
|
871 |
+
use_tts_template: if the msgs contain audio, use_tts_template should be True
|
872 |
+
generate_audio: whether to generate audio output, only used when return_dict=True
|
873 |
+
return_spk_embed: whether to return spk embedding, only used when return_dict=True
|
874 |
+
return_dict: whether to return dict
|
875 |
+
output_audio_path: audio save path when generate_audio
|
876 |
+
**kwargs:
|
877 |
+
"""
|
878 |
+
if isinstance(msgs[0], list):
|
879 |
+
batched = True
|
880 |
+
else:
|
881 |
+
batched = False
|
882 |
+
|
883 |
+
if generate_audio or return_spk_embed:
|
884 |
+
return_dict = True
|
885 |
+
|
886 |
+
msgs_list = msgs
|
887 |
+
images_list = image
|
888 |
+
|
889 |
+
if batched is False:
|
890 |
+
images_list, msgs_list = [images_list], [msgs_list]
|
891 |
+
else:
|
892 |
+
assert images_list is None, "Please integrate image to msgs when using batch inference."
|
893 |
+
images_list = [None] * len(msgs_list)
|
894 |
+
assert len(images_list) == len(msgs_list), "The batch dim of images_list and msgs_list should be the same."
|
895 |
+
|
896 |
+
if processor is None:
|
897 |
+
if self.processor is None:
|
898 |
+
self.processor = AutoProcessor.from_pretrained(self.config._name_or_path, trust_remote_code=True)
|
899 |
+
processor = self.processor
|
900 |
+
assert (
|
901 |
+
self.config.query_num == processor.image_processor.image_feature_size
|
902 |
+
), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
|
903 |
+
assert (
|
904 |
+
self.config.patch_size == processor.image_processor.patch_size
|
905 |
+
), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
|
906 |
+
assert (
|
907 |
+
self.config.use_image_id == processor.image_processor.use_image_id
|
908 |
+
), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
|
909 |
+
assert (
|
910 |
+
self.config.slice_config.max_slice_nums == processor.image_processor.max_slice_nums
|
911 |
+
), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
|
912 |
+
assert (
|
913 |
+
self.config.slice_mode == processor.image_processor.slice_mode
|
914 |
+
), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
|
915 |
+
|
916 |
+
prompts_lists = []
|
917 |
+
input_images_list = []
|
918 |
+
input_audios_list = []
|
919 |
+
audio_parts_list = []
|
920 |
+
|
921 |
+
for image, msgs in zip(images_list, msgs_list):
|
922 |
+
if isinstance(msgs, str):
|
923 |
+
msgs = json.loads(msgs)
|
924 |
+
copy_msgs = deepcopy(msgs)
|
925 |
+
|
926 |
+
assert len(msgs) > 0, "msgs is empty"
|
927 |
+
assert sampling or not stream, "if use stream mode, make sure sampling=True"
|
928 |
+
|
929 |
+
if image is not None and isinstance(copy_msgs[0]["content"], str):
|
930 |
+
copy_msgs[0]["content"] = [image, copy_msgs[0]["content"]]
|
931 |
+
|
932 |
+
images = []
|
933 |
+
audios = []
|
934 |
+
audio_parts = []
|
935 |
+
for i, msg in enumerate(copy_msgs):
|
936 |
+
role = msg["role"]
|
937 |
+
content = msg["content"]
|
938 |
+
assert role in ["system", "user", "assistant"]
|
939 |
+
if i == 0:
|
940 |
+
assert role in ["user", "system"], "The role of first msg should be user"
|
941 |
+
if isinstance(content, str):
|
942 |
+
content = [content]
|
943 |
+
cur_msgs = []
|
944 |
+
for c in content:
|
945 |
+
if isinstance(c, Image.Image):
|
946 |
+
images.append(c)
|
947 |
+
cur_msgs.append("(<image>./</image>)")
|
948 |
+
elif isinstance(c, np.ndarray): # audio
|
949 |
+
audios.append(c)
|
950 |
+
audio_parts.append(i)
|
951 |
+
cur_msgs.append("(<audio>./</audio>)")
|
952 |
+
use_tts_template = True
|
953 |
+
elif isinstance(c, str):
|
954 |
+
cur_msgs.append(c)
|
955 |
+
if omni_input:
|
956 |
+
msg["content"] = "".join(cur_msgs)
|
957 |
+
else:
|
958 |
+
msg["content"] = "\n".join(cur_msgs)
|
959 |
+
|
960 |
+
prompts_lists.append(
|
961 |
+
processor.tokenizer.apply_chat_template(
|
962 |
+
copy_msgs,
|
963 |
+
tokenize=False,
|
964 |
+
add_generation_prompt=True,
|
965 |
+
chat_template=self.default_tts_chat_template if use_tts_template else None,
|
966 |
+
)
|
967 |
+
)
|
968 |
+
input_images_list.append(images)
|
969 |
+
input_audios_list.append(audios)
|
970 |
+
audio_parts_list.append(audio_parts)
|
971 |
+
|
972 |
+
inputs = processor(
|
973 |
+
prompts_lists,
|
974 |
+
input_images_list,
|
975 |
+
input_audios_list,
|
976 |
+
audio_parts_list,
|
977 |
+
max_slice_nums=max_slice_nums,
|
978 |
+
use_image_id=use_image_id,
|
979 |
+
chunk_input=chunk_input,
|
980 |
+
return_tensors="pt",
|
981 |
+
max_length=max_inp_length,
|
982 |
+
).to(self.device)
|
983 |
+
|
984 |
+
if sampling:
|
985 |
+
generation_config = {
|
986 |
+
"top_p": 0.8,
|
987 |
+
"top_k": 100,
|
988 |
+
"temperature": 0.7,
|
989 |
+
"do_sample": True,
|
990 |
+
"repetition_penalty": 1.05,
|
991 |
+
}
|
992 |
+
else:
|
993 |
+
generation_config = {
|
994 |
+
"num_beams": 3,
|
995 |
+
"repetition_penalty": 1.2,
|
996 |
+
}
|
997 |
+
|
998 |
+
if min_new_tokens > 0:
|
999 |
+
generation_config["min_new_tokens"] = min_new_tokens
|
1000 |
+
|
1001 |
+
generation_config.update((k, kwargs[k]) for k in generation_config.keys() & kwargs.keys())
|
1002 |
+
|
1003 |
+
inputs.pop("image_sizes")
|
1004 |
+
with torch.inference_mode():
|
1005 |
+
res, outputs = self.generate(
|
1006 |
+
**inputs,
|
1007 |
+
tokenizer=tokenizer,
|
1008 |
+
max_new_tokens=max_new_tokens,
|
1009 |
+
vision_hidden_states=vision_hidden_states,
|
1010 |
+
stream=stream,
|
1011 |
+
**generation_config,
|
1012 |
+
)
|
1013 |
+
|
1014 |
+
if stream:
|
1015 |
+
|
1016 |
+
def stream_gen():
|
1017 |
+
for text in res:
|
1018 |
+
for term in self.terminators:
|
1019 |
+
text = text.replace(term, "")
|
1020 |
+
yield text
|
1021 |
+
|
1022 |
+
if return_dict:
|
1023 |
+
return OmniOutput(text=stream_gen())
|
1024 |
+
else:
|
1025 |
+
return stream_gen()
|
1026 |
+
|
1027 |
+
else:
|
1028 |
+
spk_embeds = wav_numpy = sr = None
|
1029 |
+
|
1030 |
+
if batched:
|
1031 |
+
answer = res
|
1032 |
+
else:
|
1033 |
+
answer = res[0]
|
1034 |
+
|
1035 |
+
if use_tts_template and generate_audio:
|
1036 |
+
mel_spec = self._generate_mel_spec(inputs, outputs, answer)
|
1037 |
+
wav_numpy, sr = self.decode_mel_to_audio(mel_spec, output_audio_path)
|
1038 |
+
|
1039 |
+
if return_spk_embed:
|
1040 |
+
spk_embeds = self._get_last_spk_embeds(inputs, outputs)
|
1041 |
+
|
1042 |
+
if isinstance(answer, list):
|
1043 |
+
answer = [i.replace(tokenizer.tts_end, "") for i in answer]
|
1044 |
+
else:
|
1045 |
+
answer = answer.replace(tokenizer.tts_end, "")
|
1046 |
+
|
1047 |
+
if return_dict:
|
1048 |
+
return OmniOutput(text=answer, spk_embeds=spk_embeds, audio_wav=wav_numpy, sampling_rate=sr)
|
1049 |
+
else:
|
1050 |
+
return answer
|
1051 |
+
|
1052 |
+
def _decode_hidden(self, result_ids, last_hidden_states, tokenizer):
|
1053 |
+
terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators] #self.terminators=['<|im_end|>', '<|endoftext|>']
|
1054 |
+
hidden_states = torch.concat([h[:,-1:] for h in last_hidden_states],dim=1)
|
1055 |
+
hidden_states_unpad = []
|
1056 |
+
result_text_unpad = []
|
1057 |
+
text_token_len = []
|
1058 |
+
for id, result in enumerate(result_ids):
|
1059 |
+
hidden_states_i = hidden_states[id, result != 0, :]
|
1060 |
+
result = result[result!=0]
|
1061 |
+
if result[0] == tokenizer.bos_id:
|
1062 |
+
result = result[1:]
|
1063 |
+
hidden_states_i = hidden_states_i[1:]
|
1064 |
+
if result[-1] in terminators:
|
1065 |
+
result = result[:-1]
|
1066 |
+
hidden_states_i = hidden_states_i[:-1]
|
1067 |
+
if result[-1] == 151692:
|
1068 |
+
#'<|tts_eos|>'
|
1069 |
+
result = result[:-1]
|
1070 |
+
hidden_states_i = hidden_states_i[:-1]
|
1071 |
+
result_text_unpad.append(tokenizer.decode(result))
|
1072 |
+
hidden_states_unpad.append(hidden_states_i)
|
1073 |
+
text_token_len.append(len(result))
|
1074 |
+
return text_token_len, hidden_states, hidden_states_unpad, result_text_unpad
|
1075 |
+
|
1076 |
+
def get_hidden(
|
1077 |
+
self,
|
1078 |
+
image=None,
|
1079 |
+
msgs=None,
|
1080 |
+
tokenizer=None,
|
1081 |
+
processor=None,
|
1082 |
+
vision_hidden_states=None,
|
1083 |
+
max_new_tokens=2048,
|
1084 |
+
min_new_tokens=0,
|
1085 |
+
sampling=True,
|
1086 |
+
max_inp_length=32768,
|
1087 |
+
stream=False,
|
1088 |
+
chunk_input=True,
|
1089 |
+
omni_input=False,
|
1090 |
+
max_slice_nums=None,
|
1091 |
+
use_image_id=None,
|
1092 |
+
use_tts_template=False,
|
1093 |
+
generate_audio=False,
|
1094 |
+
return_spk_embed=False,
|
1095 |
+
**kwargs,
|
1096 |
+
):
|
1097 |
+
if isinstance(msgs[0], list):
|
1098 |
+
batched = True
|
1099 |
+
else:
|
1100 |
+
batched = False
|
1101 |
+
|
1102 |
+
if generate_audio or return_spk_embed:
|
1103 |
+
return_dict = True
|
1104 |
+
|
1105 |
+
msgs_list = msgs
|
1106 |
+
images_list = image
|
1107 |
+
|
1108 |
+
if batched is False:
|
1109 |
+
images_list, msgs_list = [images_list], [msgs_list]
|
1110 |
+
else:
|
1111 |
+
assert images_list is None, "Please integrate image to msgs when using batch inference."
|
1112 |
+
images_list = [None] * len(msgs_list)
|
1113 |
+
assert len(images_list) == len(msgs_list), "The batch dim of images_list and msgs_list should be the same."
|
1114 |
+
|
1115 |
+
if processor is None:
|
1116 |
+
if self.processor is None:
|
1117 |
+
self.processor = AutoProcessor.from_pretrained(self.config._name_or_path, trust_remote_code=True)
|
1118 |
+
processor = self.processor
|
1119 |
+
|
1120 |
+
assert (
|
1121 |
+
self.config.query_num == processor.image_processor.image_feature_size
|
1122 |
+
), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
|
1123 |
+
assert (
|
1124 |
+
self.config.patch_size == processor.image_processor.patch_size
|
1125 |
+
), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
|
1126 |
+
assert (
|
1127 |
+
self.config.use_image_id == processor.image_processor.use_image_id
|
1128 |
+
), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
|
1129 |
+
assert (
|
1130 |
+
self.config.slice_config.max_slice_nums == processor.image_processor.max_slice_nums
|
1131 |
+
), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
|
1132 |
+
assert (
|
1133 |
+
self.config.slice_mode == processor.image_processor.slice_mode
|
1134 |
+
), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
|
1135 |
+
|
1136 |
+
prompts_lists = []
|
1137 |
+
input_images_list = []
|
1138 |
+
input_audios_list = []
|
1139 |
+
audio_parts_list = []
|
1140 |
+
for image, msgs in zip(images_list, msgs_list):
|
1141 |
+
if isinstance(msgs, str):
|
1142 |
+
msgs = json.loads(msgs)
|
1143 |
+
copy_msgs = deepcopy(msgs)
|
1144 |
+
|
1145 |
+
assert len(msgs) > 0, "msgs is empty"
|
1146 |
+
assert sampling or not stream, "if use stream mode, make sure sampling=True"
|
1147 |
+
|
1148 |
+
# if image is not None and isinstance(copy_msgs[0]["content"], str):
|
1149 |
+
# copy_msgs[0]["content"] = [image, copy_msgs[0]["content"]]
|
1150 |
+
|
1151 |
+
images = []
|
1152 |
+
audios = []
|
1153 |
+
audio_parts = []
|
1154 |
+
for i, msg in enumerate(copy_msgs):
|
1155 |
+
role = msg["role"]
|
1156 |
+
content = msg["content"]
|
1157 |
+
assert role in ["system", "user", "assistant"]
|
1158 |
+
if i == 0:
|
1159 |
+
assert role in ["user", "system"], "The role of first msg should be user"
|
1160 |
+
if isinstance(content, str):
|
1161 |
+
content = [content]
|
1162 |
+
cur_msgs = []
|
1163 |
+
for c in content:
|
1164 |
+
if isinstance(c, Image.Image):
|
1165 |
+
images.append(c)
|
1166 |
+
cur_msgs.append("(<image>./</image>)")
|
1167 |
+
elif isinstance(c, np.ndarray): # audio
|
1168 |
+
audios.append(c)
|
1169 |
+
audio_parts.append(i)
|
1170 |
+
cur_msgs.append("(<audio>./</audio>)")
|
1171 |
+
use_tts_template = True
|
1172 |
+
elif isinstance(c, str):
|
1173 |
+
cur_msgs.append(c)
|
1174 |
+
if omni_input:
|
1175 |
+
msg["content"] = "".join(cur_msgs)
|
1176 |
+
else:
|
1177 |
+
msg["content"] = "\n".join(cur_msgs)
|
1178 |
+
|
1179 |
+
prompts_lists.append(
|
1180 |
+
processor.tokenizer.apply_chat_template(
|
1181 |
+
copy_msgs,
|
1182 |
+
tokenize=False,
|
1183 |
+
add_generation_prompt=True,
|
1184 |
+
chat_template=self.default_tts_chat_template if use_tts_template else None,
|
1185 |
+
)
|
1186 |
+
)
|
1187 |
+
input_images_list.append(images)
|
1188 |
+
input_audios_list.append(audios)
|
1189 |
+
audio_parts_list.append(audio_parts)
|
1190 |
+
|
1191 |
+
inputs = processor(
|
1192 |
+
prompts_lists,
|
1193 |
+
input_images_list,
|
1194 |
+
input_audios_list,
|
1195 |
+
audio_parts_list,
|
1196 |
+
max_slice_nums=max_slice_nums,
|
1197 |
+
use_image_id=use_image_id,
|
1198 |
+
chunk_input=chunk_input,
|
1199 |
+
return_tensors="pt",
|
1200 |
+
max_length=max_inp_length,
|
1201 |
+
).to(self.device)
|
1202 |
+
|
1203 |
+
if sampling:
|
1204 |
+
generation_config = {
|
1205 |
+
"top_p": 0.8,
|
1206 |
+
"top_k": 100,
|
1207 |
+
"temperature": 0.7,
|
1208 |
+
"do_sample": True,
|
1209 |
+
"repetition_penalty": 1.05,
|
1210 |
+
}
|
1211 |
+
else:
|
1212 |
+
generation_config = {
|
1213 |
+
"num_beams": 3,
|
1214 |
+
"repetition_penalty": 1.2,
|
1215 |
+
}
|
1216 |
+
|
1217 |
+
if min_new_tokens > 0:
|
1218 |
+
generation_config["min_new_tokens"] = min_new_tokens
|
1219 |
+
|
1220 |
+
generation_config.update((k, kwargs[k]) for k in generation_config.keys() & kwargs.keys())
|
1221 |
+
|
1222 |
+
inputs.pop("image_sizes")
|
1223 |
+
# with torch.inference_mode():
|
1224 |
+
with torch.no_grad():
|
1225 |
+
res, outputs = self.generate(
|
1226 |
+
**inputs,
|
1227 |
+
tokenizer=tokenizer,
|
1228 |
+
max_new_tokens=max_new_tokens,
|
1229 |
+
vision_hidden_states=vision_hidden_states,
|
1230 |
+
stream=stream,
|
1231 |
+
**generation_config,
|
1232 |
+
)
|
1233 |
+
|
1234 |
+
last_hidden_states = [hs[-1] for hs in outputs.hidden_states]
|
1235 |
+
text_token = deepcopy(outputs.sequences)
|
1236 |
+
text_token_len, hidden_states, hidden_states_unpad, text_unpad = self._decode_hidden(text_token, last_hidden_states, tokenizer)
|
1237 |
+
for id in range(len(text_token)):
|
1238 |
+
len_ = text_token_len[id]
|
1239 |
+
text_token[id, len_:] = 0
|
1240 |
+
hidden_states[id, len_:] = 0
|
1241 |
+
max_len = max(text_token_len)
|
1242 |
+
text_token = text_token[:, :max_len]
|
1243 |
+
hidden_states = hidden_states[:, :max_len]
|
1244 |
+
|
1245 |
+
return text_unpad, text_token, torch.Tensor(text_token_len).to(torch.int32), hidden_states
|
1246 |
+
|
1247 |
+
def get_hidden_forward(self,data,**kwargs,):
|
1248 |
+
|
1249 |
+
vllm_embedding, vision_hidden_states = self.get_vllm_embedding(data)
|
1250 |
+
|
1251 |
+
if self.config.init_audio:
|
1252 |
+
vllm_embedding = self.get_omni_embedding(
|
1253 |
+
data, input_embeddings=vllm_embedding, chunk_length=self.config.audio_chunk_length
|
1254 |
+
)
|
1255 |
+
|
1256 |
+
position_ids = data["position_ids"]
|
1257 |
+
if position_ids.dtype != torch.int64:
|
1258 |
+
position_ids = position_ids.long()
|
1259 |
+
|
1260 |
+
# compatible with llama factory
|
1261 |
+
for key in ["input_ids", "inputs_embeds", "position_ids"]:
|
1262 |
+
if key in kwargs:
|
1263 |
+
del kwargs[key]
|
1264 |
+
|
1265 |
+
outputs = self.llm(input_ids=None, position_ids=position_ids, inputs_embeds=vllm_embedding, output_hidden_states=True, **kwargs)
|
1266 |
+
|
1267 |
+
##计算损失
|
1268 |
+
loss_fct = nn.CrossEntropyLoss()
|
1269 |
+
logits = outputs.logits.view(-1,self.config.vocab_size).contiguous()
|
1270 |
+
labels = data['target'].view(-1).long().contiguous()
|
1271 |
+
# Enable model parallelism
|
1272 |
+
labels = labels.to(logits.device)
|
1273 |
+
loss = loss_fct(logits, labels)
|
1274 |
+
|
1275 |
+
##得到隐藏层特征(根据对话拆分多轮)
|
1276 |
+
last_hidden_states = outputs.hidden_states[-1] #(batch_size, s, 3584)
|
1277 |
+
batch_size = last_hidden_states.shape[0]
|
1278 |
+
new_hidden_states = []
|
1279 |
+
text_token = []
|
1280 |
+
text_token_len = []
|
1281 |
+
for batch_id in range(batch_size):
|
1282 |
+
st_id = -1
|
1283 |
+
end_id = -1
|
1284 |
+
for id in range(len(data['target'][batch_id])):
|
1285 |
+
if data['target'][batch_id][id] != -100 and data['target'][batch_id][id] != 151645 and st_id==-1:
|
1286 |
+
st_id = id+1 #+1是因为target[0]='\n',要去掉
|
1287 |
+
if data['target'][batch_id][id] == 151645 and st_id!=-1: #tokenizer.eos_id
|
1288 |
+
end_id = id
|
1289 |
+
new_hidden_states.append(last_hidden_states[batch_id:batch_id+1,st_id:end_id])
|
1290 |
+
text_token.append(data['target'][batch_id:batch_id+1,st_id:end_id])
|
1291 |
+
text_token_len.append(end_id-st_id)
|
1292 |
+
|
1293 |
+
st_id = -1
|
1294 |
+
|
1295 |
+
##根据filter过滤不满足要求的answer
|
1296 |
+
# assert sum([len(filter_i) for filter_i in data['filter']]) == len(text_token), f"filter data error! filter:{data['filter']}, {data['target']},{len(text_token)}"
|
1297 |
+
filter_bool = [filter_i for batch_filter_i in data['filter'] for filter_i in batch_filter_i]
|
1298 |
+
|
1299 |
+
if sum(filter_bool) == 0:
|
1300 |
+
#没有满足条件的文本可用于训练tts
|
1301 |
+
return None, None, None,loss
|
1302 |
+
new_hidden_states = [new_hidden_states[i] for i in range(len(filter_bool)) if filter_bool[i]]
|
1303 |
+
text_token = [text_token[i] for i in range(len(filter_bool)) if filter_bool[i]]
|
1304 |
+
text_token_len = [text_token_len[i] for i in range(len(filter_bool)) if filter_bool[i]]
|
1305 |
+
|
1306 |
+
max_len = np.max(text_token_len)
|
1307 |
+
##padding
|
1308 |
+
for id, new_hidden_state in enumerate(new_hidden_states):
|
1309 |
+
# new_hidden_state (1,s,3584)
|
1310 |
+
pad_num = max_len-new_hidden_state.shape[1]
|
1311 |
+
if pad_num==0:
|
1312 |
+
continue
|
1313 |
+
|
1314 |
+
new_hidden_states[id] = torch.cat(
|
1315 |
+
[
|
1316 |
+
new_hidden_state,
|
1317 |
+
torch.zeros((1, pad_num, new_hidden_state.shape[-1]), device=new_hidden_state.device),
|
1318 |
+
],
|
1319 |
+
dim=1,
|
1320 |
+
) #(1,max_len,3584)
|
1321 |
+
text_token[id] = torch.cat([text_token[id],torch.zeros((1, pad_num), dtype=text_token[id].dtype, device=text_token[id].device)],dim=1,) #(1,max_len)
|
1322 |
+
new_hidden_states = torch.cat(new_hidden_states, dim=0) #(batch_size,max_len,3584)
|
1323 |
+
text_token = torch.cat(text_token, dim=0) #(batch_size,max_len)
|
1324 |
+
text_token_len = torch.tensor(text_token_len, dtype=torch.int32, device=text_token.device)
|
1325 |
+
##################debug############################
|
1326 |
+
# from transformers import AutoTokenizer
|
1327 |
+
# tokenizer_path = '/mnt/afs/zhoufangru/agent/end2end/pretrained_models/MiniCPM-o-2_6'
|
1328 |
+
# tokenizer = AutoTokenizer.from_pretrained(tokenizer_path, trust_remote_code=True)
|
1329 |
+
# output_ids = torch.argmax(outputs.logits, dim=-1)
|
1330 |
+
# batch_id = 0
|
1331 |
+
# tokenizer.decode(output_ids[batch_id][data['target'][batch_id]!=-100])[1:]
|
1332 |
+
##################debug############################
|
1333 |
+
return text_token, text_token_len, new_hidden_states,loss
|
1334 |
+
|
1335 |
+
@torch.inference_mode()
|
1336 |
+
def streaming_prefill(
|
1337 |
+
self,
|
1338 |
+
session_id,
|
1339 |
+
msgs,
|
1340 |
+
tokenizer,
|
1341 |
+
omni_input=True,
|
1342 |
+
max_slice_nums=None,
|
1343 |
+
ls_temperature=1.0,
|
1344 |
+
**kwargs,
|
1345 |
+
):
|
1346 |
+
"""
|
1347 |
+
Streaming video/audio input and output audio stream, Only support batch_size=1
|
1348 |
+
Args:
|
1349 |
+
session_id: Note: new connection should use a new session_id
|
1350 |
+
"""
|
1351 |
+
assert session_id is not None
|
1352 |
+
if self.session_id is None or session_id != self.session_id: # new session
|
1353 |
+
self.is_first = True
|
1354 |
+
else:
|
1355 |
+
self.is_first = False
|
1356 |
+
|
1357 |
+
images = []
|
1358 |
+
audios = []
|
1359 |
+
|
1360 |
+
assert len(msgs) == 1
|
1361 |
+
copy_msgs = deepcopy(msgs)
|
1362 |
+
msg = copy_msgs[0]
|
1363 |
+
|
1364 |
+
assert msg["role"] in ["system", "user", "assistant"]
|
1365 |
+
|
1366 |
+
content = msg["content"]
|
1367 |
+
cur_msgs = []
|
1368 |
+
for j, c in enumerate(content):
|
1369 |
+
if isinstance(c, Image.Image):
|
1370 |
+
images.append(c)
|
1371 |
+
cur_msgs.append("(<image>./</image>)")
|
1372 |
+
elif isinstance(c, np.ndarray): # audio
|
1373 |
+
audios.append(c)
|
1374 |
+
cur_msgs.append("(<audio>./</audio>)")
|
1375 |
+
elif isinstance(c, str):
|
1376 |
+
cur_msgs.append(c)
|
1377 |
+
else:
|
1378 |
+
logger.error("Invalid content type:", c)
|
1379 |
+
|
1380 |
+
cur_contents = "".join(cur_msgs) if omni_input else "\n".join(cur_msgs)
|
1381 |
+
if not self.is_first and self.new_user_msg and msg["role"] == "user": # new user add im_start
|
1382 |
+
if self.llm_generated:
|
1383 |
+
if self.llm_generate_completed:
|
1384 |
+
msg["content"] = "<|im_end|>\n<|im_start|>user\n" + cur_contents
|
1385 |
+
else: # break llm gen, add tts_eos
|
1386 |
+
msg["content"] = "<|tts_eos|><|im_end|>\n<|im_start|>user\n" + cur_contents
|
1387 |
+
else:
|
1388 |
+
msg["content"] = "<|im_start|>user\n" + cur_contents
|
1389 |
+
self.new_user_msg = False
|
1390 |
+
else:
|
1391 |
+
msg["content"] = cur_contents
|
1392 |
+
|
1393 |
+
if msg["role"] in ["system", "assistant"]:
|
1394 |
+
self.new_user_msg = True
|
1395 |
+
self.audio_past_key_values = None # apm kv cache
|
1396 |
+
|
1397 |
+
if self.is_first:
|
1398 |
+
# init pask_key_values
|
1399 |
+
logger.info(f"new session_id: {session_id}, reset kv cache")
|
1400 |
+
self.reset_session()
|
1401 |
+
self.session_id = session_id
|
1402 |
+
|
1403 |
+
prompt = tokenizer.apply_chat_template(
|
1404 |
+
copy_msgs, tokenize=False, add_generation_prompt=False, chat_template=self.default_tts_chat_template
|
1405 |
+
)
|
1406 |
+
add_special_tokens = True # add bos
|
1407 |
+
else:
|
1408 |
+
prompt = copy_msgs[0]["content"]
|
1409 |
+
add_special_tokens = False
|
1410 |
+
|
1411 |
+
model_inputs = self.processor(
|
1412 |
+
[prompt],
|
1413 |
+
[images],
|
1414 |
+
[audios],
|
1415 |
+
max_slice_nums=1 if max_slice_nums is None else max_slice_nums,
|
1416 |
+
use_image_id=False,
|
1417 |
+
chunk_input=True,
|
1418 |
+
return_tensors="pt",
|
1419 |
+
max_length=None,
|
1420 |
+
sampling_rate=16000,
|
1421 |
+
add_special_tokens=add_special_tokens,
|
1422 |
+
).to(self.device)
|
1423 |
+
|
1424 |
+
# 1. prepare input embeddings
|
1425 |
+
model_inputs["inputs_embeds"], _ = self.get_vllm_embedding(model_inputs)
|
1426 |
+
# get audio embedding with audio_past_key_values
|
1427 |
+
inputs_embeds = self.get_omni_embedding(
|
1428 |
+
model_inputs, input_embeddings=model_inputs["inputs_embeds"], stream_input=True
|
1429 |
+
)
|
1430 |
+
|
1431 |
+
if self.is_first:
|
1432 |
+
# clean audio_past_key_values after first prefill
|
1433 |
+
self.audio_past_key_values = None
|
1434 |
+
|
1435 |
+
if self.llm_past_key_values is not None:
|
1436 |
+
cache_length = self.llm_past_key_values[0][0].shape[2]
|
1437 |
+
else:
|
1438 |
+
cache_length = 0
|
1439 |
+
|
1440 |
+
attention_mask = torch.ones((1, cache_length + inputs_embeds.shape[1]), dtype=torch.bool, device=self.device)
|
1441 |
+
|
1442 |
+
# 2. do prefill and predict listen/speak label
|
1443 |
+
outputs = self.llm(
|
1444 |
+
past_key_values=self.llm_past_key_values,
|
1445 |
+
inputs_embeds=inputs_embeds,
|
1446 |
+
attention_mask=attention_mask,
|
1447 |
+
position_ids=None, # position_ids,
|
1448 |
+
use_cache=True,
|
1449 |
+
return_dict=True,
|
1450 |
+
)
|
1451 |
+
self.llm_past_key_values = outputs["past_key_values"]
|
1452 |
+
return
|
1453 |
+
|
1454 |
+
@torch.inference_mode()
|
1455 |
+
def streaming_generate(
|
1456 |
+
self,
|
1457 |
+
session_id,
|
1458 |
+
tokenizer,
|
1459 |
+
max_new_tokens=512,
|
1460 |
+
min_new_tokens=0,
|
1461 |
+
sampling=True,
|
1462 |
+
enable_regenerate=False,
|
1463 |
+
**kwargs,
|
1464 |
+
):
|
1465 |
+
"""
|
1466 |
+
Streaming video/audio input and output audio stream
|
1467 |
+
Args:
|
1468 |
+
"""
|
1469 |
+
if sampling:
|
1470 |
+
generation_config = {
|
1471 |
+
"top_p": 0.8,
|
1472 |
+
"top_k": 100,
|
1473 |
+
"temperature": 0.7,
|
1474 |
+
"do_sample": True,
|
1475 |
+
"repetition_penalty": 1.05,
|
1476 |
+
}
|
1477 |
+
else:
|
1478 |
+
generation_config = {
|
1479 |
+
"num_beams": 3,
|
1480 |
+
"repetition_penalty": 1.2,
|
1481 |
+
}
|
1482 |
+
generation_config["min_new_tokens"] = min_new_tokens
|
1483 |
+
generation_config.update((k, kwargs[k]) for k in generation_config.keys() & kwargs.keys())
|
1484 |
+
|
1485 |
+
# do generate
|
1486 |
+
# reset buffer
|
1487 |
+
self.new_user_msg = True
|
1488 |
+
self.llm_generated = True
|
1489 |
+
self.llm_generate_completed = False
|
1490 |
+
self.audio_past_key_values = None # apm kv cache
|
1491 |
+
|
1492 |
+
terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators]
|
1493 |
+
generate_prompt = "<|im_end|>\n<|im_start|>assistant\n<|spk_bos|><|spk|><|spk_eos|><|tts_bos|>"
|
1494 |
+
input_ids = tokenizer(generate_prompt, return_tensors="pt", add_special_tokens=False)["input_ids"].cuda()
|
1495 |
+
|
1496 |
+
spk_start_idx = torch.where(input_ids[0] == tokenizer.spk_start_id)[0]
|
1497 |
+
spk_end_idx = torch.where(input_ids[0] == tokenizer.spk_end_id)[0]
|
1498 |
+
spk_bounds = [
|
1499 |
+
torch.hstack([(spk_start_idx + 1).unsqueeze(-1), spk_end_idx.unsqueeze(-1)])
|
1500 |
+
] # List[Tensor], (1,2)
|
1501 |
+
|
1502 |
+
cache_length = past_length = self.llm_past_key_values[0][0].shape[2]
|
1503 |
+
attention_mask = torch.ones((1, cache_length + input_ids.shape[1]), dtype=torch.bool, device=self.device)
|
1504 |
+
|
1505 |
+
generation_config["max_new_tokens"] = max_new_tokens
|
1506 |
+
streamer = self.llm_generate_chunk(input_ids, attention_mask, tokenizer, terminators, generation_config)
|
1507 |
+
return streamer
|
1508 |
+
|
1509 |
+
def llm_generate_chunk(self, input_ids, attention_mask, tokenizer, terminators, generation_config):
|
1510 |
+
def check_uncompleted_token(ids):
|
1511 |
+
cur_text = tokenizer.decode(ids)
|
1512 |
+
end = len(ids)
|
1513 |
+
while cur_text[-1] == "�":
|
1514 |
+
end -= 1
|
1515 |
+
if end == 0:
|
1516 |
+
break
|
1517 |
+
cur_text = tokenizer.decode(ids[:end])
|
1518 |
+
return end
|
1519 |
+
|
1520 |
+
max_new_tokens = int(generation_config.pop("max_new_tokens", 2048))
|
1521 |
+
new_len = 0
|
1522 |
+
eos = False
|
1523 |
+
left_ids = None
|
1524 |
+
|
1525 |
+
while True:
|
1526 |
+
outputs = self.llm.generate(
|
1527 |
+
input_ids=input_ids,
|
1528 |
+
past_key_values=self.llm_past_key_values,
|
1529 |
+
attention_mask=attention_mask,
|
1530 |
+
use_cache=True,
|
1531 |
+
max_new_tokens=3, # reduce first token delay
|
1532 |
+
pad_token_id=0,
|
1533 |
+
output_hidden_states=True,
|
1534 |
+
return_dict_in_generate=True,
|
1535 |
+
eos_token_id=terminators,
|
1536 |
+
**generation_config,
|
1537 |
+
)
|
1538 |
+
if outputs.sequences[0, -1] in terminators:
|
1539 |
+
eos = True
|
1540 |
+
input_len = input_ids.shape[1]
|
1541 |
+
cur_ids = outputs.sequences[:, input_len:] #(batch_size,max_new_tokens)
|
1542 |
+
cur_hidden_states = torch.concat([hidden_states[-1][:, -1:] for hidden_states in outputs.hidden_states],dim=1) #(batch_size, max_new_tokens, 3584)
|
1543 |
+
new_len += cur_ids.shape[1]
|
1544 |
+
|
1545 |
+
if left_ids is not None and left_ids.shape[1] > 0:
|
1546 |
+
cur_ids = torch.cat([left_ids, cur_ids], dim=1)
|
1547 |
+
end = check_uncompleted_token(cur_ids[0])
|
1548 |
+
left_ids = cur_ids[:, end:]
|
1549 |
+
cur_ids = cur_ids[:, :end]
|
1550 |
+
if 151692 in cur_ids[0].cpu().tolist():
|
1551 |
+
#<|tts_eos|>
|
1552 |
+
end = cur_ids[0].cpu().tolist().index(151692)
|
1553 |
+
eos = True
|
1554 |
+
cur_ids = cur_ids[:, :end]
|
1555 |
+
cur_hidden_states = cur_hidden_states[:, :end]
|
1556 |
+
text = self._decode_text(cur_ids, tokenizer)[0] if end > 0 else ""
|
1557 |
+
self.llm_past_key_values = outputs.past_key_values
|
1558 |
+
input_ids = outputs.sequences[:, -1:]
|
1559 |
+
cache_length = past_length = self.llm_past_key_values[0][0].shape[2]
|
1560 |
+
attention_mask = torch.ones((1, cache_length + input_ids.shape[1]), dtype=torch.bool, device=self.device)
|
1561 |
+
|
1562 |
+
res = {"text": text, "text_token":cur_ids, "hidden_states": cur_hidden_states}
|
1563 |
+
|
1564 |
+
yield res
|
1565 |
+
|
1566 |
+
if eos:
|
1567 |
+
self.llm_generate_completed = True
|
1568 |
+
break
|
1569 |
+
|
1570 |
+
if new_len >= max_new_tokens:
|
1571 |
+
logger.debug(f"LLM generation {new_len} exceeds max_new_tokens({max_new_tokens}), break.")
|
1572 |
+
break
|
1573 |
+
|
1574 |
+
|
1575 |
+
|
1576 |
+
class MultiModalProjector(nn.Module):
|
1577 |
+
def __init__(self, in_dim, out_dim):
|
1578 |
+
super().__init__()
|
1579 |
+
self.linear1 = nn.Linear(in_features=in_dim, out_features=out_dim, bias=True)
|
1580 |
+
self.relu = nn.ReLU()
|
1581 |
+
self.linear2 = nn.Linear(in_features=out_dim, out_features=out_dim, bias=True)
|
1582 |
+
|
1583 |
+
def forward(self, audio_features):
|
1584 |
+
hidden_states = self.relu(self.linear1(audio_features))
|
1585 |
+
hidden_states = self.linear2(hidden_states)
|
1586 |
+
return hidden_states
|
1587 |
+
|
1588 |
+
def prepare_inputs_for_generation(
|
1589 |
+
self,
|
1590 |
+
input_ids,
|
1591 |
+
past_key_values=None,
|
1592 |
+
attention_mask=None,
|
1593 |
+
inputs_embeds=None,
|
1594 |
+
cache_position=None,
|
1595 |
+
position_ids=None,
|
1596 |
+
use_cache=True,
|
1597 |
+
**kwargs,
|
1598 |
+
):
|
1599 |
+
if past_key_values is not None:
|
1600 |
+
if isinstance(past_key_values, Cache):
|
1601 |
+
cache_length = past_key_values.get_seq_length()
|
1602 |
+
past_length = past_key_values.seen_tokens
|
1603 |
+
else:
|
1604 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
1605 |
+
|
1606 |
+
# Keep only the unprocessed tokens:
|
1607 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1608 |
+
# some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
|
1609 |
+
# input)
|
1610 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
1611 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1612 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1613 |
+
# input_ids based on the past_length.
|
1614 |
+
elif past_length < input_ids.shape[1]:
|
1615 |
+
input_ids = input_ids[:, past_length:]
|
1616 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1617 |
+
|
1618 |
+
if attention_mask is not None and position_ids is None:
|
1619 |
+
# create position_ids on the fly for batch generation
|
1620 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1621 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1622 |
+
if past_key_values:
|
1623 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1624 |
+
|
1625 |
+
# This clo≠clo≠clone call is needed to avoid recapturing cuda graphs with →rch.comπ≤→rch.comπ≤torch.compile's mode=reduce−overheadmode=reduce-overheadmode="reduce-overhead, as otherwise the input positionidspositionidsposition_ids would have various stride during the decoding. Here, simply using .contiguous().contiguous().contiguous() is not sufficient as in the batch size = 1 case, positionidspositionidsposition_ids is already contiguous but with varying stride which retriggers a capture.
|
1626 |
+
position_ids = position_ids.clone(memory_format=torch.contiguous_format)
|
1627 |
+
|
1628 |
+
# if ∈putsembeds∈putsembedsinputs_embeds are passed, we only want to use them in the 1st generation step
|
1629 |
+
if inputs_embeds is not None and cache_position[0] == 0:
|
1630 |
+
model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
|
1631 |
+
else:
|
1632 |
+
# The clone here is for the same reason as for positionidspositionidsposition_ids.
|
1633 |
+
model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None}
|
1634 |
+
|
1635 |
+
if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2:
|
1636 |
+
if model_inputs["inputs_embeds"] is not None:
|
1637 |
+
batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
|
1638 |
+
device = model_inputs["inputs_embeds"].device
|
1639 |
+
else:
|
1640 |
+
batch_size, sequence_length = model_inputs["input_ids"].shape
|
1641 |
+
device = model_inputs["input_ids"].device
|
1642 |
+
|
1643 |
+
dtype = self.lm_head.weight.dtype
|
1644 |
+
min_dtype = torch.finfo(dtype).min
|
1645 |
+
|
1646 |
+
attention_mask = _prepare_4d_causal_attention_mask_with_cache_position(
|
1647 |
+
attention_mask,
|
1648 |
+
sequence_length=sequence_length,
|
1649 |
+
target_length=past_key_values.get_max_length(),
|
1650 |
+
dtype=dtype,
|
1651 |
+
device=device,
|
1652 |
+
min_dtype=min_dtype,
|
1653 |
+
cache_position=cache_position,
|
1654 |
+
batch_size=batch_size,
|
1655 |
+
)
|
1656 |
+
|
1657 |
+
model_inputs.update(
|
1658 |
+
{
|
1659 |
+
"position_ids": position_ids,
|
1660 |
+
# "cache_position": cache_position,
|
1661 |
+
"past_key_values": past_key_values,
|
1662 |
+
"use_cache": use_cache,
|
1663 |
+
"attention_mask": attention_mask,
|
1664 |
+
}
|
1665 |
+
)
|
1666 |
+
return model_inputs
|
1667 |
+
|
1668 |
+
|
1669 |
+
# Copied from transformers.models.whisper.modeling_whisper.WhisperEncoderLayer and add use_cache for streaming inference
|
1670 |
+
class MiniCPMWhisperEncoderLayer(nn.Module):
|
1671 |
+
def __init__(self, config: WhisperConfig, layer_idx: int = None):
|
1672 |
+
super().__init__()
|
1673 |
+
self.embed_dim = config.d_model #1024
|
1674 |
+
self.self_attn = WHISPER_ATTENTION_CLASSES[config._attn_implementation](
|
1675 |
+
embed_dim=self.embed_dim,
|
1676 |
+
num_heads=config.encoder_attention_heads,
|
1677 |
+
dropout=config.attention_dropout,
|
1678 |
+
config=config,
|
1679 |
+
layer_idx=layer_idx,
|
1680 |
+
)
|
1681 |
+
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
1682 |
+
self.dropout = config.dropout
|
1683 |
+
self.activation_fn = ACT2FN[config.activation_function]
|
1684 |
+
self.activation_dropout = config.activation_dropout
|
1685 |
+
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
|
1686 |
+
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
|
1687 |
+
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
|
1688 |
+
|
1689 |
+
def forward(
|
1690 |
+
self,
|
1691 |
+
hidden_states: torch.Tensor,
|
1692 |
+
attention_mask: torch.Tensor,
|
1693 |
+
layer_head_mask: torch.Tensor,
|
1694 |
+
output_attentions: bool = False,
|
1695 |
+
past_key_values: Optional[EncoderDecoderCache] = None,
|
1696 |
+
use_cache: Optional[bool] = False,
|
1697 |
+
) -> torch.Tensor:
|
1698 |
+
r"""
|
1699 |
+
Args:
|
1700 |
+
hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, embed_dim)`):
|
1701 |
+
Hidden states to be fed into the encoder layer.
|
1702 |
+
attention_mask (`torch.FloatTensor` of shape `(batch_size, 1, tgt_len, src_len)`):
|
1703 |
+
Attention mask where padding elements are indicated by large negative values.
|
1704 |
+
layer_head_mask (`torch.FloatTensor` of shape `(encoder_attention_heads,)`):
|
1705 |
+
Mask to nullify selected heads of the attention modules.
|
1706 |
+
output_attentions (`bool`, *optional*):
|
1707 |
+
Whether or not to return the attention weights.
|
1708 |
+
past_key_values (`EncoderDecoderCache`, *optional*):
|
1709 |
+
Past key-value pairs used for incremental decoding.
|
1710 |
+
use_cache (`bool`, *optional*):
|
1711 |
+
Whether or not to return updated `past_key_values` for caching.
|
1712 |
+
|
1713 |
+
Returns:
|
1714 |
+
A tuple of shape `(hidden_states, optional(attn_weights), optional(past_key_values))`.
|
1715 |
+
"""
|
1716 |
+
residual = hidden_states
|
1717 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
1718 |
+
hidden_states, attn_weights, past_key_values = self.self_attn(
|
1719 |
+
hidden_states=hidden_states,
|
1720 |
+
attention_mask=attention_mask,
|
1721 |
+
layer_head_mask=layer_head_mask,
|
1722 |
+
output_attentions=output_attentions,
|
1723 |
+
past_key_value=past_key_values,
|
1724 |
+
)
|
1725 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
1726 |
+
hidden_states = residual + hidden_states
|
1727 |
+
|
1728 |
+
residual = hidden_states
|
1729 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
1730 |
+
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
1731 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
|
1732 |
+
hidden_states = self.fc2(hidden_states)
|
1733 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
1734 |
+
hidden_states = residual + hidden_states
|
1735 |
+
|
1736 |
+
if hidden_states.dtype == torch.float16 and (
|
1737 |
+
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
|
1738 |
+
):
|
1739 |
+
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
|
1740 |
+
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
|
1741 |
+
|
1742 |
+
outputs = (hidden_states,)
|
1743 |
+
|
1744 |
+
if output_attentions:
|
1745 |
+
outputs += (attn_weights,)
|
1746 |
+
|
1747 |
+
if use_cache:
|
1748 |
+
outputs += (past_key_values,)
|
1749 |
+
|
1750 |
+
return outputs
|
1751 |
+
|
1752 |
+
|
1753 |
+
|
1754 |
+
# Copied from from transformers.models.whisper.modeling_whisper.WhisperEncoder and add use_cache for streaming inference
|
1755 |
+
class MiniCPMWhisperEncoder(WhisperEncoder):
|
1756 |
+
|
1757 |
+
def __init__(self, config: WhisperConfig):
|
1758 |
+
# print(config)
|
1759 |
+
super().__init__(config)
|
1760 |
+
self.layers = nn.ModuleList(
|
1761 |
+
[MiniCPMWhisperEncoderLayer(config, layer_idx=i) for i in range(config.encoder_layers)]
|
1762 |
+
)
|
1763 |
+
|
1764 |
+
def forward(
|
1765 |
+
self,
|
1766 |
+
input_features,
|
1767 |
+
attention_mask=None,
|
1768 |
+
head_mask=None,
|
1769 |
+
output_attentions=None,
|
1770 |
+
output_hidden_states=None,
|
1771 |
+
return_dict=None,
|
1772 |
+
past_key_values: Optional[EncoderDecoderCache] = None,
|
1773 |
+
use_cache: Optional[bool] = None,
|
1774 |
+
):
|
1775 |
+
r"""
|
1776 |
+
Forward pass of the Whisper encoder.
|
1777 |
+
|
1778 |
+
Args:
|
1779 |
+
input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, sequence_length)`):
|
1780 |
+
Float values of log-mel features extracted from the raw audio waveform. Typically generated
|
1781 |
+
by a feature extractor (e.g., `WhisperFeatureExtractor`) that processes `.flac` or `.wav`
|
1782 |
+
files into padded 2D mel spectrogram frames. These features are projected via convolution layers
|
1783 |
+
(`conv1` and `conv2`) and then transformed into embeddings for the encoder.
|
1784 |
+
|
1785 |
+
attention_mask (`torch.Tensor`, *optional*):
|
1786 |
+
Not used by Whisper for masking `input_features`, but included for API compatibility with
|
1787 |
+
other models. If provided, it is simply ignored within the model. By default, Whisper
|
1788 |
+
effectively ignores silence in the input log-mel spectrogram.
|
1789 |
+
|
1790 |
+
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
|
1791 |
+
Mask to nullify selected attention heads. The elements should be either 1 or 0, where:
|
1792 |
+
- 1 indicates the head is **not masked**,
|
1793 |
+
- 0 indicates the head is **masked** (i.e., the attention head is dropped).
|
1794 |
+
|
1795 |
+
output_attentions (`bool`, *optional*):
|
1796 |
+
Whether or not to return the attention tensors of all encoder layers. If set to `True`, the
|
1797 |
+
returned tuple (or `BaseModelOutputWithPast`) will contain an additional element with
|
1798 |
+
attention weights for each encoder layer.
|
1799 |
+
|
1800 |
+
output_hidden_states (`bool`, *optional*):
|
1801 |
+
Whether or not to return the hidden states of all layers. If set to `True`, the returned
|
1802 |
+
tuple (or `BaseModelOutputWithPast`) will contain a tuple of hidden states, including the
|
1803 |
+
initial embedding output as well as the outputs of each layer.
|
1804 |
+
|
1805 |
+
return_dict (`bool`, *optional*):
|
1806 |
+
Whether or not to return a `BaseModelOutputWithPast` (a subclass of `ModelOutput`) instead
|
1807 |
+
of a plain tuple. If set to `True`, the output will be a `BaseModelOutputWithPast` object,
|
1808 |
+
otherwise it will be a tuple.
|
1809 |
+
|
1810 |
+
past_key_values (`EncoderDecoderCache`, *optional*):
|
1811 |
+
When using caching for faster inference, this is an object that stores the key-value pairs
|
1812 |
+
for attention states. If provided, the model will append new states to the existing cache
|
1813 |
+
and return the updated cache. This speeds up sequential decoding or chunked inference.
|
1814 |
+
|
1815 |
+
- If `past_key_values` is `None`, no past states are used or returned.
|
1816 |
+
- If `past_key_values` is not `None` and `use_cache=True`, the model will use the provided
|
1817 |
+
cache and return the updated cache (as `next_encoder_cache`).
|
1818 |
+
|
1819 |
+
use_cache (`bool`, *optional*):
|
1820 |
+
Whether or not the model should use caching (`past_key_values`) to speed up processing
|
1821 |
+
during inference. When set to `True`, the model will:
|
1822 |
+
- Inspect and use `past_key_values` if provided.
|
1823 |
+
- Return updated `past_key_values` (under the name `next_encoder_cache` in
|
1824 |
+
`BaseModelOutputWithPast`).
|
1825 |
+
|
1826 |
+
Returns:
|
1827 |
+
`BaseModelOutputWithPast` or `tuple` (depending on `return_dict`):
|
1828 |
+
If `return_dict=True`, a `BaseModelOutputWithPast` is returned, which contains:
|
1829 |
+
- **last_hidden_state** (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
1830 |
+
The output of the final encoder layer.
|
1831 |
+
- **hidden_states** (`tuple(torch.FloatTensor)`, *optional*, returned if `output_hidden_states=True`):
|
1832 |
+
Hidden states of the model at each layer (including the initial projection).
|
1833 |
+
- **attentions** (`tuple(torch.FloatTensor)`, *optional*, returned if `output_attentions=True`):
|
1834 |
+
Attention weights from each encoder layer.
|
1835 |
+
- **past_key_values** (an object of type `EncoderDecoderCache` or `None`, *optional*):
|
1836 |
+
Updated cache of key-value pairs if `use_cache=True`.
|
1837 |
+
|
1838 |
+
If `return_dict=False`, a tuple is returned, where the format is:
|
1839 |
+
`(last_hidden_state, hidden_states, attentions)`, with `hidden_states` and `attentions`
|
1840 |
+
only present if their respective `output_*` arguments are set to `True`.
|
1841 |
+
|
1842 |
+
Example:
|
1843 |
+
>>> from transformers import AutoFeatureExtractor, WhisperConfig, WhisperForConditionalGeneration
|
1844 |
+
>>> import torch
|
1845 |
+
|
1846 |
+
>>> # Load a feature extractor and a Whisper model
|
1847 |
+
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-tiny.en")
|
1848 |
+
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")
|
1849 |
+
|
1850 |
+
>>> # Assume you have audio (list of floats or numpy array) loaded from a file
|
1851 |
+
>>> # Then extract the mel features:
|
1852 |
+
>>> input_features = feature_extractor(audio, sampling_rate=16000, return_tensors="pt").input_features
|
1853 |
+
|
1854 |
+
>>> # Forward pass
|
1855 |
+
>>> outputs = model.encoder(
|
1856 |
+
... input_features=input_features,
|
1857 |
+
... output_hidden_states=True,
|
1858 |
+
... output_attentions=True,
|
1859 |
+
... use_cache=True
|
1860 |
+
... )
|
1861 |
+
|
1862 |
+
>>> # Retrieve the last hidden state
|
1863 |
+
>>> last_hidden_state = outputs.last_hidden_state
|
1864 |
+
>>> print(last_hidden_state.shape)
|
1865 |
+
torch.Size([batch_size, seq_length, hidden_size])
|
1866 |
+
|
1867 |
+
>>> # Retrieve the intermediate hidden states if output_hidden_states=True
|
1868 |
+
>>> all_encoder_hidden_states = outputs.hidden_states
|
1869 |
+
|
1870 |
+
>>> # Retrieve attention weights if output_attentions=True
|
1871 |
+
>>> all_encoder_attentions = outputs.attentions
|
1872 |
+
|
1873 |
+
>>> # Retrieve updated past key values if use_cache=True
|
1874 |
+
>>> encoder_cache = outputs.past_key_values
|
1875 |
+
"""
|
1876 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1877 |
+
output_hidden_states = (
|
1878 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1879 |
+
)
|
1880 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1881 |
+
|
1882 |
+
# Ignore copy
|
1883 |
+
input_features = input_features.to(dtype=self.conv1.weight.dtype, device=self.conv1.weight.device)
|
1884 |
+
|
1885 |
+
inputs_embeds = nn.functional.gelu(self.conv1(input_features))
|
1886 |
+
inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds))
|
1887 |
+
|
1888 |
+
inputs_embeds = inputs_embeds.permute(0, 2, 1)
|
1889 |
+
# import ipdb; ipdb.set_trace()
|
1890 |
+
embed_pos = self.embed_positions.weight
|
1891 |
+
|
1892 |
+
if embed_pos.shape[0] == 0:
|
1893 |
+
#分布式训练
|
1894 |
+
params_to_gather = [param for param in self.embed_positions.parameters()]
|
1895 |
+
with deepspeed.zero.GatheredParameters(params_to_gather, modifier_rank=0):
|
1896 |
+
embed_pos = deepcopy(self.embed_positions.weight)
|
1897 |
+
# import ipdb; ipdb.set_trace()
|
1898 |
+
|
1899 |
+
past_key_values_length = 0
|
1900 |
+
if use_cache:
|
1901 |
+
if past_key_values is None:
|
1902 |
+
past_key_values = EncoderDecoderCache(DynamicCache(), DynamicCache())
|
1903 |
+
elif isinstance(past_key_values, list):
|
1904 |
+
past_key_values = EncoderDecoderCache(DynamicCache.from_legacy_cache(past_key_values), DynamicCache())
|
1905 |
+
elif isinstance(past_key_values, DynamicCache):
|
1906 |
+
past_key_values = EncoderDecoderCache(past_key_values, DynamicCache())
|
1907 |
+
else:
|
1908 |
+
pass
|
1909 |
+
past_key_values_length = past_key_values.self_attention_cache.get_usable_length(inputs_embeds.shape[1])
|
1910 |
+
if inputs_embeds.shape[1] + past_key_values_length > embed_pos.shape[0]:
|
1911 |
+
logger.warning("seems the audio is longer than 30s. repeating the last part of the audio")
|
1912 |
+
embed_pos_front = embed_pos[past_key_values_length:, :]
|
1913 |
+
embed_pos = torch.cat(
|
1914 |
+
(
|
1915 |
+
embed_pos_front,
|
1916 |
+
torch.repeat_interleave(
|
1917 |
+
embed_pos[-1, :].unsqueeze(0),
|
1918 |
+
inputs_embeds.shape[1] - embed_pos.shape[0] + past_key_values_length,
|
1919 |
+
dim=0,
|
1920 |
+
),
|
1921 |
+
)
|
1922 |
+
)
|
1923 |
+
else:
|
1924 |
+
embed_pos = embed_pos[past_key_values_length : inputs_embeds.shape[1] + past_key_values_length, :]
|
1925 |
+
else:
|
1926 |
+
embed_pos = embed_pos[: inputs_embeds.shape[1], :]
|
1927 |
+
|
1928 |
+
hidden_states = inputs_embeds + embed_pos
|
1929 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
1930 |
+
|
1931 |
+
encoder_states = () if output_hidden_states else None
|
1932 |
+
all_attentions = () if output_attentions else None
|
1933 |
+
|
1934 |
+
# check if head_mask has a correct number of layers specified if desired
|
1935 |
+
if head_mask is not None:
|
1936 |
+
assert head_mask.size()[0] == (
|
1937 |
+
len(self.layers)
|
1938 |
+
), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
|
1939 |
+
|
1940 |
+
for idx, encoder_layer in enumerate(self.layers):
|
1941 |
+
if output_hidden_states:
|
1942 |
+
encoder_states = encoder_states + (hidden_states,)
|
1943 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
1944 |
+
to_drop = False
|
1945 |
+
if self.training:
|
1946 |
+
dropout_probability = torch.rand([])
|
1947 |
+
if dropout_probability < self.layerdrop: # skip the layer
|
1948 |
+
to_drop = True
|
1949 |
+
|
1950 |
+
# Ignore copy
|
1951 |
+
if to_drop:
|
1952 |
+
layer_outputs = (None, None)
|
1953 |
+
else:
|
1954 |
+
if self.gradient_checkpointing and self.training:
|
1955 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1956 |
+
encoder_layer.__call__,
|
1957 |
+
hidden_states,
|
1958 |
+
attention_mask,
|
1959 |
+
(head_mask[idx] if head_mask is not None else None),
|
1960 |
+
output_attentions,
|
1961 |
+
past_key_values,
|
1962 |
+
use_cache,
|
1963 |
+
)
|
1964 |
+
else:
|
1965 |
+
layer_outputs = encoder_layer(
|
1966 |
+
hidden_states,
|
1967 |
+
attention_mask,
|
1968 |
+
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
|
1969 |
+
output_attentions=output_attentions,
|
1970 |
+
past_key_values=past_key_values,
|
1971 |
+
use_cache=use_cache,
|
1972 |
+
)
|
1973 |
+
|
1974 |
+
hidden_states = layer_outputs[0]
|
1975 |
+
|
1976 |
+
if use_cache:
|
1977 |
+
next_encoder_cache = layer_outputs[2 if output_attentions else 1]
|
1978 |
+
else:
|
1979 |
+
next_encoder_cache = None
|
1980 |
+
|
1981 |
+
if output_attentions:
|
1982 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
1983 |
+
|
1984 |
+
hidden_states = self.layer_norm(hidden_states)
|
1985 |
+
if output_hidden_states:
|
1986 |
+
encoder_states = encoder_states + (hidden_states,)
|
1987 |
+
|
1988 |
+
if not return_dict:
|
1989 |
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
1990 |
+
return BaseModelOutputWithPast(
|
1991 |
+
last_hidden_state=hidden_states,
|
1992 |
+
hidden_states=encoder_states,
|
1993 |
+
attentions=all_attentions,
|
1994 |
+
past_key_values=next_encoder_cache,
|
1995 |
+
)
|
1996 |
+
|
Chat/modeling_navit_siglip.py
ADDED
@@ -0,0 +1,940 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Google AI and The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch Siglip model. """
|
16 |
+
# Copied from HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit and add tgt_sizes
|
17 |
+
|
18 |
+
|
19 |
+
import math
|
20 |
+
import os
|
21 |
+
import warnings
|
22 |
+
from dataclasses import dataclass
|
23 |
+
from typing import Optional
|
24 |
+
from typing import Tuple
|
25 |
+
from typing import Union
|
26 |
+
|
27 |
+
import numpy as np
|
28 |
+
import torch
|
29 |
+
import torch.nn.functional as F
|
30 |
+
import torch.utils.checkpoint
|
31 |
+
from torch import nn
|
32 |
+
from torch.nn.init import _calculate_fan_in_and_fan_out
|
33 |
+
from transformers.activations import ACT2FN
|
34 |
+
from transformers.configuration_utils import PretrainedConfig
|
35 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask
|
36 |
+
from transformers.modeling_outputs import BaseModelOutput
|
37 |
+
from transformers.modeling_outputs import BaseModelOutputWithPooling
|
38 |
+
from transformers.modeling_utils import PreTrainedModel
|
39 |
+
from transformers.utils import add_start_docstrings
|
40 |
+
from transformers.utils import add_start_docstrings_to_model_forward
|
41 |
+
from transformers.utils import is_flash_attn_2_available
|
42 |
+
from transformers.utils import logging
|
43 |
+
from transformers.utils import ModelOutput
|
44 |
+
from transformers.utils import replace_return_docstrings
|
45 |
+
|
46 |
+
logger = logging.get_logger(__name__)
|
47 |
+
|
48 |
+
|
49 |
+
class SiglipVisionConfig(PretrainedConfig):
|
50 |
+
r"""
|
51 |
+
This is the configuration class to store the configuration of a [`SiglipVisionModel`]. It is used to instantiate a
|
52 |
+
Siglip vision encoder according to the specified arguments, defining the model architecture. Instantiating a
|
53 |
+
configuration with the defaults will yield a similar configuration to that of the vision encoder of the Siglip
|
54 |
+
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.
|
55 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
56 |
+
documentation from [`PretrainedConfig`] for more information.
|
57 |
+
Args:
|
58 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
59 |
+
Dimensionality of the encoder layers and the pooler layer.
|
60 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
61 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
62 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
63 |
+
Number of hidden layers in the Transformer encoder.
|
64 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
65 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
66 |
+
num_channels (`int`, *optional*, defaults to 3):
|
67 |
+
Number of channels in the input images.
|
68 |
+
image_size (`int`, *optional*, defaults to 224):
|
69 |
+
The size (resolution) of each image.
|
70 |
+
patch_size (`int`, *optional*, defaults to 16):
|
71 |
+
The size (resolution) of each patch.
|
72 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
|
73 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
74 |
+
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
|
75 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
|
76 |
+
The epsilon used by the layer normalization layers.
|
77 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
78 |
+
The dropout ratio for the attention probabilities.
|
79 |
+
Example:
|
80 |
+
```python
|
81 |
+
>>> from transformers import SiglipVisionConfig, SiglipVisionModel
|
82 |
+
>>> # Initializing a SiglipVisionConfig with google/siglip-base-patch16-224 style configuration
|
83 |
+
>>> configuration = SiglipVisionConfig()
|
84 |
+
>>> # Initializing a SiglipVisionModel (with random weights) from the google/siglip-base-patch16-224 style configuration
|
85 |
+
>>> model = SiglipVisionModel(configuration)
|
86 |
+
>>> # Accessing the model configuration
|
87 |
+
>>> configuration = model.config
|
88 |
+
```"""
|
89 |
+
|
90 |
+
model_type = "siglip_vision_model"
|
91 |
+
|
92 |
+
def __init__(
|
93 |
+
self,
|
94 |
+
hidden_size=768,
|
95 |
+
intermediate_size=3072,
|
96 |
+
num_hidden_layers=12,
|
97 |
+
num_attention_heads=12,
|
98 |
+
num_channels=3,
|
99 |
+
image_size=224,
|
100 |
+
patch_size=16,
|
101 |
+
hidden_act="gelu_pytorch_tanh",
|
102 |
+
layer_norm_eps=1e-6,
|
103 |
+
attention_dropout=0.0,
|
104 |
+
**kwargs,
|
105 |
+
):
|
106 |
+
super().__init__(**kwargs)
|
107 |
+
|
108 |
+
self.hidden_size = hidden_size
|
109 |
+
self.intermediate_size = intermediate_size
|
110 |
+
self.num_hidden_layers = num_hidden_layers
|
111 |
+
self.num_attention_heads = num_attention_heads
|
112 |
+
self.num_channels = num_channels
|
113 |
+
self.patch_size = patch_size
|
114 |
+
self.image_size = image_size
|
115 |
+
self.attention_dropout = attention_dropout
|
116 |
+
self.layer_norm_eps = layer_norm_eps
|
117 |
+
self.hidden_act = hidden_act
|
118 |
+
|
119 |
+
@classmethod
|
120 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
121 |
+
cls._set_token_in_kwargs(kwargs)
|
122 |
+
|
123 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
124 |
+
|
125 |
+
# get the vision config dict if we are loading from SiglipConfig
|
126 |
+
if config_dict.get("model_type") == "siglip":
|
127 |
+
config_dict = config_dict["vision_config"]
|
128 |
+
|
129 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
130 |
+
logger.warning(
|
131 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
132 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
133 |
+
)
|
134 |
+
|
135 |
+
return cls.from_dict(config_dict, **kwargs)
|
136 |
+
|
137 |
+
|
138 |
+
_CHECKPOINT_FOR_DOC = "google/siglip-base-patch16-224"
|
139 |
+
|
140 |
+
SIGLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
141 |
+
"google/siglip-base-patch16-224",
|
142 |
+
# See all SigLIP models at https://huggingface.co/models?filter=siglip
|
143 |
+
]
|
144 |
+
|
145 |
+
if is_flash_attn_2_available():
|
146 |
+
from flash_attn import flash_attn_func
|
147 |
+
from flash_attn import flash_attn_varlen_func
|
148 |
+
from flash_attn.bert_padding import index_first_axis # noqa
|
149 |
+
from flash_attn.bert_padding import pad_input
|
150 |
+
from flash_attn.bert_padding import unpad_input
|
151 |
+
|
152 |
+
|
153 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
154 |
+
def _get_unpad_data(attention_mask):
|
155 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
156 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
157 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
158 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
159 |
+
return (
|
160 |
+
indices,
|
161 |
+
cu_seqlens,
|
162 |
+
max_seqlen_in_batch,
|
163 |
+
)
|
164 |
+
|
165 |
+
|
166 |
+
def _trunc_normal_(tensor, mean, std, a, b):
|
167 |
+
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
168 |
+
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
169 |
+
def norm_cdf(x):
|
170 |
+
# Computes standard normal cumulative distribution function
|
171 |
+
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
|
172 |
+
|
173 |
+
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
174 |
+
warnings.warn(
|
175 |
+
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
|
176 |
+
"The distribution of values may be incorrect.",
|
177 |
+
stacklevel=2,
|
178 |
+
)
|
179 |
+
|
180 |
+
# Values are generated by using a truncated uniform distribution and
|
181 |
+
# then using the inverse CDF for the normal distribution.
|
182 |
+
# Get upper and lower cdf values
|
183 |
+
l = norm_cdf((a - mean) / std)
|
184 |
+
u = norm_cdf((b - mean) / std)
|
185 |
+
|
186 |
+
# Uniformly fill tensor with values from [l, u], then translate to
|
187 |
+
# [2l-1, 2u-1].
|
188 |
+
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
189 |
+
|
190 |
+
# Use inverse cdf transform for normal distribution to get truncated
|
191 |
+
# standard normal
|
192 |
+
if tensor.dtype in [torch.float16, torch.bfloat16]:
|
193 |
+
# The `erfinv_` op is not (yet?) defined in float16+cpu, bfloat16+gpu
|
194 |
+
og_dtype = tensor.dtype
|
195 |
+
tensor = tensor.to(torch.float32)
|
196 |
+
tensor.erfinv_()
|
197 |
+
tensor = tensor.to(og_dtype)
|
198 |
+
else:
|
199 |
+
tensor.erfinv_()
|
200 |
+
|
201 |
+
# Transform to proper mean, std
|
202 |
+
tensor.mul_(std * math.sqrt(2.0))
|
203 |
+
tensor.add_(mean)
|
204 |
+
|
205 |
+
# Clamp to ensure it's in the proper range
|
206 |
+
if tensor.dtype == torch.float16:
|
207 |
+
# The `clamp_` op is not (yet?) defined in float16+cpu
|
208 |
+
tensor = tensor.to(torch.float32)
|
209 |
+
tensor.clamp_(min=a, max=b)
|
210 |
+
tensor = tensor.to(torch.float16)
|
211 |
+
else:
|
212 |
+
tensor.clamp_(min=a, max=b)
|
213 |
+
|
214 |
+
|
215 |
+
def trunc_normal_tf_(
|
216 |
+
tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0
|
217 |
+
) -> torch.Tensor:
|
218 |
+
"""Fills the input Tensor with values drawn from a truncated
|
219 |
+
normal distribution. The values are effectively drawn from the
|
220 |
+
normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)`
|
221 |
+
with values outside :math:`[a, b]` redrawn until they are within
|
222 |
+
the bounds. The method used for generating the random values works
|
223 |
+
best when :math:`a \\leq \text{mean} \\leq b`.
|
224 |
+
NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the
|
225 |
+
bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0
|
226 |
+
and the result is subsquently scaled and shifted by the mean and std args.
|
227 |
+
Args:
|
228 |
+
tensor: an n-dimensional `torch.Tensor`
|
229 |
+
mean: the mean of the normal distribution
|
230 |
+
std: the standard deviation of the normal distribution
|
231 |
+
a: the minimum cutoff value
|
232 |
+
b: the maximum cutoff value
|
233 |
+
"""
|
234 |
+
with torch.no_grad():
|
235 |
+
_trunc_normal_(tensor, 0, 1.0, a, b)
|
236 |
+
tensor.mul_(std).add_(mean)
|
237 |
+
|
238 |
+
|
239 |
+
def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"):
|
240 |
+
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
|
241 |
+
if mode == "fan_in":
|
242 |
+
denom = fan_in
|
243 |
+
elif mode == "fan_out":
|
244 |
+
denom = fan_out
|
245 |
+
elif mode == "fan_avg":
|
246 |
+
denom = (fan_in + fan_out) / 2
|
247 |
+
|
248 |
+
variance = scale / denom
|
249 |
+
|
250 |
+
if distribution == "truncated_normal":
|
251 |
+
# constant is stddev of standard normal truncated to (-2, 2)
|
252 |
+
trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978)
|
253 |
+
elif distribution == "normal":
|
254 |
+
with torch.no_grad():
|
255 |
+
tensor.normal_(std=math.sqrt(variance))
|
256 |
+
elif distribution == "uniform":
|
257 |
+
bound = math.sqrt(3 * variance)
|
258 |
+
with torch.no_grad():
|
259 |
+
tensor.uniform_(-bound, bound)
|
260 |
+
else:
|
261 |
+
raise ValueError(f"invalid distribution {distribution}")
|
262 |
+
|
263 |
+
|
264 |
+
def lecun_normal_(tensor):
|
265 |
+
variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal")
|
266 |
+
|
267 |
+
|
268 |
+
def default_flax_embed_init(tensor):
|
269 |
+
variance_scaling_(tensor, mode="fan_in", distribution="normal")
|
270 |
+
|
271 |
+
|
272 |
+
@dataclass
|
273 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPVisionModelOutput with CLIP->Siglip
|
274 |
+
class SiglipVisionModelOutput(ModelOutput):
|
275 |
+
"""
|
276 |
+
Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
|
277 |
+
Args:
|
278 |
+
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
|
279 |
+
The image embeddings obtained by applying the projection layer to the pooler_output.
|
280 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
281 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
282 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
283 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
284 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
285 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
286 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
287 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
288 |
+
sequence_length)`.
|
289 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
290 |
+
heads.
|
291 |
+
"""
|
292 |
+
|
293 |
+
image_embeds: Optional[torch.FloatTensor] = None
|
294 |
+
last_hidden_state: torch.FloatTensor = None
|
295 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
296 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
297 |
+
|
298 |
+
|
299 |
+
class SiglipVisionEmbeddings(nn.Module):
|
300 |
+
def __init__(self, config: SiglipVisionConfig):
|
301 |
+
super().__init__()
|
302 |
+
self.config = config
|
303 |
+
self.embed_dim = config.hidden_size
|
304 |
+
self.image_size = config.image_size
|
305 |
+
self.patch_size = config.patch_size
|
306 |
+
|
307 |
+
self.patch_embedding = nn.Conv2d(
|
308 |
+
in_channels=config.num_channels,
|
309 |
+
out_channels=self.embed_dim,
|
310 |
+
kernel_size=self.patch_size,
|
311 |
+
stride=self.patch_size,
|
312 |
+
padding="valid",
|
313 |
+
)
|
314 |
+
|
315 |
+
self.num_patches_per_side = self.image_size // self.patch_size
|
316 |
+
self.num_patches = self.num_patches_per_side**2
|
317 |
+
self.num_positions = self.num_patches
|
318 |
+
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
319 |
+
|
320 |
+
def forward(
|
321 |
+
self,
|
322 |
+
pixel_values: torch.FloatTensor,
|
323 |
+
patch_attention_mask: torch.BoolTensor,
|
324 |
+
tgt_sizes: Optional[torch.IntTensor] = None,
|
325 |
+
) -> torch.Tensor:
|
326 |
+
batch_size = pixel_values.size(0)
|
327 |
+
|
328 |
+
patch_embeds = self.patch_embedding(pixel_values)
|
329 |
+
embeddings = patch_embeds.flatten(2).transpose(1, 2)
|
330 |
+
|
331 |
+
max_im_h, max_im_w = pixel_values.size(2), pixel_values.size(3)
|
332 |
+
max_nb_patches_h, max_nb_patches_w = max_im_h // self.patch_size, max_im_w // self.patch_size
|
333 |
+
boundaries = torch.arange(1 / self.num_patches_per_side, 1.0, 1 / self.num_patches_per_side)
|
334 |
+
position_ids = torch.full(
|
335 |
+
size=(
|
336 |
+
batch_size,
|
337 |
+
max_nb_patches_h * max_nb_patches_w,
|
338 |
+
),
|
339 |
+
fill_value=0,
|
340 |
+
)
|
341 |
+
|
342 |
+
for batch_idx, p_attn_mask in enumerate(patch_attention_mask):
|
343 |
+
if tgt_sizes is not None:
|
344 |
+
nb_patches_h = tgt_sizes[batch_idx][0]
|
345 |
+
nb_patches_w = tgt_sizes[batch_idx][1]
|
346 |
+
else:
|
347 |
+
nb_patches_h = p_attn_mask[:, 0].sum()
|
348 |
+
nb_patches_w = p_attn_mask[0].sum()
|
349 |
+
|
350 |
+
fractional_coords_h = torch.arange(0, 1 - 1e-6, 1 / nb_patches_h)
|
351 |
+
fractional_coords_w = torch.arange(0, 1 - 1e-6, 1 / nb_patches_w)
|
352 |
+
|
353 |
+
bucket_coords_h = torch.bucketize(fractional_coords_h, boundaries, right=True)
|
354 |
+
bucket_coords_w = torch.bucketize(fractional_coords_w, boundaries, right=True)
|
355 |
+
|
356 |
+
pos_ids = (bucket_coords_h[:, None] * self.num_patches_per_side + bucket_coords_w).flatten()
|
357 |
+
position_ids[batch_idx][p_attn_mask.view(-1).cpu()] = pos_ids
|
358 |
+
|
359 |
+
position_ids = position_ids.to(self.position_embedding.weight.device)
|
360 |
+
|
361 |
+
embeddings = embeddings + self.position_embedding(position_ids)
|
362 |
+
return embeddings
|
363 |
+
|
364 |
+
|
365 |
+
class SiglipAttention(nn.Module):
|
366 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
367 |
+
|
368 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__
|
369 |
+
def __init__(self, config):
|
370 |
+
super().__init__()
|
371 |
+
self.config = config
|
372 |
+
self.embed_dim = config.hidden_size
|
373 |
+
self.num_heads = config.num_attention_heads
|
374 |
+
self.head_dim = self.embed_dim // self.num_heads
|
375 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
376 |
+
raise ValueError(
|
377 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
378 |
+
f" {self.num_heads})."
|
379 |
+
)
|
380 |
+
self.scale = self.head_dim**-0.5
|
381 |
+
self.dropout = config.attention_dropout
|
382 |
+
|
383 |
+
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
384 |
+
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
385 |
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
386 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
387 |
+
|
388 |
+
def forward(
|
389 |
+
self,
|
390 |
+
hidden_states: torch.Tensor,
|
391 |
+
attention_mask: Optional[torch.Tensor] = None,
|
392 |
+
output_attentions: Optional[bool] = False,
|
393 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
394 |
+
"""Input shape: Batch x Time x Channel"""
|
395 |
+
|
396 |
+
batch_size, q_len, _ = hidden_states.size()
|
397 |
+
|
398 |
+
query_states = self.q_proj(hidden_states)
|
399 |
+
key_states = self.k_proj(hidden_states)
|
400 |
+
value_states = self.v_proj(hidden_states)
|
401 |
+
|
402 |
+
query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
403 |
+
key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
404 |
+
value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
405 |
+
|
406 |
+
k_v_seq_len = key_states.shape[-2]
|
407 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale
|
408 |
+
|
409 |
+
if attn_weights.size() != (batch_size, self.num_heads, q_len, k_v_seq_len):
|
410 |
+
raise ValueError(
|
411 |
+
f"Attention weights should be of size {(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is"
|
412 |
+
f" {attn_weights.size()}"
|
413 |
+
)
|
414 |
+
|
415 |
+
if attention_mask is not None:
|
416 |
+
if attention_mask.size() != (batch_size, 1, q_len, k_v_seq_len):
|
417 |
+
raise ValueError(
|
418 |
+
f"Attention mask should be of size {(batch_size, 1, q_len, k_v_seq_len)}, but is {attention_mask.size()}"
|
419 |
+
)
|
420 |
+
attn_weights = attn_weights + attention_mask
|
421 |
+
|
422 |
+
# upcast attention to fp32
|
423 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
424 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
425 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
426 |
+
|
427 |
+
if attn_output.size() != (batch_size, self.num_heads, q_len, self.head_dim):
|
428 |
+
raise ValueError(
|
429 |
+
f"`attn_output` should be of size {(batch_size, self.num_heads, q_len, self.head_dim)}, but is"
|
430 |
+
f" {attn_output.size()}"
|
431 |
+
)
|
432 |
+
|
433 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
434 |
+
attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim)
|
435 |
+
|
436 |
+
attn_output = self.out_proj(attn_output)
|
437 |
+
|
438 |
+
return attn_output, attn_weights
|
439 |
+
|
440 |
+
|
441 |
+
class SiglipFlashAttention2(SiglipAttention):
|
442 |
+
"""
|
443 |
+
Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays
|
444 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
445 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
446 |
+
"""
|
447 |
+
|
448 |
+
def __init__(self, *args, **kwargs):
|
449 |
+
super().__init__(*args, **kwargs)
|
450 |
+
self.is_causal = False # Hack to make sure we don't use a causal mask
|
451 |
+
|
452 |
+
def forward(
|
453 |
+
self,
|
454 |
+
hidden_states: torch.Tensor,
|
455 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
456 |
+
position_ids: Optional[torch.LongTensor] = None,
|
457 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
458 |
+
output_attentions: bool = False,
|
459 |
+
use_cache: bool = False,
|
460 |
+
**kwargs,
|
461 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
462 |
+
output_attentions = False
|
463 |
+
|
464 |
+
bsz, q_len, _ = hidden_states.size()
|
465 |
+
|
466 |
+
query_states = self.q_proj(hidden_states)
|
467 |
+
key_states = self.k_proj(hidden_states)
|
468 |
+
value_states = self.v_proj(hidden_states)
|
469 |
+
|
470 |
+
# Flash attention requires the input to have the shape
|
471 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
472 |
+
# therefore we just need to keep the original shape
|
473 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
474 |
+
key_states = key_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
475 |
+
value_states = value_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
476 |
+
|
477 |
+
kv_seq_len = key_states.shape[-2]
|
478 |
+
if past_key_value is not None:
|
479 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
480 |
+
# cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
481 |
+
# query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
482 |
+
|
483 |
+
# if past_key_value is not None:
|
484 |
+
# cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
485 |
+
# key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
486 |
+
|
487 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
488 |
+
# to be able to avoid many of these transpose/reshape/view.
|
489 |
+
query_states = query_states.transpose(1, 2)
|
490 |
+
key_states = key_states.transpose(1, 2)
|
491 |
+
value_states = value_states.transpose(1, 2)
|
492 |
+
|
493 |
+
dropout_rate = self.dropout if self.training else 0.0
|
494 |
+
|
495 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
496 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
497 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
498 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
499 |
+
# in fp32. (LlamaRMSNorm handles it correctly)
|
500 |
+
|
501 |
+
input_dtype = query_states.dtype
|
502 |
+
if input_dtype == torch.float32:
|
503 |
+
if torch.is_autocast_enabled():
|
504 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
505 |
+
# Handle the case where the model is quantized
|
506 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
507 |
+
target_dtype = self.config._pre_quantization_dtype
|
508 |
+
else:
|
509 |
+
target_dtype = self.q_proj.weight.dtype
|
510 |
+
|
511 |
+
logger.warning_once(
|
512 |
+
"The input hidden states seems to be silently casted in float32, this might be related to the fact"
|
513 |
+
" you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
514 |
+
f" {target_dtype}."
|
515 |
+
)
|
516 |
+
|
517 |
+
query_states = query_states.to(target_dtype)
|
518 |
+
key_states = key_states.to(target_dtype)
|
519 |
+
value_states = value_states.to(target_dtype)
|
520 |
+
|
521 |
+
attn_output = self._flash_attention_forward(
|
522 |
+
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
|
523 |
+
)
|
524 |
+
|
525 |
+
attn_output = attn_output.reshape(bsz, q_len, self.embed_dim).contiguous()
|
526 |
+
attn_output = self.out_proj(attn_output)
|
527 |
+
|
528 |
+
if not output_attentions:
|
529 |
+
attn_weights = None
|
530 |
+
|
531 |
+
return attn_output, attn_weights
|
532 |
+
|
533 |
+
def _flash_attention_forward(
|
534 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
535 |
+
):
|
536 |
+
"""
|
537 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
538 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
539 |
+
Args:
|
540 |
+
query_states (`torch.Tensor`):
|
541 |
+
Input query states to be passed to Flash Attention API
|
542 |
+
key_states (`torch.Tensor`):
|
543 |
+
Input key states to be passed to Flash Attention API
|
544 |
+
value_states (`torch.Tensor`):
|
545 |
+
Input value states to be passed to Flash Attention API
|
546 |
+
attention_mask (`torch.Tensor`):
|
547 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
548 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
549 |
+
dropout (`int`, *optional*):
|
550 |
+
Attention dropout
|
551 |
+
softmax_scale (`float`, *optional*):
|
552 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
553 |
+
"""
|
554 |
+
|
555 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
556 |
+
causal = self.is_causal and query_length != 1
|
557 |
+
|
558 |
+
# Contains at least one padding token in the sequence
|
559 |
+
if attention_mask is not None:
|
560 |
+
batch_size = query_states.shape[0]
|
561 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
562 |
+
query_states, key_states, value_states, attention_mask, query_length
|
563 |
+
)
|
564 |
+
|
565 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
566 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
567 |
+
|
568 |
+
attn_output_unpad = flash_attn_varlen_func(
|
569 |
+
query_states,
|
570 |
+
key_states,
|
571 |
+
value_states,
|
572 |
+
cu_seqlens_q=cu_seqlens_q,
|
573 |
+
cu_seqlens_k=cu_seqlens_k,
|
574 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
575 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
576 |
+
dropout_p=dropout,
|
577 |
+
softmax_scale=softmax_scale,
|
578 |
+
causal=causal,
|
579 |
+
)
|
580 |
+
|
581 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
582 |
+
else:
|
583 |
+
attn_output = flash_attn_func(
|
584 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
585 |
+
)
|
586 |
+
|
587 |
+
return attn_output
|
588 |
+
|
589 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
590 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
591 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
592 |
+
|
593 |
+
key_layer = index_first_axis(
|
594 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
595 |
+
)
|
596 |
+
value_layer = index_first_axis(
|
597 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
598 |
+
)
|
599 |
+
if query_length == kv_seq_len:
|
600 |
+
query_layer = index_first_axis(
|
601 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
602 |
+
)
|
603 |
+
cu_seqlens_q = cu_seqlens_k
|
604 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
605 |
+
indices_q = indices_k
|
606 |
+
elif query_length == 1:
|
607 |
+
max_seqlen_in_batch_q = 1
|
608 |
+
cu_seqlens_q = torch.arange(
|
609 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
610 |
+
) # There is a memcpy here, that is very bad.
|
611 |
+
indices_q = cu_seqlens_q[:-1]
|
612 |
+
query_layer = query_layer.squeeze(1)
|
613 |
+
else:
|
614 |
+
# The -q_len: slice assumes left padding.
|
615 |
+
attention_mask = attention_mask[:, -query_length:]
|
616 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
617 |
+
|
618 |
+
return (
|
619 |
+
query_layer,
|
620 |
+
key_layer,
|
621 |
+
value_layer,
|
622 |
+
indices_q,
|
623 |
+
(cu_seqlens_q, cu_seqlens_k),
|
624 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
625 |
+
)
|
626 |
+
|
627 |
+
|
628 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Siglip
|
629 |
+
class SiglipMLP(nn.Module):
|
630 |
+
def __init__(self, config):
|
631 |
+
super().__init__()
|
632 |
+
self.config = config
|
633 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
634 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
635 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
636 |
+
|
637 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
638 |
+
hidden_states = self.fc1(hidden_states)
|
639 |
+
hidden_states = self.activation_fn(hidden_states)
|
640 |
+
hidden_states = self.fc2(hidden_states)
|
641 |
+
return hidden_states
|
642 |
+
|
643 |
+
|
644 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->Siglip
|
645 |
+
class SiglipEncoderLayer(nn.Module):
|
646 |
+
def __init__(self, config: SiglipVisionConfig):
|
647 |
+
super().__init__()
|
648 |
+
self.embed_dim = config.hidden_size
|
649 |
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
650 |
+
self.self_attn = SiglipAttention(config) if not self._use_flash_attention_2 else SiglipFlashAttention2(config)
|
651 |
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
652 |
+
self.mlp = SiglipMLP(config)
|
653 |
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
654 |
+
|
655 |
+
def forward(
|
656 |
+
self,
|
657 |
+
hidden_states: torch.Tensor,
|
658 |
+
attention_mask: torch.Tensor,
|
659 |
+
output_attentions: Optional[bool] = False,
|
660 |
+
) -> Tuple[torch.FloatTensor]:
|
661 |
+
"""
|
662 |
+
Args:
|
663 |
+
hidden_states (`torch.FloatTensor`):
|
664 |
+
Input to the layer of shape `(batch, seq_len, embed_dim)`.
|
665 |
+
attention_mask (`torch.FloatTensor`):
|
666 |
+
Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values.
|
667 |
+
output_attentions (`bool`, *optional*, defaults to `False`):
|
668 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
669 |
+
returned tensors for more detail.
|
670 |
+
"""
|
671 |
+
residual = hidden_states
|
672 |
+
|
673 |
+
hidden_states = self.layer_norm1(hidden_states)
|
674 |
+
hidden_states, attn_weights = self.self_attn(
|
675 |
+
hidden_states=hidden_states,
|
676 |
+
attention_mask=attention_mask,
|
677 |
+
output_attentions=output_attentions,
|
678 |
+
)
|
679 |
+
hidden_states = residual + hidden_states
|
680 |
+
|
681 |
+
residual = hidden_states
|
682 |
+
hidden_states = self.layer_norm2(hidden_states)
|
683 |
+
hidden_states = self.mlp(hidden_states)
|
684 |
+
hidden_states = residual + hidden_states
|
685 |
+
|
686 |
+
outputs = (hidden_states,)
|
687 |
+
|
688 |
+
if output_attentions:
|
689 |
+
outputs += (attn_weights,)
|
690 |
+
|
691 |
+
return outputs
|
692 |
+
|
693 |
+
|
694 |
+
class SiglipPreTrainedModel(PreTrainedModel):
|
695 |
+
"""
|
696 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
697 |
+
models.
|
698 |
+
"""
|
699 |
+
|
700 |
+
config_class = SiglipVisionConfig
|
701 |
+
base_model_prefix = "siglip"
|
702 |
+
supports_gradient_checkpointing = True
|
703 |
+
|
704 |
+
def _init_weights(self, module):
|
705 |
+
"""Initialize the weights"""
|
706 |
+
|
707 |
+
if isinstance(module, SiglipVisionEmbeddings):
|
708 |
+
width = self.config.hidden_size
|
709 |
+
nn.init.normal_(module.position_embedding.weight, std=1 / np.sqrt(width))
|
710 |
+
elif isinstance(module, nn.Embedding):
|
711 |
+
default_flax_embed_init(module.weight)
|
712 |
+
elif isinstance(module, SiglipAttention):
|
713 |
+
nn.init.normal_(module.q_proj.weight)
|
714 |
+
nn.init.normal_(module.k_proj.weight)
|
715 |
+
nn.init.normal_(module.v_proj.weight)
|
716 |
+
nn.init.normal_(module.out_proj.weight)
|
717 |
+
nn.init.zeros_(module.q_proj.bias)
|
718 |
+
nn.init.zeros_(module.k_proj.bias)
|
719 |
+
nn.init.zeros_(module.v_proj.bias)
|
720 |
+
nn.init.zeros_(module.out_proj.bias)
|
721 |
+
elif isinstance(module, SiglipMLP):
|
722 |
+
nn.init.normal_(module.fc1.weight)
|
723 |
+
nn.init.normal_(module.fc2.weight)
|
724 |
+
nn.init.normal_(module.fc1.bias, std=1e-6)
|
725 |
+
nn.init.normal_(module.fc2.bias, std=1e-6)
|
726 |
+
elif isinstance(module, (nn.Linear, nn.Conv2d)):
|
727 |
+
lecun_normal_(module.weight)
|
728 |
+
if module.bias is not None:
|
729 |
+
nn.init.zeros_(module.bias)
|
730 |
+
elif isinstance(module, nn.LayerNorm):
|
731 |
+
module.bias.data.zero_()
|
732 |
+
module.weight.data.fill_(1.0)
|
733 |
+
|
734 |
+
|
735 |
+
SIGLIP_START_DOCSTRING = r"""
|
736 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
737 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
738 |
+
etc.)
|
739 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
740 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
741 |
+
and behavior.
|
742 |
+
Parameters:
|
743 |
+
config ([`SiglipVisionConfig`]): Model configuration class with all the parameters of the model.
|
744 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
745 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
746 |
+
"""
|
747 |
+
|
748 |
+
|
749 |
+
SIGLIP_VISION_INPUTS_DOCSTRING = r"""
|
750 |
+
Args:
|
751 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
752 |
+
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
753 |
+
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
|
754 |
+
output_attentions (`bool`, *optional*):
|
755 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
756 |
+
tensors for more detail.
|
757 |
+
output_hidden_states (`bool`, *optional*):
|
758 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
759 |
+
more detail.
|
760 |
+
return_dict (`bool`, *optional*):
|
761 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
762 |
+
"""
|
763 |
+
|
764 |
+
|
765 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->Siglip
|
766 |
+
class SiglipEncoder(nn.Module):
|
767 |
+
"""
|
768 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
769 |
+
[`SiglipEncoderLayer`].
|
770 |
+
Args:
|
771 |
+
config: SiglipConfig
|
772 |
+
"""
|
773 |
+
|
774 |
+
def __init__(self, config: SiglipVisionConfig):
|
775 |
+
super().__init__()
|
776 |
+
self.config = config
|
777 |
+
self.layers = nn.ModuleList([SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
778 |
+
self.gradient_checkpointing = False
|
779 |
+
|
780 |
+
# Ignore copy
|
781 |
+
def forward(
|
782 |
+
self,
|
783 |
+
inputs_embeds,
|
784 |
+
attention_mask: Optional[torch.Tensor] = None,
|
785 |
+
output_attentions: Optional[bool] = None,
|
786 |
+
output_hidden_states: Optional[bool] = None,
|
787 |
+
return_dict: Optional[bool] = None,
|
788 |
+
) -> Union[Tuple, BaseModelOutput]:
|
789 |
+
r"""
|
790 |
+
Args:
|
791 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
792 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
793 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
794 |
+
than the model's internal embedding lookup matrix.
|
795 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
796 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
797 |
+
- 1 for tokens that are **not masked**,
|
798 |
+
- 0 for tokens that are **masked**.
|
799 |
+
[What are attention masks?](../glossary#attention-mask)
|
800 |
+
output_attentions (`bool`, *optional*):
|
801 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
802 |
+
returned tensors for more detail.
|
803 |
+
output_hidden_states (`bool`, *optional*):
|
804 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
805 |
+
for more detail.
|
806 |
+
return_dict (`bool`, *optional*):
|
807 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
808 |
+
"""
|
809 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
810 |
+
output_hidden_states = (
|
811 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
812 |
+
)
|
813 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
814 |
+
|
815 |
+
encoder_states = () if output_hidden_states else None
|
816 |
+
all_attentions = () if output_attentions else None
|
817 |
+
|
818 |
+
hidden_states = inputs_embeds
|
819 |
+
for encoder_layer in self.layers:
|
820 |
+
if output_hidden_states:
|
821 |
+
encoder_states = encoder_states + (hidden_states,)
|
822 |
+
if self.gradient_checkpointing and self.training:
|
823 |
+
layer_outputs = self._gradient_checkpointing_func(
|
824 |
+
encoder_layer.__call__,
|
825 |
+
hidden_states,
|
826 |
+
attention_mask,
|
827 |
+
output_attentions,
|
828 |
+
)
|
829 |
+
else:
|
830 |
+
layer_outputs = encoder_layer(
|
831 |
+
hidden_states,
|
832 |
+
attention_mask,
|
833 |
+
output_attentions=output_attentions,
|
834 |
+
)
|
835 |
+
|
836 |
+
hidden_states = layer_outputs[0]
|
837 |
+
|
838 |
+
if output_attentions:
|
839 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
840 |
+
|
841 |
+
if output_hidden_states:
|
842 |
+
encoder_states = encoder_states + (hidden_states,)
|
843 |
+
|
844 |
+
if not return_dict:
|
845 |
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
846 |
+
return BaseModelOutput(last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions)
|
847 |
+
|
848 |
+
|
849 |
+
@add_start_docstrings("""The vision model from SigLIP without any head or projection on top.""", SIGLIP_START_DOCSTRING)
|
850 |
+
class SiglipVisionTransformer(SiglipPreTrainedModel):
|
851 |
+
config_class = SiglipVisionConfig
|
852 |
+
main_input_name = "pixel_values"
|
853 |
+
_supports_flash_attn_2 = True
|
854 |
+
_no_split_modules = []
|
855 |
+
|
856 |
+
def __init__(self, config: SiglipVisionConfig):
|
857 |
+
super().__init__(config)
|
858 |
+
self.config = config
|
859 |
+
embed_dim = config.hidden_size
|
860 |
+
|
861 |
+
self.embeddings = SiglipVisionEmbeddings(config)
|
862 |
+
self.encoder = SiglipEncoder(config)
|
863 |
+
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
864 |
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
865 |
+
|
866 |
+
# Initialize weights and apply final processing
|
867 |
+
self.post_init()
|
868 |
+
|
869 |
+
def get_input_embeddings(self) -> nn.Module:
|
870 |
+
return self.embeddings.patch_embedding
|
871 |
+
|
872 |
+
@add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING)
|
873 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipVisionConfig)
|
874 |
+
def forward(
|
875 |
+
self,
|
876 |
+
pixel_values,
|
877 |
+
patch_attention_mask: Optional[torch.BoolTensor] = None,
|
878 |
+
tgt_sizes: Optional[torch.IntTensor] = None,
|
879 |
+
output_attentions: Optional[bool] = None,
|
880 |
+
output_hidden_states: Optional[bool] = None,
|
881 |
+
return_dict: Optional[bool] = None,
|
882 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
883 |
+
r"""
|
884 |
+
Returns:
|
885 |
+
"""
|
886 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
887 |
+
output_hidden_states = (
|
888 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
889 |
+
)
|
890 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
891 |
+
|
892 |
+
batch_size = pixel_values.size(0)
|
893 |
+
if patch_attention_mask is None:
|
894 |
+
patch_attention_mask = torch.ones(
|
895 |
+
size=(
|
896 |
+
batch_size,
|
897 |
+
pixel_values.size(2) // self.config.patch_size,
|
898 |
+
pixel_values.size(3) // self.config.patch_size,
|
899 |
+
),
|
900 |
+
dtype=torch.bool,
|
901 |
+
device=pixel_values.device,
|
902 |
+
)
|
903 |
+
|
904 |
+
hidden_states = self.embeddings(
|
905 |
+
pixel_values=pixel_values, patch_attention_mask=patch_attention_mask, tgt_sizes=tgt_sizes
|
906 |
+
)
|
907 |
+
|
908 |
+
patch_attention_mask = patch_attention_mask.view(batch_size, -1)
|
909 |
+
# The call to `_upad_input` in `_flash_attention_forward` is expensive
|
910 |
+
# So when the `patch_attention_mask` is full of 1s (i.e. attending to the whole sequence),
|
911 |
+
# avoiding passing the attention_mask, which is equivalent to attending to the full sequence
|
912 |
+
if not torch.any(~patch_attention_mask):
|
913 |
+
attention_mask = None
|
914 |
+
else:
|
915 |
+
attention_mask = (
|
916 |
+
_prepare_4d_attention_mask(patch_attention_mask, hidden_states.dtype)
|
917 |
+
if not self._use_flash_attention_2
|
918 |
+
else patch_attention_mask
|
919 |
+
)
|
920 |
+
|
921 |
+
encoder_outputs = self.encoder(
|
922 |
+
inputs_embeds=hidden_states,
|
923 |
+
attention_mask=attention_mask,
|
924 |
+
output_attentions=output_attentions,
|
925 |
+
output_hidden_states=output_hidden_states,
|
926 |
+
return_dict=return_dict,
|
927 |
+
)
|
928 |
+
|
929 |
+
last_hidden_state = encoder_outputs[0]
|
930 |
+
last_hidden_state = self.post_layernorm(last_hidden_state)
|
931 |
+
|
932 |
+
if not return_dict:
|
933 |
+
return (last_hidden_state, None) + encoder_outputs[1:]
|
934 |
+
|
935 |
+
return BaseModelOutputWithPooling(
|
936 |
+
last_hidden_state=last_hidden_state,
|
937 |
+
pooler_output=None,
|
938 |
+
hidden_states=encoder_outputs.hidden_states,
|
939 |
+
attentions=encoder_outputs.attentions,
|
940 |
+
)
|
Chat/preprocessor_config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"image_processor_type": "MiniCPMVImageProcessor",
|
3 |
+
"auto_map": {
|
4 |
+
"AutoProcessor": "processing_minicpmo.MiniCPMOProcessor",
|
5 |
+
"AutoImageProcessor": "image_processing_minicpmv.MiniCPMVImageProcessor"
|
6 |
+
},
|
7 |
+
"processor_class": "MiniCPMOProcessor",
|
8 |
+
"max_slice_nums": 9,
|
9 |
+
"scale_resolution": 448,
|
10 |
+
"patch_size": 14,
|
11 |
+
"use_image_id": true,
|
12 |
+
"image_feature_size": 64,
|
13 |
+
"im_start": "<image>",
|
14 |
+
"im_end": "</image>",
|
15 |
+
"slice_start": "<slice>",
|
16 |
+
"slice_end": "</slice>",
|
17 |
+
"unk": "<unk>",
|
18 |
+
"im_id_start": "<image_id>",
|
19 |
+
"im_id_end": "</image_id>",
|
20 |
+
"slice_mode": true,
|
21 |
+
"norm_mean": [0.5, 0.5, 0.5],
|
22 |
+
"norm_std": [0.5, 0.5, 0.5],
|
23 |
+
"version": 2.6
|
24 |
+
}
|
Chat/processing_minicpmo.py
ADDED
@@ -0,0 +1,505 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2025 The OpenBMB Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Processor class for MiniCPMO.
|
17 |
+
"""
|
18 |
+
|
19 |
+
import math
|
20 |
+
import re
|
21 |
+
from typing import List
|
22 |
+
from typing import Literal
|
23 |
+
from typing import Optional
|
24 |
+
from typing import Union
|
25 |
+
|
26 |
+
import numpy as np
|
27 |
+
import torch
|
28 |
+
import torchaudio
|
29 |
+
from transformers.image_utils import ImageInput
|
30 |
+
from transformers.processing_utils import ProcessorMixin
|
31 |
+
from transformers.tokenization_utils_base import PreTokenizedInput
|
32 |
+
from transformers.tokenization_utils_base import TextInput
|
33 |
+
from transformers.utils import TensorType
|
34 |
+
|
35 |
+
from .image_processing_minicpmv import MiniCPMOBatchFeature
|
36 |
+
|
37 |
+
|
38 |
+
class MiniCPMOProcessor(ProcessorMixin):
|
39 |
+
r"""
|
40 |
+
Constructs a MiniCPMV processor which wraps a MiniCPMV image processor and a MiniCPMV tokenizer into a single processor.
|
41 |
+
|
42 |
+
[`MiniCPMVProcessor`] offers all the functionalities of [`MiniCPMVImageProcessor`] and [`LlamaTokenizerWrapper`]. See the
|
43 |
+
[`~MiniCPMVProcessor.__call__`] and [`~MiniCPMVProcessor.decode`] for more information.
|
44 |
+
|
45 |
+
Args:
|
46 |
+
image_processor ([`MiniCPMVImageProcessor`], *optional*):
|
47 |
+
The image processor is a required input.
|
48 |
+
tokenizer ([`LlamaTokenizerWrapper`], *optional*):
|
49 |
+
The tokenizer is a required input.
|
50 |
+
"""
|
51 |
+
|
52 |
+
attributes = ["image_processor", "feature_extractor", "tokenizer"]
|
53 |
+
feature_extractor_class = "WhisperFeatureExtractor"
|
54 |
+
image_processor_class = "AutoImageProcessor"
|
55 |
+
tokenizer_class = "AutoTokenizer"
|
56 |
+
|
57 |
+
def __init__(self, image_processor=None, feature_extractor=None, tokenizer=None):
|
58 |
+
super().__init__(image_processor, feature_extractor, tokenizer)
|
59 |
+
self.version = image_processor.version
|
60 |
+
|
61 |
+
def __call__(
|
62 |
+
self,
|
63 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
|
64 |
+
images: ImageInput = None,
|
65 |
+
audios: Union[np.ndarray, List[np.ndarray], List[List[np.ndarray]]] = None,
|
66 |
+
audio_parts: Optional[list] = None,
|
67 |
+
max_length: Optional[int] = None,
|
68 |
+
do_pad: Optional[bool] = True,
|
69 |
+
max_slice_nums: int = None,
|
70 |
+
use_image_id: bool = True,
|
71 |
+
chunk_input: bool = False,
|
72 |
+
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
|
73 |
+
sampling_rate: Optional[int] = 16000,
|
74 |
+
**kwargs,
|
75 |
+
) -> MiniCPMOBatchFeature:
|
76 |
+
if images is not None:
|
77 |
+
image_inputs = self.image_processor(
|
78 |
+
images, do_pad=do_pad, max_slice_nums=max_slice_nums, return_tensors=return_tensors
|
79 |
+
)
|
80 |
+
else:
|
81 |
+
image_inputs = None
|
82 |
+
|
83 |
+
if audios is not None:
|
84 |
+
audio_features, audio_feature_lens, audio_phs = self.audio_feature_extract(
|
85 |
+
audios, audio_parts, chunk_input, sampling_rate
|
86 |
+
)
|
87 |
+
else:
|
88 |
+
audio_features, audio_feature_lens, audio_phs = [], [], []
|
89 |
+
|
90 |
+
model_inputs = self._convert_omni_to_inputs(
|
91 |
+
image_inputs,
|
92 |
+
audio_phs,
|
93 |
+
text,
|
94 |
+
max_slice_nums=max_slice_nums,
|
95 |
+
use_image_id=use_image_id,
|
96 |
+
max_length=max_length,
|
97 |
+
**kwargs,
|
98 |
+
)
|
99 |
+
|
100 |
+
model_inputs["audio_features"] = audio_features
|
101 |
+
model_inputs["audio_feature_lens"] = audio_feature_lens
|
102 |
+
|
103 |
+
return MiniCPMOBatchFeature(data={**model_inputs})
|
104 |
+
|
105 |
+
def get_audio_placeholder(self, audio_lens, chunk_input, chunk_length):
|
106 |
+
pool_step = 2
|
107 |
+
feature_lens = math.ceil(audio_lens / self.feature_extractor.hop_length)
|
108 |
+
|
109 |
+
feature_lens = (feature_lens - 1) // 2 + 1
|
110 |
+
output_lens = (feature_lens - pool_step) // pool_step + 1
|
111 |
+
|
112 |
+
if chunk_input:
|
113 |
+
fbank_feat_in_chunk = int(chunk_length * 100)
|
114 |
+
cnn_feat_in_chunk = (fbank_feat_in_chunk - 1) // 2 + 1
|
115 |
+
audio_embeds_in_chunk = (cnn_feat_in_chunk - pool_step) // pool_step + 1
|
116 |
+
num_audio_chunks = (output_lens + audio_embeds_in_chunk - 1) // audio_embeds_in_chunk
|
117 |
+
|
118 |
+
place_holders = ""
|
119 |
+
total_unk_len = 0
|
120 |
+
for _ in range(num_audio_chunks):
|
121 |
+
unk_len = min(audio_embeds_in_chunk, output_lens - total_unk_len)
|
122 |
+
place_holders += self.tokenizer.audio_start + "<unk>" * unk_len + self.tokenizer.audio_end
|
123 |
+
total_unk_len += unk_len
|
124 |
+
audio_placeholder = place_holders
|
125 |
+
else:
|
126 |
+
audio_placeholder = self.tokenizer.audio_start + "<unk>" * output_lens + self.tokenizer.audio_end
|
127 |
+
|
128 |
+
return audio_placeholder
|
129 |
+
|
130 |
+
def audio_feature_extract(
|
131 |
+
self,
|
132 |
+
audios: Union[np.ndarray, List[np.ndarray], List[List[np.ndarray]]],
|
133 |
+
audio_parts: Optional[list] = None,
|
134 |
+
chunk_input: Optional[bool] = False,
|
135 |
+
sampling_rate: Optional[int] = None,
|
136 |
+
chunk_length: Optional[int] = 1,
|
137 |
+
**kwargs,
|
138 |
+
):
|
139 |
+
if isinstance(audios, np.ndarray):
|
140 |
+
audios_list = [[audios]]
|
141 |
+
elif isinstance(audios[0], np.ndarray):
|
142 |
+
audios_list = [audios]
|
143 |
+
else:
|
144 |
+
audios_list = audios
|
145 |
+
|
146 |
+
if audio_parts is not None:
|
147 |
+
assert len(audio_parts) == len(audios_list)
|
148 |
+
for parts, audios in zip(audio_parts, audios_list):
|
149 |
+
assert len(parts) == len(audios)
|
150 |
+
|
151 |
+
audio_feature_lens_list = []
|
152 |
+
audio_ph_list = []
|
153 |
+
|
154 |
+
audio_features_all = []
|
155 |
+
|
156 |
+
# audio placeholder not dependent on audio_parts
|
157 |
+
for audios in audios_list:
|
158 |
+
if audios:
|
159 |
+
audio_ph_list.append([self.get_audio_placeholder(len(a), chunk_input, chunk_length) for a in audios])
|
160 |
+
else:
|
161 |
+
audio_ph_list.append([])
|
162 |
+
|
163 |
+
for idx, audios in enumerate(audios_list):
|
164 |
+
if audio_parts is not None:
|
165 |
+
# same audio part merge
|
166 |
+
audio_part = audio_parts[idx]
|
167 |
+
merge_audio = []
|
168 |
+
cur_audio = []
|
169 |
+
for aid, (part, audio) in enumerate(zip(audio_part, audios)):
|
170 |
+
if aid == 0 or audio_part[aid] == audio_part[aid - 1]:
|
171 |
+
cur_audio.append(audio)
|
172 |
+
else:
|
173 |
+
merge_audio.append(np.hstack(cur_audio))
|
174 |
+
cur_audio = [audio]
|
175 |
+
if cur_audio:
|
176 |
+
merge_audio.append(np.hstack(cur_audio))
|
177 |
+
|
178 |
+
else:
|
179 |
+
merge_audio = audios
|
180 |
+
|
181 |
+
audio_feature_lens = []
|
182 |
+
|
183 |
+
# If the audio exceeds 30 seconds, split it into chunks every 30 seconds.
|
184 |
+
final_merge_audio = []
|
185 |
+
max_audio_inp_len = 30 * sampling_rate
|
186 |
+
for audio in merge_audio:
|
187 |
+
if len(audio) <= max_audio_inp_len:
|
188 |
+
final_merge_audio.append(audio)
|
189 |
+
else:
|
190 |
+
for i in range(math.ceil(len(audio) / max_audio_inp_len)):
|
191 |
+
final_merge_audio.append(audio[i * max_audio_inp_len : (i + 1) * max_audio_inp_len])
|
192 |
+
|
193 |
+
if audios:
|
194 |
+
audio_inputs = self.feature_extractor(
|
195 |
+
final_merge_audio,
|
196 |
+
sampling_rate=sampling_rate,
|
197 |
+
return_attention_mask=True,
|
198 |
+
padding="max_length",
|
199 |
+
return_tensors="pt",
|
200 |
+
**kwargs,
|
201 |
+
)
|
202 |
+
audio_feature = audio_inputs["input_features"]
|
203 |
+
actual_lens = audio_inputs["attention_mask"].sum(dim=1)
|
204 |
+
|
205 |
+
for feat, lens in zip(audio_feature, actual_lens):
|
206 |
+
audio_features_all.append(feat[:, :lens])
|
207 |
+
audio_feature_lens.append(lens)
|
208 |
+
|
209 |
+
audio_feature_lens = torch.hstack(audio_feature_lens)
|
210 |
+
audio_feature_lens_list.append(audio_feature_lens)
|
211 |
+
else:
|
212 |
+
audio_feature_lens_list.append([])
|
213 |
+
|
214 |
+
if audio_features_all:
|
215 |
+
audio_features = [i.permute(1, 0) for i in audio_features_all]
|
216 |
+
audio_features = torch.nn.utils.rnn.pad_sequence(
|
217 |
+
audio_features, batch_first=True, padding_value=0.0
|
218 |
+
).permute(0, 2, 1)
|
219 |
+
else:
|
220 |
+
audio_features = []
|
221 |
+
|
222 |
+
return audio_features, audio_feature_lens_list, audio_ph_list
|
223 |
+
|
224 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
|
225 |
+
def batch_decode(self, *args, **kwargs):
|
226 |
+
"""
|
227 |
+
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
228 |
+
refer to the docstring of this method for more information.
|
229 |
+
"""
|
230 |
+
output_ids = args[0]
|
231 |
+
result_text = []
|
232 |
+
for result in output_ids:
|
233 |
+
result = result[result != 0]
|
234 |
+
if result[0] == self.tokenizer.bos_id:
|
235 |
+
result = result[1:]
|
236 |
+
if result[-1] == self.tokenizer.eos_id:
|
237 |
+
result = result[:-1]
|
238 |
+
result_text.append(self.tokenizer.decode(result, *args[1:], **kwargs).strip())
|
239 |
+
return result_text
|
240 |
+
# return self.tokenizer.batch_decode(*args, **kwargs)
|
241 |
+
|
242 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
|
243 |
+
def decode(self, *args, **kwargs):
|
244 |
+
"""
|
245 |
+
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
246 |
+
the docstring of this method for more information.
|
247 |
+
"""
|
248 |
+
result = args[0]
|
249 |
+
result = result[result != 0]
|
250 |
+
if result[0] == self.tokenizer.bos_id:
|
251 |
+
result = result[1:]
|
252 |
+
if result[-1] == self.tokenizer.eos_id or (
|
253 |
+
hasattr(self.tokenizer, "eot_id") and result[-1] == self.tokenizer.eot_id
|
254 |
+
):
|
255 |
+
result = result[:-1]
|
256 |
+
return self.tokenizer.decode(result, *args[1:], **kwargs).strip()
|
257 |
+
|
258 |
+
def _convert(self, input_str, max_inp_length: Optional[int] = None, **kwargs):
|
259 |
+
input_ids = self.tokenizer.encode(input_str, **kwargs)
|
260 |
+
if max_inp_length is not None:
|
261 |
+
input_ids = input_ids[:max_inp_length]
|
262 |
+
input_ids = torch.tensor(input_ids, dtype=torch.int32)
|
263 |
+
|
264 |
+
## image bound
|
265 |
+
start_cond = (input_ids == self.tokenizer.im_start_id) | (input_ids == self.tokenizer.slice_start_id)
|
266 |
+
end_cond = (input_ids == self.tokenizer.im_end_id) | (input_ids == self.tokenizer.slice_end_id)
|
267 |
+
|
268 |
+
image_start_idx = torch.where(start_cond)[0]
|
269 |
+
image_start_idx += 1
|
270 |
+
image_end_idx = torch.where(end_cond)[0]
|
271 |
+
|
272 |
+
valid_image_nums = max(len(image_start_idx), len(image_end_idx))
|
273 |
+
|
274 |
+
image_bounds = torch.hstack(
|
275 |
+
[
|
276 |
+
image_start_idx[:valid_image_nums].unsqueeze(-1),
|
277 |
+
image_end_idx[:valid_image_nums].unsqueeze(-1),
|
278 |
+
]
|
279 |
+
)
|
280 |
+
|
281 |
+
## audio bound
|
282 |
+
audio_start_idx = torch.where(input_ids == self.tokenizer.audio_start_id)[0]
|
283 |
+
audio_end_idx = torch.where(input_ids == self.tokenizer.audio_end_id)[0]
|
284 |
+
assert len(audio_start_idx) == len(audio_end_idx)
|
285 |
+
audio_bounds = torch.hstack([(audio_start_idx + 1).unsqueeze(-1), audio_end_idx.unsqueeze(-1)])
|
286 |
+
|
287 |
+
spk_start_idx = torch.where(input_ids == self.tokenizer.spk_start_id)[0]
|
288 |
+
spk_end_idx = torch.where(input_ids == self.tokenizer.spk_end_id)[0]
|
289 |
+
assert len(spk_start_idx) == len(spk_end_idx)
|
290 |
+
spk_bounds = torch.hstack([(spk_start_idx + 1).unsqueeze(-1), spk_end_idx.unsqueeze(-1)])
|
291 |
+
|
292 |
+
return input_ids, image_bounds, audio_bounds, spk_bounds
|
293 |
+
|
294 |
+
def _convert_omni_to_inputs(
|
295 |
+
self,
|
296 |
+
images,
|
297 |
+
audio_phs,
|
298 |
+
texts: Union[str, List[str]],
|
299 |
+
truncation=None,
|
300 |
+
max_length=None,
|
301 |
+
max_slice_nums=None,
|
302 |
+
use_image_id=None,
|
303 |
+
return_tensors=None,
|
304 |
+
**kwargs,
|
305 |
+
):
|
306 |
+
if images is None and audio_phs is None:
|
307 |
+
model_inputs = self.tokenizer(
|
308 |
+
texts, return_tensors=return_tensors, truncation=truncation, max_length=max_length, **kwargs
|
309 |
+
)
|
310 |
+
return MiniCPMOBatchFeature(data={**model_inputs})
|
311 |
+
|
312 |
+
image_tag = "(<image>./</image>)"
|
313 |
+
image_pattern = "\(<image>./</image>\)"
|
314 |
+
audio_tag = "(<audio>./</audio>)"
|
315 |
+
audio_pattern = "\(<audio>./</audio>\)"
|
316 |
+
split_pattern = f"({image_pattern}|{audio_pattern})"
|
317 |
+
|
318 |
+
if isinstance(texts, str):
|
319 |
+
texts = [texts]
|
320 |
+
|
321 |
+
bs = len(texts)
|
322 |
+
if images is not None:
|
323 |
+
images, image_sizes, tgt_sizes = images["pixel_values"], images["image_sizes"], images["tgt_sizes"]
|
324 |
+
else:
|
325 |
+
images, image_sizes, tgt_sizes = [[]] * bs, [[]] * bs, [[]] * bs
|
326 |
+
|
327 |
+
input_ids_list = []
|
328 |
+
image_bounds_list = []
|
329 |
+
audio_bounds_list = []
|
330 |
+
spk_bounds_list = []
|
331 |
+
|
332 |
+
for index, text in enumerate(texts):
|
333 |
+
text_chunks = re.split(split_pattern, text)
|
334 |
+
|
335 |
+
image_tags = re.findall(image_pattern, text)
|
336 |
+
audio_tags = re.findall(audio_pattern, text)
|
337 |
+
|
338 |
+
if image_tags:
|
339 |
+
assert images is not None
|
340 |
+
assert len(image_tags) == len(image_sizes[index])
|
341 |
+
if audio_tags:
|
342 |
+
assert audio_phs is not None
|
343 |
+
assert len(audio_tags) == len(audio_phs[index])
|
344 |
+
|
345 |
+
image_id = 0
|
346 |
+
audio_id = 0
|
347 |
+
for i, chunk in enumerate(text_chunks):
|
348 |
+
if chunk == image_tag:
|
349 |
+
image_placeholder = self.image_processor.get_slice_image_placeholder(
|
350 |
+
image_sizes[index][image_id], image_id, max_slice_nums, use_image_id
|
351 |
+
)
|
352 |
+
image_id += 1
|
353 |
+
text_chunks[i] = image_placeholder
|
354 |
+
elif chunk == audio_tag:
|
355 |
+
audio_placeholder = audio_phs[index][audio_id]
|
356 |
+
audio_id += 1
|
357 |
+
text_chunks[i] = audio_placeholder
|
358 |
+
|
359 |
+
final_text = "".join(text_chunks)
|
360 |
+
input_ids, image_bounds, audio_bounds, spk_bounds = self._convert(final_text, max_length, **kwargs)
|
361 |
+
|
362 |
+
input_ids_list.append(input_ids)
|
363 |
+
image_bounds_list.append(image_bounds)
|
364 |
+
audio_bounds_list.append(audio_bounds)
|
365 |
+
spk_bounds_list.append(spk_bounds)
|
366 |
+
|
367 |
+
padded_input_ids, padding_lengths = self.pad(input_ids_list, padding_side="left")
|
368 |
+
attention_mask = torch.ones_like(padded_input_ids, dtype=torch.bool)
|
369 |
+
for i, length in enumerate(padding_lengths):
|
370 |
+
image_bounds_list[i] = image_bounds_list[i] + length
|
371 |
+
audio_bounds_list[i] = audio_bounds_list[i] + length
|
372 |
+
spk_bounds_list[i] = spk_bounds_list[i] + length
|
373 |
+
attention_mask[i, :length] = False
|
374 |
+
|
375 |
+
data = {
|
376 |
+
"input_ids": padded_input_ids,
|
377 |
+
"attention_mask": attention_mask,
|
378 |
+
"pixel_values": images,
|
379 |
+
"image_sizes": image_sizes,
|
380 |
+
"image_bound": image_bounds_list,
|
381 |
+
"tgt_sizes": tgt_sizes,
|
382 |
+
"audio_bounds": audio_bounds_list,
|
383 |
+
"spk_bounds": spk_bounds_list,
|
384 |
+
}
|
385 |
+
|
386 |
+
return data
|
387 |
+
|
388 |
+
@property
|
389 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
|
390 |
+
def model_input_names(self):
|
391 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
392 |
+
image_processor_input_names = self.image_processor.model_input_names
|
393 |
+
feature_extractor_input_names = self.feature_extractor.model_input_names
|
394 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names + feature_extractor_input_names))
|
395 |
+
|
396 |
+
def pad(self, inputs, max_length=None, padding_value=0, padding_side="left"):
|
397 |
+
items = []
|
398 |
+
if isinstance(inputs[0], list):
|
399 |
+
assert isinstance(inputs[0][0], torch.Tensor)
|
400 |
+
for it in inputs:
|
401 |
+
for tr in it:
|
402 |
+
items.append(tr)
|
403 |
+
else:
|
404 |
+
assert isinstance(inputs[0], torch.Tensor)
|
405 |
+
items = inputs
|
406 |
+
|
407 |
+
batch_size = len(items)
|
408 |
+
shape = items[0].shape
|
409 |
+
dim = len(shape)
|
410 |
+
assert dim <= 2
|
411 |
+
if max_length is None:
|
412 |
+
max_length = 0
|
413 |
+
max_length = max(max_length, max(item.shape[-1] for item in items))
|
414 |
+
min_length = min(item.shape[-1] for item in items)
|
415 |
+
dtype = items[0].dtype
|
416 |
+
|
417 |
+
if dim == 0:
|
418 |
+
return torch.stack([item for item in items], dim=0), [0]
|
419 |
+
elif dim == 1:
|
420 |
+
if max_length == min_length:
|
421 |
+
return torch.stack([item for item in items], dim=0), [0] * batch_size
|
422 |
+
tensor = torch.zeros((batch_size, max_length), dtype=dtype) + padding_value
|
423 |
+
else:
|
424 |
+
tensor = torch.zeros((batch_size, max_length, shape[-1]), dtype=dtype) + padding_value
|
425 |
+
|
426 |
+
padding_length = []
|
427 |
+
for i, item in enumerate(items):
|
428 |
+
if dim == 1:
|
429 |
+
if padding_side == "left":
|
430 |
+
tensor[i, -len(item) :] = item.clone()
|
431 |
+
else:
|
432 |
+
tensor[i, : len(item)] = item.clone()
|
433 |
+
elif dim == 2:
|
434 |
+
if padding_side == "left":
|
435 |
+
tensor[i, -len(item) :, :] = item.clone()
|
436 |
+
else:
|
437 |
+
tensor[i, : len(item), :] = item.clone()
|
438 |
+
padding_length.append(tensor.shape[-1] - len(item))
|
439 |
+
|
440 |
+
return tensor, padding_length
|
441 |
+
|
442 |
+
|
443 |
+
class MelSpectrogramFeatures(torch.nn.Module):
|
444 |
+
def __init__(
|
445 |
+
self,
|
446 |
+
sample_rate=24000,
|
447 |
+
n_fft=1024,
|
448 |
+
hop_length=256,
|
449 |
+
n_mels=100,
|
450 |
+
padding: Literal["center", "same"] = "center",
|
451 |
+
):
|
452 |
+
super().__init__()
|
453 |
+
if padding not in ["center", "same"]:
|
454 |
+
raise ValueError("Padding must be 'center' or 'same'.")
|
455 |
+
self.padding = padding
|
456 |
+
self.mel_spec = torchaudio.transforms.MelSpectrogram(
|
457 |
+
sample_rate=sample_rate,
|
458 |
+
n_fft=n_fft,
|
459 |
+
hop_length=hop_length,
|
460 |
+
n_mels=n_mels,
|
461 |
+
center=padding == "center",
|
462 |
+
power=1,
|
463 |
+
)
|
464 |
+
|
465 |
+
def __call__(self, audio: torch.Tensor) -> torch.Tensor:
|
466 |
+
"""
|
467 |
+
audio: Tensor([num_channels, num_samples])
|
468 |
+
"""
|
469 |
+
return super().__call__(audio)
|
470 |
+
|
471 |
+
def forward(self, audio: torch.Tensor) -> torch.Tensor:
|
472 |
+
"""
|
473 |
+
audio: Tensor([num_channels, num_samples])
|
474 |
+
"""
|
475 |
+
mel: torch.Tensor = self.mel_spec(audio)
|
476 |
+
features = torch.log(torch.clip(mel, min=1e-5))
|
477 |
+
return features
|
478 |
+
|
479 |
+
|
480 |
+
class ChatTTSProcessor:
|
481 |
+
def __init__(self, text_tokenizer):
|
482 |
+
self.audio_processor = MelSpectrogramFeatures()
|
483 |
+
self.text_tokenizer = text_tokenizer
|
484 |
+
|
485 |
+
def __call__(self, text_list, audio_list):
|
486 |
+
assert len(text_list) == len(audio_list)
|
487 |
+
input_ids_varlen = []
|
488 |
+
for text in text_list:
|
489 |
+
input_ids_ = self.text_tokenizer.encode(text, return_tensors="pt", add_special_tokens=False) # [1, seq_len]
|
490 |
+
input_ids_ = input_ids_.squeeze(0) # [seq_len]
|
491 |
+
input_ids_varlen.append(input_ids_)
|
492 |
+
|
493 |
+
audio_features_varlen = []
|
494 |
+
for audio in audio_list:
|
495 |
+
assert audio.shape.__len__() == 1 # [seq_len]
|
496 |
+
try:
|
497 |
+
mel = self.audio_processor(audio) # [100(num_mel_bins), seq_len_mel]
|
498 |
+
except Exception as e:
|
499 |
+
raise e
|
500 |
+
audio_features_varlen.append(mel)
|
501 |
+
|
502 |
+
return {
|
503 |
+
"tts_input_ids_varlen": input_ids_varlen, # return List[Tensor]
|
504 |
+
"tts_input_features_varlen": audio_features_varlen, # return List[Tensor]
|
505 |
+
}
|
Chat/resampler.py
ADDED
@@ -0,0 +1,871 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2025 The OpenBMB Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import warnings
|
17 |
+
from functools import partial
|
18 |
+
from typing import Dict, Optional, Callable, List, Generator, Tuple
|
19 |
+
|
20 |
+
import numpy as np
|
21 |
+
import torch
|
22 |
+
import torch.nn.functional as F
|
23 |
+
from torch import nn
|
24 |
+
from torch import Tensor
|
25 |
+
from torch.nn.functional import *
|
26 |
+
from torch.nn.init import trunc_normal_
|
27 |
+
from torch.nn.modules.activation import *
|
28 |
+
from transformers.integrations import is_deepspeed_zero3_enabled
|
29 |
+
|
30 |
+
|
31 |
+
def get_2d_sincos_pos_embed(embed_dim, image_size):
|
32 |
+
"""
|
33 |
+
image_size: image_size or (image_height, image_width)
|
34 |
+
return:
|
35 |
+
pos_embed: [image_height, image_width, embed_dim]
|
36 |
+
"""
|
37 |
+
if isinstance(image_size, int):
|
38 |
+
grid_h_size, grid_w_size = image_size, image_size
|
39 |
+
else:
|
40 |
+
grid_h_size, grid_w_size = image_size[0], image_size[1]
|
41 |
+
|
42 |
+
grid_h = np.arange(grid_h_size, dtype=np.float32)
|
43 |
+
grid_w = np.arange(grid_w_size, dtype=np.float32)
|
44 |
+
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
45 |
+
grid = np.stack(grid, axis=0)
|
46 |
+
|
47 |
+
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
48 |
+
return pos_embed
|
49 |
+
|
50 |
+
|
51 |
+
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
52 |
+
assert embed_dim % 2 == 0
|
53 |
+
|
54 |
+
# use half of dimensions to encode grid_h
|
55 |
+
emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim // 2, grid[0]) # (H, W, D/2)
|
56 |
+
emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim // 2, grid[1]) # (H, W, D/2)
|
57 |
+
|
58 |
+
emb = np.concatenate([emb_h, emb_w], axis=-1) # (H, W, D)
|
59 |
+
return emb
|
60 |
+
|
61 |
+
|
62 |
+
def get_1d_sincos_pos_embed_from_grid_new(embed_dim, pos):
|
63 |
+
"""
|
64 |
+
embed_dim: output dimension for each position
|
65 |
+
pos: a list of positions to be encoded: size (H, W)
|
66 |
+
out: (H, W, D)
|
67 |
+
"""
|
68 |
+
assert embed_dim % 2 == 0
|
69 |
+
omega = np.arange(embed_dim // 2, dtype=np.float32)
|
70 |
+
omega /= embed_dim / 2.0
|
71 |
+
omega = 1.0 / 10000**omega # (D/2,)
|
72 |
+
|
73 |
+
out = np.einsum("hw,d->hwd", pos, omega) # (H, W, D/2), outer product
|
74 |
+
|
75 |
+
emb_sin = np.sin(out) # (H, W, D/2)
|
76 |
+
emb_cos = np.cos(out) # (H, W, D/2)
|
77 |
+
|
78 |
+
emb = np.concatenate([emb_sin, emb_cos], axis=-1) # (H, W, D)
|
79 |
+
return emb
|
80 |
+
|
81 |
+
|
82 |
+
class Resampler(nn.Module):
|
83 |
+
"""
|
84 |
+
A 2D perceiver-resampler network with one cross attention layers by
|
85 |
+
given learnable queries and 2d sincos pos_emb
|
86 |
+
Outputs:
|
87 |
+
A tensor with the shape of (batch_size, num_queries, embed_dim)
|
88 |
+
"""
|
89 |
+
|
90 |
+
def __init__(
|
91 |
+
self,
|
92 |
+
num_queries,
|
93 |
+
embed_dim,
|
94 |
+
num_heads,
|
95 |
+
kv_dim=None,
|
96 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
97 |
+
adaptive=False,
|
98 |
+
max_size=(70, 70),
|
99 |
+
):
|
100 |
+
super().__init__()
|
101 |
+
self.num_queries = num_queries
|
102 |
+
self.embed_dim = embed_dim
|
103 |
+
self.num_heads = num_heads
|
104 |
+
self.adaptive = adaptive
|
105 |
+
self.max_size = max_size
|
106 |
+
|
107 |
+
self.query = nn.Parameter(torch.zeros(self.num_queries, embed_dim))
|
108 |
+
|
109 |
+
if kv_dim is not None and kv_dim != embed_dim:
|
110 |
+
self.kv_proj = nn.Linear(kv_dim, embed_dim, bias=False)
|
111 |
+
else:
|
112 |
+
self.kv_proj = nn.Identity()
|
113 |
+
|
114 |
+
self.attn = MultiheadAttention(embed_dim, num_heads)
|
115 |
+
self.ln_q = norm_layer(embed_dim)
|
116 |
+
self.ln_kv = norm_layer(embed_dim)
|
117 |
+
|
118 |
+
self.ln_post = norm_layer(embed_dim)
|
119 |
+
self.proj = nn.Parameter((embed_dim**-0.5) * torch.randn(embed_dim, embed_dim))
|
120 |
+
|
121 |
+
self._set_2d_pos_cache(self.max_size)
|
122 |
+
|
123 |
+
def _set_2d_pos_cache(self, max_size, device="cpu"):
|
124 |
+
if is_deepspeed_zero3_enabled():
|
125 |
+
device = "cuda"
|
126 |
+
pos_embed = torch.from_numpy(get_2d_sincos_pos_embed(self.embed_dim, max_size)).float().to(device)
|
127 |
+
self.register_buffer("pos_embed", pos_embed, persistent=False)
|
128 |
+
|
129 |
+
def _adjust_pos_cache(self, tgt_sizes, device):
|
130 |
+
max_h = torch.max(tgt_sizes[:, 0])
|
131 |
+
max_w = torch.max(tgt_sizes[:, 1])
|
132 |
+
if max_h > self.max_size[0] or max_w > self.max_size[1]:
|
133 |
+
self.max_size = [max(max_h, self.max_size[0]), max(max_w, self.max_size[1])]
|
134 |
+
self._set_2d_pos_cache(self.max_size, device)
|
135 |
+
|
136 |
+
def _init_weights(self, m):
|
137 |
+
if isinstance(m, nn.Linear):
|
138 |
+
trunc_normal_(m.weight, std=0.02)
|
139 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
140 |
+
nn.init.constant_(m.bias, 0)
|
141 |
+
elif isinstance(m, nn.LayerNorm):
|
142 |
+
nn.init.constant_(m.bias, 0)
|
143 |
+
nn.init.constant_(m.weight, 1.0)
|
144 |
+
|
145 |
+
def _initialize_weights(self, m):
|
146 |
+
if isinstance(m, nn.Linear):
|
147 |
+
trunc_normal_(m.weight, std=0.02)
|
148 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
149 |
+
nn.init.constant_(m.bias, 0)
|
150 |
+
elif isinstance(m, nn.LayerNorm):
|
151 |
+
nn.init.constant_(m.bias, 0)
|
152 |
+
nn.init.constant_(m.weight, 1.0)
|
153 |
+
def forward(self, x, tgt_sizes=None):
|
154 |
+
assert x.shape[0] == tgt_sizes.shape[0]
|
155 |
+
bs = x.shape[0]
|
156 |
+
|
157 |
+
device = x.device
|
158 |
+
dtype = x.dtype
|
159 |
+
|
160 |
+
patch_len = tgt_sizes[:, 0] * tgt_sizes[:, 1]
|
161 |
+
|
162 |
+
self._adjust_pos_cache(tgt_sizes, device=device)
|
163 |
+
|
164 |
+
max_patch_len = torch.max(patch_len)
|
165 |
+
key_padding_mask = torch.zeros((bs, max_patch_len), dtype=torch.bool, device=device)
|
166 |
+
|
167 |
+
pos_embed = []
|
168 |
+
for i in range(bs):
|
169 |
+
tgt_h, tgt_w = tgt_sizes[i]
|
170 |
+
pos_embed.append(self.pos_embed[:tgt_h, :tgt_w, :].reshape((tgt_h * tgt_w, -1)).to(dtype)) # patches * D
|
171 |
+
key_padding_mask[i, patch_len[i] :] = True
|
172 |
+
|
173 |
+
pos_embed = torch.nn.utils.rnn.pad_sequence(pos_embed, batch_first=True, padding_value=0.0).permute(
|
174 |
+
1, 0, 2
|
175 |
+
) # BLD => L * B * D
|
176 |
+
|
177 |
+
x = self.kv_proj(x) # B * L * D
|
178 |
+
x = self.ln_kv(x).permute(1, 0, 2) # L * B * D
|
179 |
+
|
180 |
+
q = self.ln_q(self.query) # Q * D
|
181 |
+
|
182 |
+
out = self.attn(
|
183 |
+
self._repeat(q, bs), # Q * B * D
|
184 |
+
x + pos_embed, # L * B * D + L * B * D
|
185 |
+
x,
|
186 |
+
key_padding_mask=key_padding_mask,
|
187 |
+
)[0]
|
188 |
+
# out: Q * B * D
|
189 |
+
x = out.permute(1, 0, 2) # B * Q * D
|
190 |
+
|
191 |
+
x = self.ln_post(x)
|
192 |
+
x = x @ self.proj
|
193 |
+
return x
|
194 |
+
|
195 |
+
def _repeat(self, query, N: int):
|
196 |
+
return query.unsqueeze(1).repeat(1, N, 1)
|
197 |
+
|
198 |
+
|
199 |
+
class MultiheadAttention(nn.MultiheadAttention):
|
200 |
+
def __init__(
|
201 |
+
self,
|
202 |
+
embed_dim,
|
203 |
+
num_heads,
|
204 |
+
dropout=0.0,
|
205 |
+
bias=True,
|
206 |
+
add_bias_kv=False,
|
207 |
+
add_zero_attn=False,
|
208 |
+
kdim=None,
|
209 |
+
vdim=None,
|
210 |
+
batch_first=False,
|
211 |
+
device=None,
|
212 |
+
dtype=None,
|
213 |
+
):
|
214 |
+
super().__init__(
|
215 |
+
embed_dim, num_heads, dropout, bias, add_bias_kv, add_zero_attn, kdim, vdim, batch_first, device, dtype
|
216 |
+
)
|
217 |
+
|
218 |
+
# rewrite out_proj layer,with nn.Linear
|
219 |
+
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias, device=device, dtype=dtype)
|
220 |
+
|
221 |
+
def forward(
|
222 |
+
self,
|
223 |
+
query: Tensor,
|
224 |
+
key: Tensor,
|
225 |
+
value: Tensor,
|
226 |
+
key_padding_mask: Optional[Tensor] = None,
|
227 |
+
need_weights: bool = True,
|
228 |
+
attn_mask: Optional[Tensor] = None,
|
229 |
+
average_attn_weights: bool = True,
|
230 |
+
is_causal: bool = False,
|
231 |
+
) -> Tuple[Tensor, Optional[Tensor]]:
|
232 |
+
why_not_fast_path = ""
|
233 |
+
if (
|
234 |
+
(attn_mask is not None and torch.is_floating_point(attn_mask))
|
235 |
+
or (key_padding_mask is not None)
|
236 |
+
and torch.is_floating_point(key_padding_mask)
|
237 |
+
):
|
238 |
+
why_not_fast_path = "floating-point masks are not supported for fast path."
|
239 |
+
|
240 |
+
is_batched = query.dim() == 3
|
241 |
+
|
242 |
+
key_padding_mask = _canonical_mask(
|
243 |
+
mask=key_padding_mask,
|
244 |
+
mask_name="key_padding_mask",
|
245 |
+
other_type=F._none_or_dtype(attn_mask),
|
246 |
+
other_name="attn_mask",
|
247 |
+
target_type=query.dtype,
|
248 |
+
)
|
249 |
+
|
250 |
+
attn_mask = _canonical_mask(
|
251 |
+
mask=attn_mask,
|
252 |
+
mask_name="attn_mask",
|
253 |
+
other_type=None,
|
254 |
+
other_name="",
|
255 |
+
target_type=query.dtype,
|
256 |
+
check_other=False,
|
257 |
+
)
|
258 |
+
|
259 |
+
if not is_batched:
|
260 |
+
why_not_fast_path = f"input not batched; expected query.dim() of 3 but got {query.dim()}"
|
261 |
+
elif query is not key or key is not value:
|
262 |
+
# When lifting this restriction, don't forget to either
|
263 |
+
# enforce that the dtypes all match or test cases where
|
264 |
+
# they don't!
|
265 |
+
why_not_fast_path = "non-self attention was used (query, key, and value are not the same Tensor)"
|
266 |
+
elif self.in_proj_bias is not None and query.dtype != self.in_proj_bias.dtype:
|
267 |
+
why_not_fast_path = (
|
268 |
+
f"dtypes of query ({query.dtype}) and self.in_proj_bias ({self.in_proj_bias.dtype}) don't match"
|
269 |
+
)
|
270 |
+
elif self.in_proj_weight is None:
|
271 |
+
why_not_fast_path = "in_proj_weight was None"
|
272 |
+
elif query.dtype != self.in_proj_weight.dtype:
|
273 |
+
# this case will fail anyway, but at least they'll get a useful error message.
|
274 |
+
why_not_fast_path = (
|
275 |
+
f"dtypes of query ({query.dtype}) and self.in_proj_weight ({self.in_proj_weight.dtype}) don't match"
|
276 |
+
)
|
277 |
+
elif self.training:
|
278 |
+
why_not_fast_path = "training is enabled"
|
279 |
+
elif (self.num_heads % 2) != 0:
|
280 |
+
why_not_fast_path = "self.num_heads is not even"
|
281 |
+
elif not self.batch_first:
|
282 |
+
why_not_fast_path = "batch_first was not True"
|
283 |
+
elif self.bias_k is not None:
|
284 |
+
why_not_fast_path = "self.bias_k was not None"
|
285 |
+
elif self.bias_v is not None:
|
286 |
+
why_not_fast_path = "self.bias_v was not None"
|
287 |
+
elif self.add_zero_attn:
|
288 |
+
why_not_fast_path = "add_zero_attn was enabled"
|
289 |
+
elif not self._qkv_same_embed_dim:
|
290 |
+
why_not_fast_path = "_qkv_same_embed_dim was not True"
|
291 |
+
elif query.is_nested and (key_padding_mask is not None or attn_mask is not None):
|
292 |
+
why_not_fast_path = "supplying both src_key_padding_mask and src_mask at the same time \
|
293 |
+
is not supported with NestedTensor input"
|
294 |
+
elif torch.is_autocast_enabled():
|
295 |
+
why_not_fast_path = "autocast is enabled"
|
296 |
+
|
297 |
+
if not why_not_fast_path:
|
298 |
+
tensor_args = (
|
299 |
+
query,
|
300 |
+
key,
|
301 |
+
value,
|
302 |
+
self.in_proj_weight,
|
303 |
+
self.in_proj_bias,
|
304 |
+
self.out_proj.weight,
|
305 |
+
self.out_proj.bias,
|
306 |
+
)
|
307 |
+
# We have to use list comprehensions below because TorchScript does not support
|
308 |
+
# generator expressions.
|
309 |
+
if torch.overrides.has_torch_function(tensor_args):
|
310 |
+
why_not_fast_path = "some Tensor argument has_torch_function"
|
311 |
+
elif _is_make_fx_tracing():
|
312 |
+
why_not_fast_path = "we are running make_fx tracing"
|
313 |
+
elif not all(_check_arg_device(x) for x in tensor_args):
|
314 |
+
why_not_fast_path = (
|
315 |
+
"some Tensor argument's device is neither one of "
|
316 |
+
f"cpu, cuda or {torch.utils.backend_registration._privateuse1_backend_name}"
|
317 |
+
)
|
318 |
+
elif torch.is_grad_enabled() and any(_arg_requires_grad(x) for x in tensor_args):
|
319 |
+
why_not_fast_path = (
|
320 |
+
"grad is enabled and at least one of query or the "
|
321 |
+
"input/output projection weights or biases requires_grad"
|
322 |
+
)
|
323 |
+
if not why_not_fast_path:
|
324 |
+
merged_mask, mask_type = self.merge_masks(attn_mask, key_padding_mask, query)
|
325 |
+
|
326 |
+
if self.in_proj_bias is not None and self.in_proj_weight is not None:
|
327 |
+
return torch._native_multi_head_attention(
|
328 |
+
query,
|
329 |
+
key,
|
330 |
+
value,
|
331 |
+
self.embed_dim,
|
332 |
+
self.num_heads,
|
333 |
+
self.in_proj_weight,
|
334 |
+
self.in_proj_bias,
|
335 |
+
self.out_proj.weight,
|
336 |
+
self.out_proj.bias,
|
337 |
+
merged_mask,
|
338 |
+
need_weights,
|
339 |
+
average_attn_weights,
|
340 |
+
mask_type,
|
341 |
+
)
|
342 |
+
|
343 |
+
any_nested = query.is_nested or key.is_nested or value.is_nested
|
344 |
+
assert not any_nested, (
|
345 |
+
"MultiheadAttention does not support NestedTensor outside of its fast path. "
|
346 |
+
+ f"The fast path was not hit because {why_not_fast_path}"
|
347 |
+
)
|
348 |
+
|
349 |
+
if self.batch_first and is_batched:
|
350 |
+
# make sure that the transpose op does not affect the "is" property
|
351 |
+
if key is value:
|
352 |
+
if query is key:
|
353 |
+
query = key = value = query.transpose(1, 0)
|
354 |
+
else:
|
355 |
+
query, key = (x.transpose(1, 0) for x in (query, key))
|
356 |
+
value = key
|
357 |
+
else:
|
358 |
+
query, key, value = (x.transpose(1, 0) for x in (query, key, value))
|
359 |
+
|
360 |
+
if not self._qkv_same_embed_dim:
|
361 |
+
attn_output, attn_output_weights = self.multi_head_attention_forward(
|
362 |
+
query,
|
363 |
+
key,
|
364 |
+
value,
|
365 |
+
self.embed_dim,
|
366 |
+
self.num_heads,
|
367 |
+
self.in_proj_weight,
|
368 |
+
self.in_proj_bias,
|
369 |
+
self.bias_k,
|
370 |
+
self.bias_v,
|
371 |
+
self.add_zero_attn,
|
372 |
+
self.dropout,
|
373 |
+
self.out_proj.weight,
|
374 |
+
self.out_proj.bias,
|
375 |
+
training=self.training,
|
376 |
+
key_padding_mask=key_padding_mask,
|
377 |
+
need_weights=need_weights,
|
378 |
+
attn_mask=attn_mask,
|
379 |
+
use_separate_proj_weight=True,
|
380 |
+
q_proj_weight=self.q_proj_weight,
|
381 |
+
k_proj_weight=self.k_proj_weight,
|
382 |
+
v_proj_weight=self.v_proj_weight,
|
383 |
+
average_attn_weights=average_attn_weights,
|
384 |
+
is_causal=is_causal,
|
385 |
+
)
|
386 |
+
else:
|
387 |
+
attn_output, attn_output_weights = self.multi_head_attention_forward(
|
388 |
+
query,
|
389 |
+
key,
|
390 |
+
value,
|
391 |
+
self.embed_dim,
|
392 |
+
self.num_heads,
|
393 |
+
self.in_proj_weight,
|
394 |
+
self.in_proj_bias,
|
395 |
+
self.bias_k,
|
396 |
+
self.bias_v,
|
397 |
+
self.add_zero_attn,
|
398 |
+
self.dropout,
|
399 |
+
self.out_proj.weight,
|
400 |
+
self.out_proj.bias,
|
401 |
+
training=self.training,
|
402 |
+
key_padding_mask=key_padding_mask,
|
403 |
+
need_weights=need_weights,
|
404 |
+
attn_mask=attn_mask,
|
405 |
+
average_attn_weights=average_attn_weights,
|
406 |
+
is_causal=is_causal,
|
407 |
+
)
|
408 |
+
if self.batch_first and is_batched:
|
409 |
+
return attn_output.transpose(1, 0), attn_output_weights
|
410 |
+
else:
|
411 |
+
return attn_output, attn_output_weights
|
412 |
+
|
413 |
+
def multi_head_attention_forward(
|
414 |
+
self,
|
415 |
+
query: Tensor,
|
416 |
+
key: Tensor,
|
417 |
+
value: Tensor,
|
418 |
+
embed_dim_to_check: int,
|
419 |
+
num_heads: int,
|
420 |
+
in_proj_weight: Optional[Tensor],
|
421 |
+
in_proj_bias: Optional[Tensor],
|
422 |
+
bias_k: Optional[Tensor],
|
423 |
+
bias_v: Optional[Tensor],
|
424 |
+
add_zero_attn: bool,
|
425 |
+
dropout_p: float,
|
426 |
+
out_proj_weight: Tensor,
|
427 |
+
out_proj_bias: Optional[Tensor],
|
428 |
+
training: bool = True,
|
429 |
+
key_padding_mask: Optional[Tensor] = None,
|
430 |
+
need_weights: bool = True,
|
431 |
+
attn_mask: Optional[Tensor] = None,
|
432 |
+
use_separate_proj_weight: bool = False,
|
433 |
+
q_proj_weight: Optional[Tensor] = None,
|
434 |
+
k_proj_weight: Optional[Tensor] = None,
|
435 |
+
v_proj_weight: Optional[Tensor] = None,
|
436 |
+
static_k: Optional[Tensor] = None,
|
437 |
+
static_v: Optional[Tensor] = None,
|
438 |
+
average_attn_weights: bool = True,
|
439 |
+
is_causal: bool = False,
|
440 |
+
) -> Tuple[Tensor, Optional[Tensor]]:
|
441 |
+
tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v, out_proj_weight, out_proj_bias)
|
442 |
+
|
443 |
+
is_batched = _mha_shape_check(query, key, value, key_padding_mask, attn_mask, num_heads)
|
444 |
+
|
445 |
+
# For unbatched input, we unsqueeze at the expected batch-dim to pretend that the input
|
446 |
+
# is batched, run the computation and before returning squeeze the
|
447 |
+
# batch dimension so that the output doesn't carry this temporary batch dimension.
|
448 |
+
if not is_batched:
|
449 |
+
# unsqueeze if the input is unbatched
|
450 |
+
query = query.unsqueeze(1)
|
451 |
+
key = key.unsqueeze(1)
|
452 |
+
value = value.unsqueeze(1)
|
453 |
+
if key_padding_mask is not None:
|
454 |
+
key_padding_mask = key_padding_mask.unsqueeze(0)
|
455 |
+
|
456 |
+
# set up shape vars
|
457 |
+
tgt_len, bsz, embed_dim = query.shape
|
458 |
+
src_len, _, _ = key.shape
|
459 |
+
|
460 |
+
key_padding_mask = _canonical_mask(
|
461 |
+
mask=key_padding_mask,
|
462 |
+
mask_name="key_padding_mask",
|
463 |
+
other_type=F._none_or_dtype(attn_mask),
|
464 |
+
other_name="attn_mask",
|
465 |
+
target_type=query.dtype,
|
466 |
+
)
|
467 |
+
|
468 |
+
if is_causal and attn_mask is None:
|
469 |
+
raise RuntimeError(
|
470 |
+
"Need attn_mask if specifying the is_causal hint. "
|
471 |
+
"You may use the Transformer module method "
|
472 |
+
"`generate_square_subsequent_mask` to create this mask."
|
473 |
+
)
|
474 |
+
|
475 |
+
if is_causal and key_padding_mask is None and not need_weights:
|
476 |
+
# when we have a kpm or need weights, we need attn_mask
|
477 |
+
# Otherwise, we use the is_causal hint go as is_causal
|
478 |
+
# indicator to SDPA.
|
479 |
+
attn_mask = None
|
480 |
+
else:
|
481 |
+
attn_mask = _canonical_mask(
|
482 |
+
mask=attn_mask,
|
483 |
+
mask_name="attn_mask",
|
484 |
+
other_type=None,
|
485 |
+
other_name="",
|
486 |
+
target_type=query.dtype,
|
487 |
+
check_other=False,
|
488 |
+
)
|
489 |
+
|
490 |
+
if key_padding_mask is not None:
|
491 |
+
# We have the attn_mask, and use that to merge kpm into it.
|
492 |
+
# Turn off use of is_causal hint, as the merged mask is no
|
493 |
+
# longer causal.
|
494 |
+
is_causal = False
|
495 |
+
|
496 |
+
assert (
|
497 |
+
embed_dim == embed_dim_to_check
|
498 |
+
), f"was expecting embedding dimension of {embed_dim_to_check}, but got {embed_dim}"
|
499 |
+
if isinstance(embed_dim, torch.Tensor):
|
500 |
+
# embed_dim can be a tensor when JIT tracing
|
501 |
+
head_dim = embed_dim.div(num_heads, rounding_mode="trunc")
|
502 |
+
else:
|
503 |
+
head_dim = embed_dim // num_heads
|
504 |
+
assert head_dim * num_heads == embed_dim, f"embed_dim {embed_dim} not divisible by num_heads {num_heads}"
|
505 |
+
if use_separate_proj_weight:
|
506 |
+
# allow MHA to have different embedding dimensions when separate projection weights are used
|
507 |
+
assert (
|
508 |
+
key.shape[:2] == value.shape[:2]
|
509 |
+
), f"key's sequence and batch dims {key.shape[:2]} do not match value's {value.shape[:2]}"
|
510 |
+
else:
|
511 |
+
assert key.shape == value.shape, f"key shape {key.shape} does not match value shape {value.shape}"
|
512 |
+
|
513 |
+
#
|
514 |
+
# compute in-projection
|
515 |
+
#
|
516 |
+
if not use_separate_proj_weight:
|
517 |
+
assert in_proj_weight is not None, "use_separate_proj_weight is False but in_proj_weight is None"
|
518 |
+
q, k, v = _in_projection_packed(query, key, value, in_proj_weight, in_proj_bias)
|
519 |
+
else:
|
520 |
+
assert q_proj_weight is not None, "use_separate_proj_weight is True but q_proj_weight is None"
|
521 |
+
assert k_proj_weight is not None, "use_separate_proj_weight is True but k_proj_weight is None"
|
522 |
+
assert v_proj_weight is not None, "use_separate_proj_weight is True but v_proj_weight is None"
|
523 |
+
if in_proj_bias is None:
|
524 |
+
b_q = b_k = b_v = None
|
525 |
+
else:
|
526 |
+
b_q, b_k, b_v = in_proj_bias.chunk(3)
|
527 |
+
q, k, v = _in_projection(query, key, value, q_proj_weight, k_proj_weight, v_proj_weight, b_q, b_k, b_v)
|
528 |
+
|
529 |
+
# prep attention mask
|
530 |
+
|
531 |
+
if attn_mask is not None:
|
532 |
+
# ensure attn_mask's dim is 3
|
533 |
+
if attn_mask.dim() == 2:
|
534 |
+
correct_2d_size = (tgt_len, src_len)
|
535 |
+
if attn_mask.shape != correct_2d_size:
|
536 |
+
raise RuntimeError(
|
537 |
+
f"The shape of the 2D attn_mask is {attn_mask.shape}, but should be {correct_2d_size}."
|
538 |
+
)
|
539 |
+
attn_mask = attn_mask.unsqueeze(0)
|
540 |
+
elif attn_mask.dim() == 3:
|
541 |
+
correct_3d_size = (bsz * num_heads, tgt_len, src_len)
|
542 |
+
if attn_mask.shape != correct_3d_size:
|
543 |
+
raise RuntimeError(
|
544 |
+
f"The shape of the 3D attn_mask is {attn_mask.shape}, but should be {correct_3d_size}."
|
545 |
+
)
|
546 |
+
else:
|
547 |
+
raise RuntimeError(f"attn_mask's dimension {attn_mask.dim()} is not supported")
|
548 |
+
|
549 |
+
# add bias along batch dimension (currently second)
|
550 |
+
if bias_k is not None and bias_v is not None:
|
551 |
+
assert static_k is None, "bias cannot be added to static key."
|
552 |
+
assert static_v is None, "bias cannot be added to static value."
|
553 |
+
k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
|
554 |
+
v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
|
555 |
+
if attn_mask is not None:
|
556 |
+
attn_mask = pad(attn_mask, (0, 1))
|
557 |
+
if key_padding_mask is not None:
|
558 |
+
key_padding_mask = pad(key_padding_mask, (0, 1))
|
559 |
+
else:
|
560 |
+
assert bias_k is None
|
561 |
+
assert bias_v is None
|
562 |
+
|
563 |
+
#
|
564 |
+
# reshape q, k, v for multihead attention and make em batch first
|
565 |
+
#
|
566 |
+
q = q.view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
|
567 |
+
if static_k is None:
|
568 |
+
k = k.view(k.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
|
569 |
+
else:
|
570 |
+
# TODO finish disentangling control flow so we don't do in-projections when statics are passed
|
571 |
+
assert (
|
572 |
+
static_k.size(0) == bsz * num_heads
|
573 |
+
), f"expecting static_k.size(0) of {bsz * num_heads}, but got {static_k.size(0)}"
|
574 |
+
assert static_k.size(2) == head_dim, f"expecting static_k.size(2) of {head_dim}, but got {static_k.size(2)}"
|
575 |
+
k = static_k
|
576 |
+
if static_v is None:
|
577 |
+
v = v.view(v.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
|
578 |
+
else:
|
579 |
+
# TODO finish disentangling control flow so we don't do in-projections when statics are passed
|
580 |
+
assert (
|
581 |
+
static_v.size(0) == bsz * num_heads
|
582 |
+
), f"expecting static_v.size(0) of {bsz * num_heads}, but got {static_v.size(0)}"
|
583 |
+
assert static_v.size(2) == head_dim, f"expecting static_v.size(2) of {head_dim}, but got {static_v.size(2)}"
|
584 |
+
v = static_v
|
585 |
+
|
586 |
+
# add zero attention along batch dimension (now first)
|
587 |
+
if add_zero_attn:
|
588 |
+
zero_attn_shape = (bsz * num_heads, 1, head_dim)
|
589 |
+
k = torch.cat([k, torch.zeros(zero_attn_shape, dtype=k.dtype, device=k.device)], dim=1)
|
590 |
+
v = torch.cat([v, torch.zeros(zero_attn_shape, dtype=v.dtype, device=v.device)], dim=1)
|
591 |
+
if attn_mask is not None:
|
592 |
+
attn_mask = pad(attn_mask, (0, 1))
|
593 |
+
if key_padding_mask is not None:
|
594 |
+
key_padding_mask = pad(key_padding_mask, (0, 1))
|
595 |
+
|
596 |
+
# update source sequence length after adjustments
|
597 |
+
src_len = k.size(1)
|
598 |
+
|
599 |
+
# merge key padding and attention masks
|
600 |
+
if key_padding_mask is not None:
|
601 |
+
assert key_padding_mask.shape == (
|
602 |
+
bsz,
|
603 |
+
src_len,
|
604 |
+
), f"expecting key_padding_mask shape of {(bsz, src_len)}, but got {key_padding_mask.shape}"
|
605 |
+
key_padding_mask = (
|
606 |
+
key_padding_mask.view(bsz, 1, 1, src_len)
|
607 |
+
.expand(-1, num_heads, -1, -1)
|
608 |
+
.reshape(bsz * num_heads, 1, src_len)
|
609 |
+
)
|
610 |
+
if attn_mask is None:
|
611 |
+
attn_mask = key_padding_mask
|
612 |
+
else:
|
613 |
+
attn_mask = attn_mask + key_padding_mask
|
614 |
+
|
615 |
+
# adjust dropout probability
|
616 |
+
if not training:
|
617 |
+
dropout_p = 0.0
|
618 |
+
|
619 |
+
#
|
620 |
+
# (deep breath) calculate attention and out projection
|
621 |
+
#
|
622 |
+
|
623 |
+
if need_weights:
|
624 |
+
B, Nt, E = q.shape
|
625 |
+
q_scaled = q / math.sqrt(E)
|
626 |
+
|
627 |
+
assert not (is_causal and attn_mask is None), "FIXME: is_causal not implemented for need_weights"
|
628 |
+
|
629 |
+
if attn_mask is not None:
|
630 |
+
attn_output_weights = torch.baddbmm(attn_mask, q_scaled, k.transpose(-2, -1))
|
631 |
+
else:
|
632 |
+
attn_output_weights = torch.bmm(q_scaled, k.transpose(-2, -1))
|
633 |
+
attn_output_weights = softmax(attn_output_weights, dim=-1)
|
634 |
+
if dropout_p > 0.0:
|
635 |
+
attn_output_weights = dropout(attn_output_weights, p=dropout_p)
|
636 |
+
|
637 |
+
attn_output = torch.bmm(attn_output_weights, v)
|
638 |
+
|
639 |
+
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len * bsz, embed_dim)
|
640 |
+
attn_output = self.out_proj(attn_output)
|
641 |
+
attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
|
642 |
+
|
643 |
+
# optionally average attention weights over heads
|
644 |
+
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
|
645 |
+
if average_attn_weights:
|
646 |
+
attn_output_weights = attn_output_weights.mean(dim=1)
|
647 |
+
|
648 |
+
if not is_batched:
|
649 |
+
# squeeze the output if input was unbatched
|
650 |
+
attn_output = attn_output.squeeze(1)
|
651 |
+
attn_output_weights = attn_output_weights.squeeze(0)
|
652 |
+
return attn_output, attn_output_weights
|
653 |
+
else:
|
654 |
+
# attn_mask can be either (L,S) or (N*num_heads, L, S)
|
655 |
+
# if attn_mask's shape is (1, L, S) we need to unsqueeze to (1, 1, L, S)
|
656 |
+
# in order to match the input for SDPA of (N, num_heads, L, S)
|
657 |
+
if attn_mask is not None:
|
658 |
+
if attn_mask.size(0) == 1 and attn_mask.dim() == 3:
|
659 |
+
attn_mask = attn_mask.unsqueeze(0)
|
660 |
+
else:
|
661 |
+
attn_mask = attn_mask.view(bsz, num_heads, -1, src_len)
|
662 |
+
|
663 |
+
q = q.view(bsz, num_heads, tgt_len, head_dim)
|
664 |
+
k = k.view(bsz, num_heads, src_len, head_dim)
|
665 |
+
v = v.view(bsz, num_heads, src_len, head_dim)
|
666 |
+
|
667 |
+
attn_output = F.scaled_dot_product_attention(q, k, v, attn_mask, dropout_p, is_causal)
|
668 |
+
attn_output = attn_output.permute(2, 0, 1, 3).contiguous().view(bsz * tgt_len, embed_dim)
|
669 |
+
|
670 |
+
attn_output = self.out_proj(attn_output)
|
671 |
+
attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
|
672 |
+
if not is_batched:
|
673 |
+
# squeeze the output if input was unbatched
|
674 |
+
attn_output = attn_output.squeeze(1)
|
675 |
+
return attn_output, None
|
676 |
+
|
677 |
+
|
678 |
+
def _mha_shape_check(
|
679 |
+
query: Tensor,
|
680 |
+
key: Tensor,
|
681 |
+
value: Tensor,
|
682 |
+
key_padding_mask: Optional[Tensor],
|
683 |
+
attn_mask: Optional[Tensor],
|
684 |
+
num_heads: int,
|
685 |
+
):
|
686 |
+
# Verifies the expected shape for `query, `key`, `value`, `key_padding_mask` and `attn_mask`
|
687 |
+
# and returns if the input is batched or not.
|
688 |
+
# Raises an error if `query` is not 2-D (unbatched) or 3-D (batched) tensor.
|
689 |
+
|
690 |
+
# Shape check.
|
691 |
+
if query.dim() == 3:
|
692 |
+
# Batched Inputs
|
693 |
+
is_batched = True
|
694 |
+
assert key.dim() == 3 and value.dim() == 3, (
|
695 |
+
"For batched (3-D) `query`, expected `key` and `value` to be 3-D"
|
696 |
+
f" but found {key.dim()}-D and {value.dim()}-D tensors respectively"
|
697 |
+
)
|
698 |
+
if key_padding_mask is not None:
|
699 |
+
assert key_padding_mask.dim() == 2, (
|
700 |
+
"For batched (3-D) `query`, expected `key_padding_mask` to be `None` or 2-D"
|
701 |
+
f" but found {key_padding_mask.dim()}-D tensor instead"
|
702 |
+
)
|
703 |
+
if attn_mask is not None:
|
704 |
+
assert attn_mask.dim() in (2, 3), (
|
705 |
+
"For batched (3-D) `query`, expected `attn_mask` to be `None`, 2-D or 3-D"
|
706 |
+
f" but found {attn_mask.dim()}-D tensor instead"
|
707 |
+
)
|
708 |
+
elif query.dim() == 2:
|
709 |
+
# Unbatched Inputs
|
710 |
+
is_batched = False
|
711 |
+
assert key.dim() == 2 and value.dim() == 2, (
|
712 |
+
"For unbatched (2-D) `query`, expected `key` and `value` to be 2-D"
|
713 |
+
f" but found {key.dim()}-D and {value.dim()}-D tensors respectively"
|
714 |
+
)
|
715 |
+
|
716 |
+
if key_padding_mask is not None:
|
717 |
+
assert key_padding_mask.dim() == 1, (
|
718 |
+
"For unbatched (2-D) `query`, expected `key_padding_mask` to be `None` or 1-D"
|
719 |
+
f" but found {key_padding_mask.dim()}-D tensor instead"
|
720 |
+
)
|
721 |
+
|
722 |
+
if attn_mask is not None:
|
723 |
+
assert attn_mask.dim() in (2, 3), (
|
724 |
+
"For unbatched (2-D) `query`, expected `attn_mask` to be `None`, 2-D or 3-D"
|
725 |
+
f" but found {attn_mask.dim()}-D tensor instead"
|
726 |
+
)
|
727 |
+
if attn_mask.dim() == 3:
|
728 |
+
expected_shape = (num_heads, query.shape[0], key.shape[0])
|
729 |
+
assert (
|
730 |
+
attn_mask.shape == expected_shape
|
731 |
+
), f"Expected `attn_mask` shape to be {expected_shape} but got {attn_mask.shape}"
|
732 |
+
else:
|
733 |
+
raise AssertionError(
|
734 |
+
f"query should be unbatched 2D or batched 3D tensor but received {query.dim()}-D query tensor"
|
735 |
+
)
|
736 |
+
|
737 |
+
return is_batched
|
738 |
+
|
739 |
+
|
740 |
+
def _canonical_mask(
|
741 |
+
mask: Optional[Tensor],
|
742 |
+
mask_name: str,
|
743 |
+
other_type: Optional[DType],
|
744 |
+
other_name: str,
|
745 |
+
target_type: DType,
|
746 |
+
check_other: bool = True,
|
747 |
+
) -> Optional[Tensor]:
|
748 |
+
|
749 |
+
if mask is not None:
|
750 |
+
_mask_dtype = mask.dtype
|
751 |
+
_mask_is_float = torch.is_floating_point(mask)
|
752 |
+
if _mask_dtype != torch.bool and not _mask_is_float:
|
753 |
+
raise AssertionError(f"only bool and floating types of {mask_name} are supported")
|
754 |
+
if check_other and other_type is not None:
|
755 |
+
if _mask_dtype != other_type:
|
756 |
+
warnings.warn(
|
757 |
+
f"Support for mismatched {mask_name} and {other_name} "
|
758 |
+
"is deprecated. Use same type for both instead."
|
759 |
+
)
|
760 |
+
if not _mask_is_float:
|
761 |
+
mask = torch.zeros_like(mask, dtype=target_type).masked_fill_(mask, float("-inf"))
|
762 |
+
return mask
|
763 |
+
|
764 |
+
|
765 |
+
def _in_projection_packed(
|
766 |
+
q: Tensor,
|
767 |
+
k: Tensor,
|
768 |
+
v: Tensor,
|
769 |
+
w: Tensor,
|
770 |
+
b: Optional[Tensor] = None,
|
771 |
+
) -> List[Tensor]:
|
772 |
+
r"""
|
773 |
+
Performs the in-projection step of the attention operation, using packed weights.
|
774 |
+
Output is a triple containing projection tensors for query, key and value.
|
775 |
+
Args:
|
776 |
+
q, k, v: query, key and value tensors to be projected. For self-attention,
|
777 |
+
these are typically the same tensor; for encoder-decoder attention,
|
778 |
+
k and v are typically the same tensor. (We take advantage of these
|
779 |
+
identities for performance if they are present.) Regardless, q, k and v
|
780 |
+
must share a common embedding dimension; otherwise their shapes may vary.
|
781 |
+
w: projection weights for q, k and v, packed into a single tensor. Weights
|
782 |
+
are packed along dimension 0, in q, k, v order.
|
783 |
+
b: optional projection biases for q, k and v, packed into a single tensor
|
784 |
+
in q, k, v order.
|
785 |
+
Shape:
|
786 |
+
Inputs:
|
787 |
+
- q: :math:`(..., E)` where E is the embedding dimension
|
788 |
+
- k: :math:`(..., E)` where E is the embedding dimension
|
789 |
+
- v: :math:`(..., E)` where E is the embedding dimension
|
790 |
+
- w: :math:`(E * 3, E)` where E is the embedding dimension
|
791 |
+
- b: :math:`E * 3` where E is the embedding dimension
|
792 |
+
Output:
|
793 |
+
- in output list :math:`[q', k', v']`, each output tensor will have the
|
794 |
+
same shape as the corresponding input tensor.
|
795 |
+
"""
|
796 |
+
E = q.size(-1)
|
797 |
+
if k is v:
|
798 |
+
if q is k:
|
799 |
+
# self-attention
|
800 |
+
proj = linear(q, w, b)
|
801 |
+
# reshape to 3, E and not E, 3 is deliberate for better memory coalescing and keeping same order as chunk()
|
802 |
+
proj = proj.unflatten(-1, (3, E)).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous()
|
803 |
+
return proj[0], proj[1], proj[2]
|
804 |
+
else:
|
805 |
+
# encoder-decoder attention
|
806 |
+
w_q, w_kv = w.split([E, E * 2])
|
807 |
+
if b is None:
|
808 |
+
b_q = b_kv = None
|
809 |
+
else:
|
810 |
+
b_q, b_kv = b.split([E, E * 2])
|
811 |
+
q_proj = linear(q, w_q, b_q)
|
812 |
+
kv_proj = linear(k, w_kv, b_kv)
|
813 |
+
# reshape to 2, E and not E, 2 is deliberate for better memory coalescing and keeping same order as chunk()
|
814 |
+
kv_proj = kv_proj.unflatten(-1, (2, E)).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous()
|
815 |
+
return (q_proj, kv_proj[0], kv_proj[1])
|
816 |
+
else:
|
817 |
+
w_q, w_k, w_v = w.chunk(3)
|
818 |
+
if b is None:
|
819 |
+
b_q = b_k = b_v = None
|
820 |
+
else:
|
821 |
+
b_q, b_k, b_v = b.chunk(3)
|
822 |
+
return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v)
|
823 |
+
|
824 |
+
|
825 |
+
def _in_projection(
|
826 |
+
q: Tensor,
|
827 |
+
k: Tensor,
|
828 |
+
v: Tensor,
|
829 |
+
w_q: Tensor,
|
830 |
+
w_k: Tensor,
|
831 |
+
w_v: Tensor,
|
832 |
+
b_q: Optional[Tensor] = None,
|
833 |
+
b_k: Optional[Tensor] = None,
|
834 |
+
b_v: Optional[Tensor] = None,
|
835 |
+
) -> Tuple[Tensor, Tensor, Tensor]:
|
836 |
+
r"""
|
837 |
+
Performs the in-projection step of the attention operation. This is simply
|
838 |
+
a triple of linear projections, with shape constraints on the weights which
|
839 |
+
ensure embedding dimension uniformity in the projected outputs.
|
840 |
+
Output is a triple containing projection tensors for query, key and value.
|
841 |
+
Args:
|
842 |
+
q, k, v: query, key and value tensors to be projected.
|
843 |
+
w_q, w_k, w_v: weights for q, k and v, respectively.
|
844 |
+
b_q, b_k, b_v: optional biases for q, k and v, respectively.
|
845 |
+
Shape:
|
846 |
+
Inputs:
|
847 |
+
- q: :math:`(Qdims..., Eq)` where Eq is the query embedding dimension and Qdims are any
|
848 |
+
number of leading dimensions.
|
849 |
+
- k: :math:`(Kdims..., Ek)` where Ek is the key embedding dimension and Kdims are any
|
850 |
+
number of leading dimensions.
|
851 |
+
- v: :math:`(Vdims..., Ev)` where Ev is the value embedding dimension and Vdims are any
|
852 |
+
number of leading dimensions.
|
853 |
+
- w_q: :math:`(Eq, Eq)`
|
854 |
+
- w_k: :math:`(Eq, Ek)`
|
855 |
+
- w_v: :math:`(Eq, Ev)`
|
856 |
+
- b_q: :math:`(Eq)`
|
857 |
+
- b_k: :math:`(Eq)`
|
858 |
+
- b_v: :math:`(Eq)`
|
859 |
+
Output: in output triple :math:`(q', k', v')`,
|
860 |
+
- q': :math:`[Qdims..., Eq]`
|
861 |
+
- k': :math:`[Kdims..., Eq]`
|
862 |
+
- v': :math:`[Vdims..., Eq]`
|
863 |
+
"""
|
864 |
+
Eq, Ek, Ev = q.size(-1), k.size(-1), v.size(-1)
|
865 |
+
assert w_q.shape == (Eq, Eq), f"expecting query weights shape of {(Eq, Eq)}, but got {w_q.shape}"
|
866 |
+
assert w_k.shape == (Eq, Ek), f"expecting key weights shape of {(Eq, Ek)}, but got {w_k.shape}"
|
867 |
+
assert w_v.shape == (Eq, Ev), f"expecting value weights shape of {(Eq, Ev)}, but got {w_v.shape}"
|
868 |
+
assert b_q is None or b_q.shape == (Eq,), f"expecting query bias shape of {(Eq,)}, but got {b_q.shape}"
|
869 |
+
assert b_k is None or b_k.shape == (Eq,), f"expecting key bias shape of {(Eq,)}, but got {b_k.shape}"
|
870 |
+
assert b_v is None or b_v.shape == (Eq,), f"expecting value bias shape of {(Eq,)}, but got {b_v.shape}"
|
871 |
+
return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v)
|
Chat/special_tokens_map.json
ADDED
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
{
|
4 |
+
"content": "<image>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"content": "</image>",
|
12 |
+
"lstrip": false,
|
13 |
+
"normalized": false,
|
14 |
+
"rstrip": false,
|
15 |
+
"single_word": false
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"content": "<ref>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"content": "</ref>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"content": "<box>",
|
33 |
+
"lstrip": false,
|
34 |
+
"normalized": false,
|
35 |
+
"rstrip": false,
|
36 |
+
"single_word": false
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"content": "</box>",
|
40 |
+
"lstrip": false,
|
41 |
+
"normalized": false,
|
42 |
+
"rstrip": false,
|
43 |
+
"single_word": false
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"content": "<quad>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"content": "</quad>",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": false,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"content": "<point>",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": false,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"content": "</point>",
|
68 |
+
"lstrip": false,
|
69 |
+
"normalized": false,
|
70 |
+
"rstrip": false,
|
71 |
+
"single_word": false
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"content": "<slice>",
|
75 |
+
"lstrip": false,
|
76 |
+
"normalized": false,
|
77 |
+
"rstrip": false,
|
78 |
+
"single_word": false
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"content": "</slice>",
|
82 |
+
"lstrip": false,
|
83 |
+
"normalized": false,
|
84 |
+
"rstrip": false,
|
85 |
+
"single_word": false
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"content": "<image_id>",
|
89 |
+
"lstrip": false,
|
90 |
+
"normalized": false,
|
91 |
+
"rstrip": false,
|
92 |
+
"single_word": false
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"content": "</image_id>",
|
96 |
+
"lstrip": false,
|
97 |
+
"normalized": false,
|
98 |
+
"rstrip": false,
|
99 |
+
"single_word": false
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"content": "<unit>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"content": "</unit>",
|
110 |
+
"lstrip": false,
|
111 |
+
"normalized": false,
|
112 |
+
"rstrip": false,
|
113 |
+
"single_word": false
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"content": "<asr>",
|
117 |
+
"lstrip": false,
|
118 |
+
"normalized": false,
|
119 |
+
"rstrip": false,
|
120 |
+
"single_word": false
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"content": "</asr>",
|
124 |
+
"lstrip": false,
|
125 |
+
"normalized": false,
|
126 |
+
"rstrip": false,
|
127 |
+
"single_word": false
|
128 |
+
},
|
129 |
+
{
|
130 |
+
"content": "<query>",
|
131 |
+
"lstrip": false,
|
132 |
+
"normalized": false,
|
133 |
+
"rstrip": false,
|
134 |
+
"single_word": false
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"content": "</query>",
|
138 |
+
"lstrip": false,
|
139 |
+
"normalized": false,
|
140 |
+
"rstrip": false,
|
141 |
+
"single_word": false
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"content": "<|audio_start|>",
|
145 |
+
"lstrip": false,
|
146 |
+
"normalized": false,
|
147 |
+
"rstrip": false,
|
148 |
+
"single_word": false
|
149 |
+
},
|
150 |
+
{
|
151 |
+
"content": "<|audio|>",
|
152 |
+
"lstrip": false,
|
153 |
+
"normalized": false,
|
154 |
+
"rstrip": false,
|
155 |
+
"single_word": false
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"content": "<|audio_end|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false
|
163 |
+
},
|
164 |
+
{
|
165 |
+
"content": "<|spk_bos|>",
|
166 |
+
"lstrip": false,
|
167 |
+
"normalized": false,
|
168 |
+
"rstrip": false,
|
169 |
+
"single_word": false
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"content": "<|spk|>",
|
173 |
+
"lstrip": false,
|
174 |
+
"normalized": false,
|
175 |
+
"rstrip": false,
|
176 |
+
"single_word": false
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"content": "<|spk_eos|>",
|
180 |
+
"lstrip": false,
|
181 |
+
"normalized": false,
|
182 |
+
"rstrip": false,
|
183 |
+
"single_word": false
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"content": "<|tts_bos|>",
|
187 |
+
"lstrip": false,
|
188 |
+
"normalized": false,
|
189 |
+
"rstrip": false,
|
190 |
+
"single_word": false
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"content": "<|tts_eos|>",
|
194 |
+
"lstrip": false,
|
195 |
+
"normalized": false,
|
196 |
+
"rstrip": false,
|
197 |
+
"single_word": false
|
198 |
+
},
|
199 |
+
{
|
200 |
+
"content": "<|listen|>",
|
201 |
+
"lstrip": false,
|
202 |
+
"normalized": false,
|
203 |
+
"rstrip": false,
|
204 |
+
"single_word": false
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"content": "<|speak|>",
|
208 |
+
"lstrip": false,
|
209 |
+
"normalized": false,
|
210 |
+
"rstrip": false,
|
211 |
+
"single_word": false
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"content": "<|interrupt|>",
|
215 |
+
"lstrip": false,
|
216 |
+
"normalized": false,
|
217 |
+
"rstrip": false,
|
218 |
+
"single_word": false
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"content": "<|vad_start|>",
|
222 |
+
"lstrip": false,
|
223 |
+
"normalized": false,
|
224 |
+
"rstrip": false,
|
225 |
+
"single_word": false
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"content": "<|vad_end|>",
|
229 |
+
"lstrip": false,
|
230 |
+
"normalized": false,
|
231 |
+
"rstrip": false,
|
232 |
+
"single_word": false
|
233 |
+
},
|
234 |
+
{
|
235 |
+
"content": "<reserved_43>",
|
236 |
+
"lstrip": false,
|
237 |
+
"normalized": false,
|
238 |
+
"rstrip": false,
|
239 |
+
"single_word": false
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"content": "<reserved_53>",
|
243 |
+
"lstrip": false,
|
244 |
+
"normalized": false,
|
245 |
+
"rstrip": false,
|
246 |
+
"single_word": false
|
247 |
+
}
|
248 |
+
],
|
249 |
+
"eos_token": {
|
250 |
+
"content": "<|im_end|>",
|
251 |
+
"lstrip": false,
|
252 |
+
"normalized": false,
|
253 |
+
"rstrip": false,
|
254 |
+
"single_word": false
|
255 |
+
},
|
256 |
+
"pad_token": {
|
257 |
+
"content": "<|endoftext|>",
|
258 |
+
"lstrip": false,
|
259 |
+
"normalized": false,
|
260 |
+
"rstrip": false,
|
261 |
+
"single_word": false
|
262 |
+
},
|
263 |
+
"unk_token": "<unk>"
|
264 |
+
}
|
Chat/tokenization_minicpmo_fast.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2025 The OpenBMB Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from transformers import Qwen2TokenizerFast
|
17 |
+
|
18 |
+
|
19 |
+
class MiniCPMOTokenizerFast(Qwen2TokenizerFast):
|
20 |
+
def __init__(self, **kwargs):
|
21 |
+
super().__init__(**kwargs)
|
22 |
+
# image
|
23 |
+
self.im_start = "<image>"
|
24 |
+
self.im_end = "</image>"
|
25 |
+
self.ref_start = "<ref>"
|
26 |
+
self.ref_end = "</ref>"
|
27 |
+
self.box_start = "<box>"
|
28 |
+
self.box_end = "</box>"
|
29 |
+
self.quad_start = "<quad>"
|
30 |
+
self.quad_end = "</quad>"
|
31 |
+
self.slice_start = "<slice>"
|
32 |
+
self.slice_end = "</slice>"
|
33 |
+
self.im_id_start = "<image_id>"
|
34 |
+
self.im_id_end = "</image_id>"
|
35 |
+
|
36 |
+
# audio
|
37 |
+
self.audio_start = "<|audio_start|>"
|
38 |
+
self.audio_end = "<|audio_end|>"
|
39 |
+
self.spk_start = "<|spk_bos|>"
|
40 |
+
self.spk_end = "<|spk_eos|>"
|
41 |
+
self.tts_start = "<|tts_bos|>"
|
42 |
+
self.tts_end = "<|tts_eos|>"
|
43 |
+
|
44 |
+
@property
|
45 |
+
def eos_id(self):
|
46 |
+
return self.eos_token_id
|
47 |
+
|
48 |
+
@property
|
49 |
+
def bos_id(self):
|
50 |
+
return self.bos_token_id
|
51 |
+
|
52 |
+
@property
|
53 |
+
def unk_id(self):
|
54 |
+
return self.unk_token_id
|
55 |
+
|
56 |
+
@property
|
57 |
+
def im_start_id(self):
|
58 |
+
return self.convert_tokens_to_ids(self.im_start)
|
59 |
+
|
60 |
+
@property
|
61 |
+
def im_end_id(self):
|
62 |
+
return self.convert_tokens_to_ids(self.im_end)
|
63 |
+
|
64 |
+
@property
|
65 |
+
def slice_start_id(self):
|
66 |
+
return self.convert_tokens_to_ids(self.slice_start)
|
67 |
+
|
68 |
+
@property
|
69 |
+
def slice_end_id(self):
|
70 |
+
return self.convert_tokens_to_ids(self.slice_end)
|
71 |
+
|
72 |
+
@property
|
73 |
+
def im_id_start_id(self):
|
74 |
+
return self.convert_tokens_to_ids(self.im_id_start)
|
75 |
+
|
76 |
+
@property
|
77 |
+
def im_id_end_id(self):
|
78 |
+
return self.convert_tokens_to_ids(self.im_id_end)
|
79 |
+
|
80 |
+
@property
|
81 |
+
def audio_start_id(self):
|
82 |
+
return self.convert_tokens_to_ids(self.audio_start)
|
83 |
+
|
84 |
+
@property
|
85 |
+
def audio_end_id(self):
|
86 |
+
return self.convert_tokens_to_ids(self.audio_end)
|
87 |
+
|
88 |
+
@property
|
89 |
+
def spk_start_id(self):
|
90 |
+
return self.convert_tokens_to_ids(self.spk_start)
|
91 |
+
|
92 |
+
@property
|
93 |
+
def spk_end_id(self):
|
94 |
+
return self.convert_tokens_to_ids(self.spk_end)
|
95 |
+
|
96 |
+
@property
|
97 |
+
def tts_start_id(self):
|
98 |
+
return self.convert_tokens_to_ids(self.tts_start)
|
99 |
+
|
100 |
+
@property
|
101 |
+
def tts_end_id(self):
|
102 |
+
return self.convert_tokens_to_ids(self.tts_end)
|
103 |
+
|
104 |
+
@staticmethod
|
105 |
+
def escape(text: str) -> str:
|
106 |
+
return text
|
107 |
+
|
108 |
+
@staticmethod
|
109 |
+
def unescape(text: str) -> str:
|
110 |
+
return text
|
Chat/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Chat/tokenizer_config.json
ADDED
@@ -0,0 +1,523 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"128244": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151643": {
|
14 |
+
"content": "<|endoftext|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151644": {
|
22 |
+
"content": "<|im_start|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151645": {
|
30 |
+
"content": "<|im_end|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151646": {
|
38 |
+
"content": "<|object_ref_start|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151647": {
|
46 |
+
"content": "<|object_ref_end|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151648": {
|
54 |
+
"content": "<|box_start|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151649": {
|
62 |
+
"content": "<|box_end|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151650": {
|
70 |
+
"content": "<|quad_start|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151651": {
|
78 |
+
"content": "<|quad_end|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151652": {
|
86 |
+
"content": "<|vision_start|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151653": {
|
94 |
+
"content": "<|vision_end|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151654": {
|
102 |
+
"content": "<|vision_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151655": {
|
110 |
+
"content": "<|image_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151656": {
|
118 |
+
"content": "<|video_pad|>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": true
|
124 |
+
},
|
125 |
+
"151657": {
|
126 |
+
"content": "<tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151658": {
|
134 |
+
"content": "</tool_call>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151659": {
|
142 |
+
"content": "<|fim_prefix|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151660": {
|
150 |
+
"content": "<|fim_middle|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151661": {
|
158 |
+
"content": "<|fim_suffix|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151662": {
|
166 |
+
"content": "<|fim_pad|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151663": {
|
174 |
+
"content": "<|repo_name|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
},
|
181 |
+
"151664": {
|
182 |
+
"content": "<|file_sep|>",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": false,
|
185 |
+
"rstrip": false,
|
186 |
+
"single_word": false,
|
187 |
+
"special": false
|
188 |
+
},
|
189 |
+
"151665": {
|
190 |
+
"content": "<image>",
|
191 |
+
"lstrip": false,
|
192 |
+
"normalized": false,
|
193 |
+
"rstrip": false,
|
194 |
+
"single_word": false,
|
195 |
+
"special": true
|
196 |
+
},
|
197 |
+
"151666": {
|
198 |
+
"content": "</image>",
|
199 |
+
"lstrip": false,
|
200 |
+
"normalized": false,
|
201 |
+
"rstrip": false,
|
202 |
+
"single_word": false,
|
203 |
+
"special": true
|
204 |
+
},
|
205 |
+
"151667": {
|
206 |
+
"content": "<ref>",
|
207 |
+
"lstrip": false,
|
208 |
+
"normalized": false,
|
209 |
+
"rstrip": false,
|
210 |
+
"single_word": false,
|
211 |
+
"special": true
|
212 |
+
},
|
213 |
+
"151668": {
|
214 |
+
"content": "</ref>",
|
215 |
+
"lstrip": false,
|
216 |
+
"normalized": false,
|
217 |
+
"rstrip": false,
|
218 |
+
"single_word": false,
|
219 |
+
"special": true
|
220 |
+
},
|
221 |
+
"151669": {
|
222 |
+
"content": "<box>",
|
223 |
+
"lstrip": false,
|
224 |
+
"normalized": false,
|
225 |
+
"rstrip": false,
|
226 |
+
"single_word": false,
|
227 |
+
"special": true
|
228 |
+
},
|
229 |
+
"151670": {
|
230 |
+
"content": "</box>",
|
231 |
+
"lstrip": false,
|
232 |
+
"normalized": false,
|
233 |
+
"rstrip": false,
|
234 |
+
"single_word": false,
|
235 |
+
"special": true
|
236 |
+
},
|
237 |
+
"151671": {
|
238 |
+
"content": "<quad>",
|
239 |
+
"lstrip": false,
|
240 |
+
"normalized": false,
|
241 |
+
"rstrip": false,
|
242 |
+
"single_word": false,
|
243 |
+
"special": true
|
244 |
+
},
|
245 |
+
"151672": {
|
246 |
+
"content": "</quad>",
|
247 |
+
"lstrip": false,
|
248 |
+
"normalized": false,
|
249 |
+
"rstrip": false,
|
250 |
+
"single_word": false,
|
251 |
+
"special": true
|
252 |
+
},
|
253 |
+
"151673": {
|
254 |
+
"content": "<point>",
|
255 |
+
"lstrip": false,
|
256 |
+
"normalized": false,
|
257 |
+
"rstrip": false,
|
258 |
+
"single_word": false,
|
259 |
+
"special": true
|
260 |
+
},
|
261 |
+
"151674": {
|
262 |
+
"content": "</point>",
|
263 |
+
"lstrip": false,
|
264 |
+
"normalized": false,
|
265 |
+
"rstrip": false,
|
266 |
+
"single_word": false,
|
267 |
+
"special": true
|
268 |
+
},
|
269 |
+
"151675": {
|
270 |
+
"content": "<slice>",
|
271 |
+
"lstrip": false,
|
272 |
+
"normalized": false,
|
273 |
+
"rstrip": false,
|
274 |
+
"single_word": false,
|
275 |
+
"special": true
|
276 |
+
},
|
277 |
+
"151676": {
|
278 |
+
"content": "</slice>",
|
279 |
+
"lstrip": false,
|
280 |
+
"normalized": false,
|
281 |
+
"rstrip": false,
|
282 |
+
"single_word": false,
|
283 |
+
"special": true
|
284 |
+
},
|
285 |
+
"151677": {
|
286 |
+
"content": "<image_id>",
|
287 |
+
"lstrip": false,
|
288 |
+
"normalized": false,
|
289 |
+
"rstrip": false,
|
290 |
+
"single_word": false,
|
291 |
+
"special": true
|
292 |
+
},
|
293 |
+
"151678": {
|
294 |
+
"content": "</image_id>",
|
295 |
+
"lstrip": false,
|
296 |
+
"normalized": false,
|
297 |
+
"rstrip": false,
|
298 |
+
"single_word": false,
|
299 |
+
"special": true
|
300 |
+
},
|
301 |
+
"151679": {
|
302 |
+
"content": "<unit>",
|
303 |
+
"lstrip": false,
|
304 |
+
"normalized": false,
|
305 |
+
"rstrip": false,
|
306 |
+
"single_word": false,
|
307 |
+
"special": true
|
308 |
+
},
|
309 |
+
"151680": {
|
310 |
+
"content": "</unit>",
|
311 |
+
"lstrip": false,
|
312 |
+
"normalized": false,
|
313 |
+
"rstrip": false,
|
314 |
+
"single_word": false,
|
315 |
+
"special": true
|
316 |
+
},
|
317 |
+
"151681": {
|
318 |
+
"content": "<asr>",
|
319 |
+
"lstrip": false,
|
320 |
+
"normalized": false,
|
321 |
+
"rstrip": false,
|
322 |
+
"single_word": false,
|
323 |
+
"special": true
|
324 |
+
},
|
325 |
+
"151682": {
|
326 |
+
"content": "</asr>",
|
327 |
+
"lstrip": false,
|
328 |
+
"normalized": false,
|
329 |
+
"rstrip": false,
|
330 |
+
"single_word": false,
|
331 |
+
"special": true
|
332 |
+
},
|
333 |
+
"151683": {
|
334 |
+
"content": "<query>",
|
335 |
+
"lstrip": false,
|
336 |
+
"normalized": false,
|
337 |
+
"rstrip": false,
|
338 |
+
"single_word": false,
|
339 |
+
"special": true
|
340 |
+
},
|
341 |
+
"151684": {
|
342 |
+
"content": "</query>",
|
343 |
+
"lstrip": false,
|
344 |
+
"normalized": false,
|
345 |
+
"rstrip": false,
|
346 |
+
"single_word": false,
|
347 |
+
"special": true
|
348 |
+
},
|
349 |
+
"151685": {
|
350 |
+
"content": "<|audio_start|>",
|
351 |
+
"lstrip": false,
|
352 |
+
"normalized": false,
|
353 |
+
"rstrip": false,
|
354 |
+
"single_word": false,
|
355 |
+
"special": true
|
356 |
+
},
|
357 |
+
"151686": {
|
358 |
+
"content": "<|audio|>",
|
359 |
+
"lstrip": false,
|
360 |
+
"normalized": false,
|
361 |
+
"rstrip": false,
|
362 |
+
"single_word": false,
|
363 |
+
"special": true
|
364 |
+
},
|
365 |
+
"151687": {
|
366 |
+
"content": "<|audio_end|>",
|
367 |
+
"lstrip": false,
|
368 |
+
"normalized": false,
|
369 |
+
"rstrip": false,
|
370 |
+
"single_word": false,
|
371 |
+
"special": true
|
372 |
+
},
|
373 |
+
"151688": {
|
374 |
+
"content": "<|spk_bos|>",
|
375 |
+
"lstrip": false,
|
376 |
+
"normalized": false,
|
377 |
+
"rstrip": false,
|
378 |
+
"single_word": false,
|
379 |
+
"special": true
|
380 |
+
},
|
381 |
+
"151689": {
|
382 |
+
"content": "<|spk|>",
|
383 |
+
"lstrip": false,
|
384 |
+
"normalized": false,
|
385 |
+
"rstrip": false,
|
386 |
+
"single_word": false,
|
387 |
+
"special": true
|
388 |
+
},
|
389 |
+
"151690": {
|
390 |
+
"content": "<|spk_eos|>",
|
391 |
+
"lstrip": false,
|
392 |
+
"normalized": false,
|
393 |
+
"rstrip": false,
|
394 |
+
"single_word": false,
|
395 |
+
"special": true
|
396 |
+
},
|
397 |
+
"151691": {
|
398 |
+
"content": "<|tts_bos|>",
|
399 |
+
"lstrip": false,
|
400 |
+
"normalized": false,
|
401 |
+
"rstrip": false,
|
402 |
+
"single_word": false,
|
403 |
+
"special": true
|
404 |
+
},
|
405 |
+
"151692": {
|
406 |
+
"content": "<|tts_eos|>",
|
407 |
+
"lstrip": false,
|
408 |
+
"normalized": false,
|
409 |
+
"rstrip": false,
|
410 |
+
"single_word": false,
|
411 |
+
"special": true
|
412 |
+
},
|
413 |
+
"151693": {
|
414 |
+
"content": "<|listen|>",
|
415 |
+
"lstrip": false,
|
416 |
+
"normalized": false,
|
417 |
+
"rstrip": false,
|
418 |
+
"single_word": false,
|
419 |
+
"special": true
|
420 |
+
},
|
421 |
+
"151694": {
|
422 |
+
"content": "<|speak|>",
|
423 |
+
"lstrip": false,
|
424 |
+
"normalized": false,
|
425 |
+
"rstrip": false,
|
426 |
+
"single_word": false,
|
427 |
+
"special": true
|
428 |
+
},
|
429 |
+
"151695": {
|
430 |
+
"content": "<|interrupt|>",
|
431 |
+
"lstrip": false,
|
432 |
+
"normalized": false,
|
433 |
+
"rstrip": false,
|
434 |
+
"single_word": false,
|
435 |
+
"special": true
|
436 |
+
},
|
437 |
+
"151696": {
|
438 |
+
"content": "<|vad_start|>",
|
439 |
+
"lstrip": false,
|
440 |
+
"normalized": false,
|
441 |
+
"rstrip": false,
|
442 |
+
"single_word": false,
|
443 |
+
"special": true
|
444 |
+
},
|
445 |
+
"151697": {
|
446 |
+
"content": "<|vad_end|>",
|
447 |
+
"lstrip": false,
|
448 |
+
"normalized": false,
|
449 |
+
"rstrip": false,
|
450 |
+
"single_word": false,
|
451 |
+
"special": true
|
452 |
+
},
|
453 |
+
"151698": {
|
454 |
+
"content": "<reserved_43>",
|
455 |
+
"lstrip": false,
|
456 |
+
"normalized": false,
|
457 |
+
"rstrip": false,
|
458 |
+
"single_word": false,
|
459 |
+
"special": true
|
460 |
+
},
|
461 |
+
"151699": {
|
462 |
+
"content": "<reserved_53>",
|
463 |
+
"lstrip": false,
|
464 |
+
"normalized": false,
|
465 |
+
"rstrip": false,
|
466 |
+
"single_word": false,
|
467 |
+
"special": true
|
468 |
+
}
|
469 |
+
},
|
470 |
+
"additional_special_tokens": [
|
471 |
+
"<image>",
|
472 |
+
"</image>",
|
473 |
+
"<ref>",
|
474 |
+
"</ref>",
|
475 |
+
"<box>",
|
476 |
+
"</box>",
|
477 |
+
"<quad>",
|
478 |
+
"</quad>",
|
479 |
+
"<point>",
|
480 |
+
"</point>",
|
481 |
+
"<slice>",
|
482 |
+
"</slice>",
|
483 |
+
"<image_id>",
|
484 |
+
"</image_id>",
|
485 |
+
"<unit>",
|
486 |
+
"</unit>",
|
487 |
+
"<asr>",
|
488 |
+
"</asr>",
|
489 |
+
"<query>",
|
490 |
+
"</query>",
|
491 |
+
"<|audio_start|>",
|
492 |
+
"<|audio|>",
|
493 |
+
"<|audio_end|>",
|
494 |
+
"<|spk_bos|>",
|
495 |
+
"<|spk|>",
|
496 |
+
"<|spk_eos|>",
|
497 |
+
"<|tts_bos|>",
|
498 |
+
"<|tts_eos|>",
|
499 |
+
"<|listen|>",
|
500 |
+
"<|speak|>",
|
501 |
+
"<|interrupt|>",
|
502 |
+
"<|vad_start|>",
|
503 |
+
"<|vad_end|>",
|
504 |
+
"<reserved_43>",
|
505 |
+
"<reserved_53>"
|
506 |
+
],
|
507 |
+
"bos_token": "<|im_start|>",
|
508 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
509 |
+
"clean_up_tokenization_spaces": false,
|
510 |
+
"eos_token": "<|im_end|>",
|
511 |
+
"errors": "replace",
|
512 |
+
"model_max_length": 131072,
|
513 |
+
"pad_token": "<|endoftext|>",
|
514 |
+
"split_special_tokens": false,
|
515 |
+
"auto_map": {
|
516 |
+
"AutoTokenizer": [
|
517 |
+
"tokenization_minicpmo_fast.MiniCPMOTokenizerFast",
|
518 |
+
null
|
519 |
+
]
|
520 |
+
},
|
521 |
+
"tokenizer_class": "MiniCPMOTokenizerFast",
|
522 |
+
"unk_token": "<unk>"
|
523 |
+
}
|
Chat/trainer_state.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Chat/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:51fd9e358109aa6e551299abf37cc4d2352c063b82d162387970f6402a9bcbb2
|
3 |
+
size 7800
|
Chat/utils.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2025 The OpenBMB Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import logging
|
17 |
+
import re
|
18 |
+
|
19 |
+
import librosa
|
20 |
+
import numpy as np
|
21 |
+
|
22 |
+
logger = logging.getLogger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
def is_silent(data):
|
26 |
+
if np.abs(data).max() < 3e-3:
|
27 |
+
return True
|
28 |
+
else:
|
29 |
+
return False
|
30 |
+
|
31 |
+
|
32 |
+
def sentence_end(txt):
|
33 |
+
for c in [".", "。", "!", "?", "!", "?"]:
|
34 |
+
if c in txt:
|
35 |
+
if c == ".": # check not number before it like 1.
|
36 |
+
idx = txt.find(c)
|
37 |
+
if idx > 0:
|
38 |
+
if txt[idx - 1].isdigit():
|
39 |
+
continue
|
40 |
+
return c
|
41 |
+
return ""
|
42 |
+
|
43 |
+
|
44 |
+
class NumberToTextConverter:
|
45 |
+
r"""
|
46 |
+
A helper class to ensure text-to-speech (TTS) systems read numeric digits
|
47 |
+
in the desired language (Chinese or English) digit-by-digit. It forcibly
|
48 |
+
replaces all numeric substrings in text with their language-specific
|
49 |
+
textual representations, thereby reducing the likelihood of TTS mistakes
|
50 |
+
on numbers.
|
51 |
+
Note: MiniCPM-o 2.6 only use this in streaming mode.
|
52 |
+
|
53 |
+
Attributes:
|
54 |
+
num_to_chinese (dict):
|
55 |
+
Mapping from digit (str) to its Chinese textual form (str).
|
56 |
+
num_to_english (dict):
|
57 |
+
Mapping from digit (str) to its English textual form (str).
|
58 |
+
|
59 |
+
Example:
|
60 |
+
>>> converter = NumberToTextConverter()
|
61 |
+
>>> converter.replace_numbers_with_text("我有2个苹果", language="chinese")
|
62 |
+
'我有两个苹果'
|
63 |
+
>>> converter.replace_numbers_with_text("I have 23 books", language="english")
|
64 |
+
'I have two three books'
|
65 |
+
"""
|
66 |
+
|
67 |
+
def __init__(self):
|
68 |
+
self.num_to_chinese = {
|
69 |
+
"0": "零",
|
70 |
+
"1": "一",
|
71 |
+
"2": "二",
|
72 |
+
"3": "三",
|
73 |
+
"4": "四",
|
74 |
+
"5": "五",
|
75 |
+
"6": "六",
|
76 |
+
"7": "七",
|
77 |
+
"8": "八",
|
78 |
+
"9": "九",
|
79 |
+
}
|
80 |
+
self.num_to_english = {
|
81 |
+
"0": "zero",
|
82 |
+
"1": "one",
|
83 |
+
"2": "two",
|
84 |
+
"3": "three",
|
85 |
+
"4": "four",
|
86 |
+
"5": "five",
|
87 |
+
"6": "six",
|
88 |
+
"7": "seven",
|
89 |
+
"8": "eight",
|
90 |
+
"9": "nine",
|
91 |
+
}
|
92 |
+
|
93 |
+
def number_to_chinese_digit_by_digit(self, num_str):
|
94 |
+
result = ""
|
95 |
+
for char in num_str:
|
96 |
+
if char in self.num_to_chinese:
|
97 |
+
result += self.num_to_chinese[char]
|
98 |
+
return result
|
99 |
+
|
100 |
+
def number_to_english_digit_by_digit(self, num_str):
|
101 |
+
result = []
|
102 |
+
for char in num_str:
|
103 |
+
if char in self.num_to_english:
|
104 |
+
result.append(self.num_to_english[char])
|
105 |
+
return " ".join(result)
|
106 |
+
|
107 |
+
def detect_language(self, text):
|
108 |
+
chinese_count = len(re.findall(r"[\u4e00-\u9fff]", text))
|
109 |
+
english_count = len(re.findall(r"[a-zA-Z]", text))
|
110 |
+
return "chinese" if chinese_count >= english_count else "english"
|
111 |
+
|
112 |
+
def replace_numbers_with_text(self, text, language=None):
|
113 |
+
if language is None:
|
114 |
+
language = self.detect_language(text)
|
115 |
+
numbers = re.findall(r"\d+", text)
|
116 |
+
|
117 |
+
for num in numbers:
|
118 |
+
if language == "chinese":
|
119 |
+
replacement = self.number_to_chinese_digit_by_digit(num)
|
120 |
+
else:
|
121 |
+
replacement = self.number_to_english_digit_by_digit(num)
|
122 |
+
text = text.replace(num, replacement, 1)
|
123 |
+
|
124 |
+
return text
|
125 |
+
|
126 |
+
|
127 |
+
class VoiceChecker:
|
128 |
+
r"""
|
129 |
+
A simple utility class to detect silence or low variation in consecutive audio chunks by comparing
|
130 |
+
the mel-spectrogram distances. It keeps track of consecutive zero-distance and low-distance chunks
|
131 |
+
to decide if the audio is considered "bad" (e.g., overly silent or not changing enough).
|
132 |
+
|
133 |
+
Attributes:
|
134 |
+
previous_mel (`np.ndarray` or `None`):
|
135 |
+
Holds the previously observed mel-spectrogram in decibel scale. Used to compute
|
136 |
+
the next distance; reset via :meth:`reset`.
|
137 |
+
consecutive_zeros (`int`):
|
138 |
+
The number of consecutive chunks that were detected as silent (distance = 0).
|
139 |
+
consecutive_low_distance (`int`):
|
140 |
+
The number of consecutive chunks whose distance was below the threshold.
|
141 |
+
|
142 |
+
Example:
|
143 |
+
>>> checker = VoiceChecker()
|
144 |
+
>>> # Suppose we have audio_wav (list or np.ndarray) and mel_spec (np.ndarray)
|
145 |
+
>>> # We split them into chunks and call checker.is_bad(...)
|
146 |
+
>>> is_audio_bad = checker.is_bad(audio_wav, mel_spec, chunk_size=2560, thresh=100.0)
|
147 |
+
>>> if is_audio_bad:
|
148 |
+
... print("Audio deemed bad!")
|
149 |
+
>>> # Reset states if needed
|
150 |
+
>>> checker.reset()
|
151 |
+
"""
|
152 |
+
|
153 |
+
def __init__(self):
|
154 |
+
self.previous_mel = None
|
155 |
+
self.consecutive_zeros = 0
|
156 |
+
self.consecutive_low_distance = 0
|
157 |
+
|
158 |
+
def compute_distance(self, audio_chunk, mel_spec):
|
159 |
+
if is_silent(audio_chunk):
|
160 |
+
return 0.0 # 检查是否为空白片段
|
161 |
+
|
162 |
+
mel_db = librosa.power_to_db(mel_spec)
|
163 |
+
if self.previous_mel is None:
|
164 |
+
self.previous_mel = mel_db
|
165 |
+
return -1.0
|
166 |
+
|
167 |
+
distance = np.linalg.norm(np.mean(mel_db, axis=1) - np.mean(self.previous_mel, axis=1))
|
168 |
+
self.previous_mel = mel_db
|
169 |
+
return distance
|
170 |
+
|
171 |
+
def is_bad(self, audio_wav, mel_spec, chunk_size=2560, thresh=100.0):
|
172 |
+
num_chunks = len(audio_wav) // chunk_size
|
173 |
+
mel_chunk_size = mel_spec.shape[-1] // num_chunks
|
174 |
+
for i in range(num_chunks):
|
175 |
+
audio_chunk = audio_wav[i * chunk_size : (i + 1) * chunk_size]
|
176 |
+
mel_spec_chunk = mel_spec[:, i * mel_chunk_size : (i + 1) * mel_chunk_size]
|
177 |
+
|
178 |
+
distance = self.compute_distance(audio_chunk, mel_spec_chunk)
|
179 |
+
logger.warning(
|
180 |
+
f"mel dist: {distance:.1f}, zero: {self.consecutive_zeros}, low: {self.consecutive_low_distance}"
|
181 |
+
)
|
182 |
+
if distance == 0:
|
183 |
+
self.consecutive_low_distance = 0 # reset
|
184 |
+
self.consecutive_zeros += 1
|
185 |
+
if self.consecutive_zeros >= 12:
|
186 |
+
logger.warning("VoiceChecker detected 1.2 s silent. Marking as failed.")
|
187 |
+
return True
|
188 |
+
elif distance < thresh:
|
189 |
+
self.consecutive_zeros = 0
|
190 |
+
self.consecutive_low_distance += 1
|
191 |
+
if self.consecutive_low_distance >= 5:
|
192 |
+
logger.warning("VoiceChecker detected 5 consecutive low distance chunks. Marking as failed.")
|
193 |
+
return True
|
194 |
+
else:
|
195 |
+
self.consecutive_low_distance = 0
|
196 |
+
self.consecutive_zeros = 0
|
197 |
+
|
198 |
+
return False
|
199 |
+
|
200 |
+
def reset(self):
|
201 |
+
self.previous_mel = None
|
202 |
+
self.consecutive_zeros = 0
|
203 |
+
self.consecutive_low_distance = 0
|
Chat/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Chat/zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|