jeff-Tianfeng
commited on
Commit
·
418f8e3
1
Parent(s):
0614170
init_project
Browse files
MinRAG.py
DELETED
@@ -1,234 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import matplotlib.pyplot as plt
|
3 |
-
import seaborn as sns
|
4 |
-
from typing import Tuple, Dict, List
|
5 |
-
import os
|
6 |
-
import pandas as pd
|
7 |
-
from tqdm import tqdm
|
8 |
-
from collections import Counter
|
9 |
-
|
10 |
-
class KnowledgePointEntropyAnalyzer:
|
11 |
-
"""
|
12 |
-
Analyze the entropy of knowledge points in a binary message matrix.
|
13 |
-
"""
|
14 |
-
|
15 |
-
def __init__(self, alpha: float = 1e-6):
|
16 |
-
"""
|
17 |
-
Args:
|
18 |
-
alpha: Laplace smoothing factor to avoid zero probabilities
|
19 |
-
"""
|
20 |
-
self.alpha = alpha
|
21 |
-
|
22 |
-
def add_background(self, B: np.ndarray) -> np.ndarray:
|
23 |
-
"""
|
24 |
-
Add small background noise to avoid zero probabilities.
|
25 |
-
|
26 |
-
Args:
|
27 |
-
B: N x M binary matrix (messages x knowledge points)
|
28 |
-
|
29 |
-
Returns:
|
30 |
-
B_prime: smoothed matrix
|
31 |
-
"""
|
32 |
-
n, M = B.shape
|
33 |
-
background = self.alpha / (n * M)
|
34 |
-
B_prime = B + background
|
35 |
-
return B_prime
|
36 |
-
|
37 |
-
def normalize_to_probability(self, B_prime: np.ndarray) -> np.ndarray:
|
38 |
-
"""
|
39 |
-
Normalize the matrix to a probability distribution.
|
40 |
-
"""
|
41 |
-
S = np.sum(B_prime)
|
42 |
-
P = B_prime / S
|
43 |
-
return P
|
44 |
-
|
45 |
-
def calculate_type2_entropy(self, P: np.ndarray) -> float:
|
46 |
-
"""
|
47 |
-
Calculate Shannon entropy of the flattened probability distribution.
|
48 |
-
|
49 |
-
Args:
|
50 |
-
P: Probability matrix
|
51 |
-
|
52 |
-
Returns:
|
53 |
-
H_element: Shannon entropy value
|
54 |
-
"""
|
55 |
-
P_flat = P.flatten()
|
56 |
-
P_nonzero = P_flat[P_flat > 0] # avoid log(0)
|
57 |
-
H_element = -np.sum(P_nonzero * np.log2(P_nonzero))
|
58 |
-
return H_element
|
59 |
-
|
60 |
-
def analyze(self, B: np.ndarray) -> Dict:
|
61 |
-
"""
|
62 |
-
Analyze the entropy for a given sample matrix.
|
63 |
-
|
64 |
-
Args:
|
65 |
-
B: binary matrix of shape N x M
|
66 |
-
|
67 |
-
Returns:
|
68 |
-
Dictionary containing processed matrices and entropy values
|
69 |
-
"""
|
70 |
-
B_prime = self.add_background(B)
|
71 |
-
P = self.normalize_to_probability(B_prime)
|
72 |
-
H_element = self.calculate_type2_entropy(P)
|
73 |
-
|
74 |
-
return {
|
75 |
-
'B': B,
|
76 |
-
'B_prime': B_prime,
|
77 |
-
'P': P,
|
78 |
-
'type2': H_element,
|
79 |
-
'n_messages': B.shape[0],
|
80 |
-
'n_knowledge_points': B.shape[1]
|
81 |
-
}
|
82 |
-
|
83 |
-
def run_sampling_entropy(matrix: np.ndarray,
|
84 |
-
sample_sizes: List[int],
|
85 |
-
n_trials: int,
|
86 |
-
alpha: float,
|
87 |
-
method: str = "random") -> pd.DataFrame:
|
88 |
-
"""
|
89 |
-
Run entropy experiments under different sampling strategies.
|
90 |
-
|
91 |
-
Args:
|
92 |
-
matrix: Original binary matrix (N x M)
|
93 |
-
sample_sizes: List of sample sizes
|
94 |
-
n_trials: Number of trials per sample size
|
95 |
-
alpha: Laplace smoothing factor
|
96 |
-
method: "random" or "greedy"
|
97 |
-
|
98 |
-
Returns:
|
99 |
-
DataFrame of entropy results
|
100 |
-
"""
|
101 |
-
analyzer = KnowledgePointEntropyAnalyzer(alpha=alpha)
|
102 |
-
records = []
|
103 |
-
|
104 |
-
for size in tqdm(sample_sizes, desc=f"{method} sampling"):
|
105 |
-
for trial in range(n_trials):
|
106 |
-
if method == "random":
|
107 |
-
# Random sampling with replacement
|
108 |
-
indices = np.random.choice(matrix.shape[0], size=size, replace=True)
|
109 |
-
sampled = matrix[indices]
|
110 |
-
elif method == "greedy":
|
111 |
-
# Greedy sampling prioritizing high-entropy knowledge points
|
112 |
-
sampled = greedy_entropy_sampling(matrix, n_select=size)
|
113 |
-
else:
|
114 |
-
raise ValueError(f"Unsupported sampling method: {method}")
|
115 |
-
|
116 |
-
result = analyzer.analyze(sampled)
|
117 |
-
log_n = np.log2(size)
|
118 |
-
records.append({
|
119 |
-
"method": method,
|
120 |
-
"sample_size": size,
|
121 |
-
"trial": trial,
|
122 |
-
"log_n": log_n,
|
123 |
-
"H_element": result['type2'],
|
124 |
-
"H_element_norm": result['type2'] / log_n
|
125 |
-
})
|
126 |
-
|
127 |
-
return pd.DataFrame(records)
|
128 |
-
|
129 |
-
def greedy_entropy_sampling(matrix: np.ndarray, n_select: int) -> np.ndarray:
|
130 |
-
"""
|
131 |
-
Greedy sampling: select message rows that cover high-entropy knowledge points first.
|
132 |
-
(贪心采样:优先选择包含高熵知识点的消息行)
|
133 |
-
|
134 |
-
Args:
|
135 |
-
matrix: Original N x M binary knowledge point matrix
|
136 |
-
n_select: Number of messages to select
|
137 |
-
|
138 |
-
Returns:
|
139 |
-
Submatrix of size n_select x M
|
140 |
-
"""
|
141 |
-
n, m = matrix.shape
|
142 |
-
B = matrix.copy()
|
143 |
-
|
144 |
-
# Step 1: Calculate marginal entropy for each knowledge point
|
145 |
-
def binary_entropy(p):
|
146 |
-
if p == 0 or p == 1:
|
147 |
-
return 0
|
148 |
-
return -p * np.log2(p) - (1 - p) * np.log2(1 - p)
|
149 |
-
|
150 |
-
p_j = np.mean(B, axis=0)
|
151 |
-
H_j = np.array([binary_entropy(p) for p in p_j])
|
152 |
-
sorted_col_indices = np.argsort(-H_j) # sort by entropy descending
|
153 |
-
|
154 |
-
selected_rows = set()
|
155 |
-
covered_cols = set()
|
156 |
-
|
157 |
-
for col in sorted_col_indices:
|
158 |
-
# Step 2: Find rows containing this knowledge point
|
159 |
-
rows_with_col = set(np.where(B[:, col] == 1)[0])
|
160 |
-
candidate_rows = rows_with_col - selected_rows
|
161 |
-
|
162 |
-
for row in candidate_rows:
|
163 |
-
selected_rows.add(row)
|
164 |
-
covered_cols.add(col)
|
165 |
-
if len(selected_rows) >= n_select:
|
166 |
-
break
|
167 |
-
if len(selected_rows) >= n_select:
|
168 |
-
break
|
169 |
-
|
170 |
-
# Step 3: If not enough rows, fill randomly
|
171 |
-
if len(selected_rows) < n_select:
|
172 |
-
remaining = list(set(range(n)) - selected_rows)
|
173 |
-
supplement = np.random.choice(remaining, size=n_select - len(selected_rows), replace=False)
|
174 |
-
selected_rows.update(supplement)
|
175 |
-
|
176 |
-
selected_rows = sorted(list(selected_rows))
|
177 |
-
return B[selected_rows]
|
178 |
-
|
179 |
-
|
180 |
-
def plot(df_all: pd.DataFrame):
|
181 |
-
"""
|
182 |
-
Plot the average entropy curves for different sampling methods.
|
183 |
-
"""
|
184 |
-
df_avg = df_all.groupby(['sample_size', 'method']).agg({
|
185 |
-
'H_element': 'mean',
|
186 |
-
'H_element_norm': 'mean'
|
187 |
-
}).reset_index()
|
188 |
-
|
189 |
-
df_avg.to_csv("type2_entropy_averaged.csv", index=False)
|
190 |
-
print("✅ Averaged entropy results saved to type2_entropy_averaged.csv")
|
191 |
-
|
192 |
-
fig, axes = plt.subplots(1, 2, figsize=(14, 5))
|
193 |
-
|
194 |
-
# Plot raw Shannon entropy
|
195 |
-
sns.lineplot(
|
196 |
-
data=df_avg, x="sample_size", y="H_element",
|
197 |
-
hue="method", ax=axes[0], linewidth=2
|
198 |
-
)
|
199 |
-
axes[0].set_title("Shannon Entropy")
|
200 |
-
axes[0].set_xlabel("Sample Size")
|
201 |
-
axes[0].set_ylabel("Entropy Value")
|
202 |
-
axes[0].legend(title="Method")
|
203 |
-
axes[0].grid(False)
|
204 |
-
|
205 |
-
# Plot normalized entropy
|
206 |
-
sns.lineplot(
|
207 |
-
data=df_avg, x="sample_size", y="H_element_norm",
|
208 |
-
hue="method", ax=axes[1], linewidth=2
|
209 |
-
)
|
210 |
-
axes[1].set_title("Shannon Entropy / log2(n)")
|
211 |
-
axes[1].set_xlabel("Sample Size")
|
212 |
-
axes[1].set_ylabel("Unit entropy")
|
213 |
-
axes[1].legend(title="Method")
|
214 |
-
axes[1].grid(False)
|
215 |
-
|
216 |
-
plt.tight_layout()
|
217 |
-
plt.savefig("type2_entropy_comparison_smooth.png", dpi=300)
|
218 |
-
plt.show()
|
219 |
-
print("✅ Smoothed type-2 entropy plot saved as type2_entropy_comparison_smooth.png")
|
220 |
-
|
221 |
-
if __name__ == "__main__":
|
222 |
-
path = "build_matrix/matrix.npy"
|
223 |
-
matrix = np.load(path)
|
224 |
-
sample_sizes = list(range(50, 300, 50)) # Sampling sizes to evaluate
|
225 |
-
n_trials = 10 # Number of repeated trials for each sample size
|
226 |
-
alpha = 1e-6 # Laplace smoothing factor
|
227 |
-
|
228 |
-
# Run random sampling entropy analysis
|
229 |
-
df_random = run_sampling_entropy(matrix, sample_sizes, n_trials, alpha, method="random")
|
230 |
-
# Run greedy sampling entropy analysis
|
231 |
-
df_greedy = run_sampling_entropy(matrix, sample_sizes, n_trials, alpha, method="greedy")
|
232 |
-
|
233 |
-
df_all = pd.concat([df_random, df_greedy], ignore_index=True)
|
234 |
-
plot(df_all)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|