Update README.md
Browse files
README.md
CHANGED
@@ -16,8 +16,6 @@ should probably proofread and complete it, then remove this comment. -->
|
|
16 |
# speecht5_finetuned_kha
|
17 |
|
18 |
This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the audiofolder dataset.
|
19 |
-
It achieves the following results on the evaluation set:
|
20 |
-
- Loss: 0.4610
|
21 |
|
22 |
|
23 |
### Inference with a pipeline
|
@@ -27,7 +25,7 @@ pipe = pipeline("text-to-speech", model="jefson08/speecht5_finetuned_kha")
|
|
27 |
````
|
28 |
|
29 |
#### Pick a piece of text in Khasi you’d like narrated, e.g.: "Kumno phi long?"
|
30 |
-
````
|
31 |
text = "Kumno phi long?"
|
32 |
#Convert the given text to lowercase
|
33 |
text = text.lower()
|
@@ -36,7 +34,7 @@ print(text)
|
|
36 |
|
37 |
### To use SpeechT5 with the pipeline, you’ll need a speaker embedding.
|
38 |
### Let’s get it from a json file i.e already saved embedding
|
39 |
-
````
|
40 |
from huggingface_hub import hf_hub_download
|
41 |
hf_hub_download(repo_id="jefson08/speecht5_finetuned_kha", filename="speakerEmbedding.json", local_dir=".")
|
42 |
|
@@ -53,7 +51,7 @@ speaker_embeddings = torch.tensor(example["speaker_embeddings"]).unsqueeze(0)
|
|
53 |
````
|
54 |
|
55 |
### Now you can pass the text and speaker embeddings to the pipeline, and it will take care of the rest:
|
56 |
-
````
|
57 |
forward_params = {"speaker_embeddings": speaker_embeddings}
|
58 |
output = pipe(text, forward_params=forward_params)
|
59 |
output
|
@@ -61,7 +59,7 @@ output
|
|
61 |
|
62 |
|
63 |
### You can then listen to the result:
|
64 |
-
````
|
65 |
from IPython.display import Audio
|
66 |
Audio(output['audio'], rate=output['sampling_rate'])
|
67 |
````
|
|
|
16 |
# speecht5_finetuned_kha
|
17 |
|
18 |
This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the audiofolder dataset.
|
|
|
|
|
19 |
|
20 |
|
21 |
### Inference with a pipeline
|
|
|
25 |
````
|
26 |
|
27 |
#### Pick a piece of text in Khasi you’d like narrated, e.g.: "Kumno phi long?"
|
28 |
+
````python
|
29 |
text = "Kumno phi long?"
|
30 |
#Convert the given text to lowercase
|
31 |
text = text.lower()
|
|
|
34 |
|
35 |
### To use SpeechT5 with the pipeline, you’ll need a speaker embedding.
|
36 |
### Let’s get it from a json file i.e already saved embedding
|
37 |
+
````python
|
38 |
from huggingface_hub import hf_hub_download
|
39 |
hf_hub_download(repo_id="jefson08/speecht5_finetuned_kha", filename="speakerEmbedding.json", local_dir=".")
|
40 |
|
|
|
51 |
````
|
52 |
|
53 |
### Now you can pass the text and speaker embeddings to the pipeline, and it will take care of the rest:
|
54 |
+
````python
|
55 |
forward_params = {"speaker_embeddings": speaker_embeddings}
|
56 |
output = pipe(text, forward_params=forward_params)
|
57 |
output
|
|
|
59 |
|
60 |
|
61 |
### You can then listen to the result:
|
62 |
+
````python
|
63 |
from IPython.display import Audio
|
64 |
Audio(output['audio'], rate=output['sampling_rate'])
|
65 |
````
|