jefson08 commited on
Commit
121f96f
·
verified ·
1 Parent(s): f991851

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -6
README.md CHANGED
@@ -16,8 +16,6 @@ should probably proofread and complete it, then remove this comment. -->
16
  # speecht5_finetuned_kha
17
 
18
  This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the audiofolder dataset.
19
- It achieves the following results on the evaluation set:
20
- - Loss: 0.4610
21
 
22
 
23
  ### Inference with a pipeline
@@ -27,7 +25,7 @@ pipe = pipeline("text-to-speech", model="jefson08/speecht5_finetuned_kha")
27
  ````
28
 
29
  #### Pick a piece of text in Khasi you’d like narrated, e.g.: "Kumno phi long?"
30
- ````
31
  text = "Kumno phi long?"
32
  #Convert the given text to lowercase
33
  text = text.lower()
@@ -36,7 +34,7 @@ print(text)
36
 
37
  ### To use SpeechT5 with the pipeline, you’ll need a speaker embedding.
38
  ### Let’s get it from a json file i.e already saved embedding
39
- ````
40
  from huggingface_hub import hf_hub_download
41
  hf_hub_download(repo_id="jefson08/speecht5_finetuned_kha", filename="speakerEmbedding.json", local_dir=".")
42
 
@@ -53,7 +51,7 @@ speaker_embeddings = torch.tensor(example["speaker_embeddings"]).unsqueeze(0)
53
  ````
54
 
55
  ### Now you can pass the text and speaker embeddings to the pipeline, and it will take care of the rest:
56
- ````
57
  forward_params = {"speaker_embeddings": speaker_embeddings}
58
  output = pipe(text, forward_params=forward_params)
59
  output
@@ -61,7 +59,7 @@ output
61
 
62
 
63
  ### You can then listen to the result:
64
- ````
65
  from IPython.display import Audio
66
  Audio(output['audio'], rate=output['sampling_rate'])
67
  ````
 
16
  # speecht5_finetuned_kha
17
 
18
  This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the audiofolder dataset.
 
 
19
 
20
 
21
  ### Inference with a pipeline
 
25
  ````
26
 
27
  #### Pick a piece of text in Khasi you’d like narrated, e.g.: "Kumno phi long?"
28
+ ````python
29
  text = "Kumno phi long?"
30
  #Convert the given text to lowercase
31
  text = text.lower()
 
34
 
35
  ### To use SpeechT5 with the pipeline, you’ll need a speaker embedding.
36
  ### Let’s get it from a json file i.e already saved embedding
37
+ ````python
38
  from huggingface_hub import hf_hub_download
39
  hf_hub_download(repo_id="jefson08/speecht5_finetuned_kha", filename="speakerEmbedding.json", local_dir=".")
40
 
 
51
  ````
52
 
53
  ### Now you can pass the text and speaker embeddings to the pipeline, and it will take care of the rest:
54
+ ````python
55
  forward_params = {"speaker_embeddings": speaker_embeddings}
56
  output = pipe(text, forward_params=forward_params)
57
  output
 
59
 
60
 
61
  ### You can then listen to the result:
62
+ ````python
63
  from IPython.display import Audio
64
  Audio(output['audio'], rate=output['sampling_rate'])
65
  ````