lstm-stock-prediction-model / stage2_architecture_20250705_170829.txt
jengyang's picture
Upload LSTM stock prediction model with sentiment analysis
f4f6611 verified
Stage 2 Simple Universal LSTM Model Architecture
=============================================
Model Type: Sequential LSTM
Training Date: 20250705_170829
Training Stocks: 20 stocks
Features: 6 features
Target: Close
Architecture:
1. LSTM Layer 1: 50 units, return_sequences=True
2. Dropout: 0.2
3. LSTM Layer 2: 50 units, return_sequences=False
4. Dropout: 0.2
5. Dense Output: 1 unit
Training Parameters:
- Batch Size: 16
- Learning Rate: 0.001
- Epochs Trained: 88
- Early Stopping Patience: 12
Performance Metrics:
- RMSE: $26.85
- MAE: $12.60
- R�: 0.9903
- MAPE: 2.68%
Features Used:
- Open
- High
- Low
- Close
- Volume
- sentiment_10d_avg
Stocks Trained On:
- AAPL
- AMZN
- AVGO
- BRK.B
- COST
- GOOG
- JNJ
- JPM
- LLY
- MA
- META
- MSFT
- NFLX
- NVDA
- ORCL
- PG
- TSLA
- V
- WMT
- XOM
Usage Instructions:
1. Load model: model = tf.keras.models.load_model('../models\stage2_universal_lstm_20250705_170829.keras')
2. Load scalers: scalers = joblib.load('../models\stage2_scalers_20250705_170829.pkl')
3. Preprocess data using feature_scaler and target_scaler
4. Make predictions on sequences of shape (batch_size, 60, 6)
5. Inverse transform predictions using target_scaler