jfarray commited on
Commit
1eeb000
·
1 Parent(s): 8e22d0f

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ pytorch_model.bin filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
2_Dense/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"in_features": 768, "out_features": 512, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
2_Dense/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a48c18a6b1c5cc997b8e2c450cc635fd6ab5623a3b663bd6df90d89d1d58abb0
3
+ size 1575975
README.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: sentence-similarity
3
+ tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ ---
8
+
9
+ # {MODEL_NAME}
10
+
11
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search.
12
+
13
+ <!--- Describe your model here -->
14
+
15
+ ## Usage (Sentence-Transformers)
16
+
17
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
18
+
19
+ ```
20
+ pip install -U sentence-transformers
21
+ ```
22
+
23
+ Then you can use the model like this:
24
+
25
+ ```python
26
+ from sentence_transformers import SentenceTransformer
27
+ sentences = ["This is an example sentence", "Each sentence is converted"]
28
+
29
+ model = SentenceTransformer('{MODEL_NAME}')
30
+ embeddings = model.encode(sentences)
31
+ print(embeddings)
32
+ ```
33
+
34
+
35
+
36
+ ## Evaluation Results
37
+
38
+ <!--- Describe how your model was evaluated -->
39
+
40
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
41
+
42
+
43
+ ## Training
44
+ The model was trained with the parameters:
45
+
46
+ **DataLoader**:
47
+
48
+ `torch.utils.data.dataloader.DataLoader` of length 11 with parameters:
49
+ ```
50
+ {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
51
+ ```
52
+
53
+ **Loss**:
54
+
55
+ `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
56
+
57
+ Parameters of the fit()-Method:
58
+ ```
59
+ {
60
+ "epochs": 1,
61
+ "evaluation_steps": 1,
62
+ "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
63
+ "max_grad_norm": 1,
64
+ "optimizer_class": "<class 'transformers.optimization.AdamW'>",
65
+ "optimizer_params": {
66
+ "lr": 2e-05
67
+ },
68
+ "scheduler": "WarmupLinear",
69
+ "steps_per_epoch": null,
70
+ "warmup_steps": 2,
71
+ "weight_decay": 0.01
72
+ }
73
+ ```
74
+
75
+
76
+ ## Full Model Architecture
77
+ ```
78
+ SentenceTransformer(
79
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
80
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
81
+ (2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
82
+ )
83
+ ```
84
+
85
+ ## Citing & Authors
86
+
87
+ <!--- Describe where people can find more information -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/root/.cache/torch/sentence_transformers/sentence-transformers_distiluse-base-multilingual-cased-v1/",
3
+ "activation": "gelu",
4
+ "architectures": [
5
+ "DistilBertModel"
6
+ ],
7
+ "attention_dropout": 0.1,
8
+ "dim": 768,
9
+ "dropout": 0.1,
10
+ "hidden_dim": 3072,
11
+ "initializer_range": 0.02,
12
+ "max_position_embeddings": 512,
13
+ "model_type": "distilbert",
14
+ "n_heads": 12,
15
+ "n_layers": 6,
16
+ "pad_token_id": 0,
17
+ "qa_dropout": 0.1,
18
+ "seq_classif_dropout": 0.2,
19
+ "sinusoidal_pos_embds": false,
20
+ "tie_weights_": true,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.16.2",
23
+ "vocab_size": 119547
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ }
7
+ }
eval/similarity_evaluation_results.csv ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
2
+ 0,1,0.3025718391868595,0.4246848658033177,0.30613216767618595,0.3839964954269519,0.291456965945577,0.33695056717927896,0.31795452080383496,0.37382440283286045
3
+ 0,2,0.27656141228062237,0.3471226597733704,0.2851882345135896,0.34839417134763184,0.27416005197025156,0.31533487041683467,0.28653443667613077,0.38908254172399764
4
+ 0,3,0.24403790678564918,0.2657459190206389,0.2634073556741324,0.3077058009712661,0.25611335116079237,0.30134824309995895,0.17619659316926284,0.13732325002023446
5
+ 0,4,0.21098129324041823,0.2949906852286518,0.2385149345721428,0.2657459190206389,0.23317545394998027,0.2962621968029132,0.08417653083533543,0.026701743059490034
6
+ 0,5,0.1976705490414005,0.2975337083771747,0.22733910849598027,0.25048778012950174,0.22354018727227948,0.27973254633751465,0.04767283605454447,-0.07374767130716295
7
+ 0,6,0.19370668242784028,0.22378603707001168,0.22412071908030348,0.31533487041683467,0.21695073779937513,0.32296393986240324,0.017518013325996513,-0.11697906483205156
8
+ 0,7,0.17814033055451065,0.10172092594091442,0.21167623303774183,0.27973254633751465,0.1986903757134589,0.31533487041683467,-0.01754840207768673,-0.19199824771347596
9
+ 0,8,0.1620008725967935,0.04450290509915005,0.19612190690179201,0.20725638660461312,0.1799757426196444,0.23650115281262601,-0.038219590036530374,-0.2225145254957503
10
+ 0,9,0.14917397249472883,-0.0025430231485228604,0.182809151874608,0.10172092594091442,0.1651492577965719,0.1309656921489273,-0.049803707096675164,-0.2225145254957503
11
+ 0,10,0.14117026361938556,0.01907267361392145,0.17352335426986445,0.08773429862403868,0.15490273714950764,0.09536336806960725,-0.05482557519381782,-0.21488545605018167
12
+ 0,11,0.14059717628890844,0.005086046297045721,0.17255564632746279,0.08773429862403868,0.15359020238436324,0.08137674075273153,-0.054366378934212284,-0.21488545605018167
13
+ 0,-1,0.14059717628890844,0.005086046297045721,0.17255564632746279,0.08773429862403868,0.15359020238436324,0.08137674075273153,-0.054366378934212284,-0.21488545605018167
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Dense",
18
+ "type": "sentence_transformers.models.Dense"
19
+ }
20
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ecd92f4c8476a369fae14fcc6f6e88cc4a5db04f66040000017b9c46b256dcfa
3
+ size 538972985
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
similarity_evaluation_sts-test_results.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
2
+ -1,-1,0.7196434688031887,0.319190772367219,0.6909147720915559,0.32486216935103734,0.6747856036858331,0.3276897426323679,0.7107332528260147,0.289176244490106
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"do_lower_case": false, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "max_len": 512, "special_tokens_map_file": "old_models/distiluse-base-multilingual-cased-v1/0_Transformer/special_tokens_map.json", "name_or_path": "/root/.cache/torch/sentence_transformers/sentence-transformers_distiluse-base-multilingual-cased-v1/", "do_basic_tokenize": true, "never_split": null, "tokenizer_class": "DistilBertTokenizer"}
vocab.txt ADDED
The diff for this file is too large to render. See raw diff