|
[INFO|2025-03-07 10:08:21] configuration_utils.py:771 >> Model config LlamaConfig { |
|
"_name_or_path": "meta-llama/Llama-3.3-70B-Instruct", |
|
"architectures": [ |
|
"LlamaForCausalLM" |
|
], |
|
"attention_bias": false, |
|
"attention_dropout": 0.0, |
|
"bos_token_id": 128000, |
|
"eos_token_id": [ |
|
128001, |
|
128008, |
|
128009 |
|
], |
|
"head_dim": 128, |
|
"hidden_act": "silu", |
|
"hidden_size": 8192, |
|
"initializer_range": 0.02, |
|
"intermediate_size": 28672, |
|
"max_position_embeddings": 131072, |
|
"mlp_bias": false, |
|
"model_type": "llama", |
|
"num_attention_heads": 64, |
|
"num_hidden_layers": 80, |
|
"num_key_value_heads": 8, |
|
"pretraining_tp": 1, |
|
"rms_norm_eps": 1e-05, |
|
"rope_scaling": { |
|
"factor": 8.0, |
|
"high_freq_factor": 4.0, |
|
"low_freq_factor": 1.0, |
|
"original_max_position_embeddings": 8192, |
|
"rope_type": "llama3" |
|
}, |
|
"rope_theta": 500000.0, |
|
"tie_word_embeddings": false, |
|
"torch_dtype": "bfloat16", |
|
"transformers_version": "4.49.0", |
|
"use_cache": true, |
|
"vocab_size": 128256 |
|
} |
|
|
|
|
|
[INFO|2025-03-07 10:08:21] tokenization_utils_base.py:2050 >> loading file tokenizer.json from cache at /workspace/hf_home/hub/models--meta-llama--Llama-3.3-70B-Instruct/snapshots/6f6073b423013f6a7d4d9f39144961bfbfbc386b/tokenizer.json |
|
|
|
[INFO|2025-03-07 10:08:21] tokenization_utils_base.py:2050 >> loading file tokenizer.model from cache at None |
|
|
|
[INFO|2025-03-07 10:08:21] tokenization_utils_base.py:2050 >> loading file added_tokens.json from cache at None |
|
|
|
[INFO|2025-03-07 10:08:21] tokenization_utils_base.py:2050 >> loading file special_tokens_map.json from cache at /workspace/hf_home/hub/models--meta-llama--Llama-3.3-70B-Instruct/snapshots/6f6073b423013f6a7d4d9f39144961bfbfbc386b/special_tokens_map.json |
|
|
|
[INFO|2025-03-07 10:08:21] tokenization_utils_base.py:2050 >> loading file tokenizer_config.json from cache at /workspace/hf_home/hub/models--meta-llama--Llama-3.3-70B-Instruct/snapshots/6f6073b423013f6a7d4d9f39144961bfbfbc386b/tokenizer_config.json |
|
|
|
[INFO|2025-03-07 10:08:21] tokenization_utils_base.py:2050 >> loading file chat_template.jinja from cache at None |
|
|
|
[INFO|2025-03-07 10:08:21] tokenization_utils_base.py:2313 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. |
|
|
|
[INFO|2025-03-07 10:08:22] configuration_utils.py:699 >> loading configuration file config.json from cache at /workspace/hf_home/hub/models--meta-llama--Llama-3.3-70B-Instruct/snapshots/6f6073b423013f6a7d4d9f39144961bfbfbc386b/config.json |
|
|
|
[INFO|2025-03-07 10:08:22] configuration_utils.py:771 >> Model config LlamaConfig { |
|
"_name_or_path": "meta-llama/Llama-3.3-70B-Instruct", |
|
"architectures": [ |
|
"LlamaForCausalLM" |
|
], |
|
"attention_bias": false, |
|
"attention_dropout": 0.0, |
|
"bos_token_id": 128000, |
|
"eos_token_id": [ |
|
128001, |
|
128008, |
|
128009 |
|
], |
|
"head_dim": 128, |
|
"hidden_act": "silu", |
|
"hidden_size": 8192, |
|
"initializer_range": 0.02, |
|
"intermediate_size": 28672, |
|
"max_position_embeddings": 131072, |
|
"mlp_bias": false, |
|
"model_type": "llama", |
|
"num_attention_heads": 64, |
|
"num_hidden_layers": 80, |
|
"num_key_value_heads": 8, |
|
"pretraining_tp": 1, |
|
"rms_norm_eps": 1e-05, |
|
"rope_scaling": { |
|
"factor": 8.0, |
|
"high_freq_factor": 4.0, |
|
"low_freq_factor": 1.0, |
|
"original_max_position_embeddings": 8192, |
|
"rope_type": "llama3" |
|
}, |
|
"rope_theta": 500000.0, |
|
"tie_word_embeddings": false, |
|
"torch_dtype": "bfloat16", |
|
"transformers_version": "4.49.0", |
|
"use_cache": true, |
|
"vocab_size": 128256 |
|
} |
|
|
|
|
|
[INFO|2025-03-07 10:08:22] tokenization_utils_base.py:2050 >> loading file tokenizer.json from cache at /workspace/hf_home/hub/models--meta-llama--Llama-3.3-70B-Instruct/snapshots/6f6073b423013f6a7d4d9f39144961bfbfbc386b/tokenizer.json |
|
|
|
[INFO|2025-03-07 10:08:22] tokenization_utils_base.py:2050 >> loading file tokenizer.model from cache at None |
|
|
|
[INFO|2025-03-07 10:08:22] tokenization_utils_base.py:2050 >> loading file added_tokens.json from cache at None |
|
|
|
[INFO|2025-03-07 10:08:22] tokenization_utils_base.py:2050 >> loading file special_tokens_map.json from cache at /workspace/hf_home/hub/models--meta-llama--Llama-3.3-70B-Instruct/snapshots/6f6073b423013f6a7d4d9f39144961bfbfbc386b/special_tokens_map.json |
|
|
|
[INFO|2025-03-07 10:08:22] tokenization_utils_base.py:2050 >> loading file tokenizer_config.json from cache at /workspace/hf_home/hub/models--meta-llama--Llama-3.3-70B-Instruct/snapshots/6f6073b423013f6a7d4d9f39144961bfbfbc386b/tokenizer_config.json |
|
|
|
[INFO|2025-03-07 10:08:22] tokenization_utils_base.py:2050 >> loading file chat_template.jinja from cache at None |
|
|
|
[INFO|2025-03-07 10:08:22] tokenization_utils_base.py:2313 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. |
|
|
|
[INFO|2025-03-07 10:08:22] logging.py:157 >> Add <|eot_id|>,<|eom_id|> to stop words. |
|
|
|
[INFO|2025-03-07 10:08:22] logging.py:157 >> Loading dataset jgayed/ets480... |
|
|
|
[INFO|2025-03-07 10:08:27] configuration_utils.py:699 >> loading configuration file config.json from cache at /workspace/hf_home/hub/models--meta-llama--Llama-3.3-70B-Instruct/snapshots/6f6073b423013f6a7d4d9f39144961bfbfbc386b/config.json |
|
|
|
[INFO|2025-03-07 10:08:27] configuration_utils.py:771 >> Model config LlamaConfig { |
|
"_name_or_path": "meta-llama/Llama-3.3-70B-Instruct", |
|
"architectures": [ |
|
"LlamaForCausalLM" |
|
], |
|
"attention_bias": false, |
|
"attention_dropout": 0.0, |
|
"bos_token_id": 128000, |
|
"eos_token_id": [ |
|
128001, |
|
128008, |
|
128009 |
|
], |
|
"head_dim": 128, |
|
"hidden_act": "silu", |
|
"hidden_size": 8192, |
|
"initializer_range": 0.02, |
|
"intermediate_size": 28672, |
|
"max_position_embeddings": 131072, |
|
"mlp_bias": false, |
|
"model_type": "llama", |
|
"num_attention_heads": 64, |
|
"num_hidden_layers": 80, |
|
"num_key_value_heads": 8, |
|
"pretraining_tp": 1, |
|
"rms_norm_eps": 1e-05, |
|
"rope_scaling": { |
|
"factor": 8.0, |
|
"high_freq_factor": 4.0, |
|
"low_freq_factor": 1.0, |
|
"original_max_position_embeddings": 8192, |
|
"rope_type": "llama3" |
|
}, |
|
"rope_theta": 500000.0, |
|
"tie_word_embeddings": false, |
|
"torch_dtype": "bfloat16", |
|
"transformers_version": "4.49.0", |
|
"use_cache": true, |
|
"vocab_size": 128256 |
|
} |
|
|
|
|
|
[INFO|2025-03-07 10:08:27] logging.py:157 >> Quantizing model to 4 bit with bitsandbytes. |
|
|
|
[INFO|2025-03-07 10:08:27] quantizer_bnb_4bit.py:276 >> The device_map was not initialized. Setting device_map to {'': 0}. If you want to use the model for inference, please set device_map ='auto' |
|
|
|
[INFO|2025-03-07 10:08:27] modeling_utils.py:3982 >> loading weights file model.safetensors from cache at /workspace/hf_home/hub/models--meta-llama--Llama-3.3-70B-Instruct/snapshots/6f6073b423013f6a7d4d9f39144961bfbfbc386b/model.safetensors.index.json |
|
|
|
[INFO|2025-03-07 10:08:27] modeling_utils.py:1633 >> Instantiating LlamaForCausalLM model under default dtype torch.bfloat16. |
|
|
|
[INFO|2025-03-07 10:08:27] configuration_utils.py:1140 >> Generate config GenerationConfig { |
|
"bos_token_id": 128000, |
|
"eos_token_id": [ |
|
128001, |
|
128008, |
|
128009 |
|
] |
|
} |
|
|
|
|
|
[INFO|2025-03-07 10:09:51] modeling_utils.py:4970 >> All model checkpoint weights were used when initializing LlamaForCausalLM. |
|
|
|
|
|
[INFO|2025-03-07 10:09:51] modeling_utils.py:4978 >> All the weights of LlamaForCausalLM were initialized from the model checkpoint at meta-llama/Llama-3.3-70B-Instruct. |
|
If your task is similar to the task the model of the checkpoint was trained on, you can already use LlamaForCausalLM for predictions without further training. |
|
|
|
[INFO|2025-03-07 10:09:51] configuration_utils.py:1095 >> loading configuration file generation_config.json from cache at /workspace/hf_home/hub/models--meta-llama--Llama-3.3-70B-Instruct/snapshots/6f6073b423013f6a7d4d9f39144961bfbfbc386b/generation_config.json |
|
|
|
[INFO|2025-03-07 10:09:51] configuration_utils.py:1140 >> Generate config GenerationConfig { |
|
"bos_token_id": 128000, |
|
"do_sample": true, |
|
"eos_token_id": [ |
|
128001, |
|
128008, |
|
128009 |
|
], |
|
"temperature": 0.6, |
|
"top_p": 0.9 |
|
} |
|
|
|
|
|
[INFO|2025-03-07 10:09:51] logging.py:157 >> Gradient checkpointing enabled. |
|
|
|
[INFO|2025-03-07 10:09:51] logging.py:157 >> Using torch SDPA for faster training and inference. |
|
|
|
[INFO|2025-03-07 10:09:51] logging.py:157 >> Upcasting trainable params to float32. |
|
|
|
[INFO|2025-03-07 10:09:51] logging.py:157 >> Fine-tuning method: LoRA |
|
|
|
[INFO|2025-03-07 10:09:51] logging.py:157 >> Found linear modules: up_proj,o_proj,v_proj,q_proj,k_proj,gate_proj,down_proj |
|
|
|
[WARNING|2025-03-07 10:09:54] trainer.py:781 >> No label_names provided for model class `PeftModelForCausalLM`. Since `PeftModel` hides base models input arguments, if label_names is not given, label_names can't be set automatically within `Trainer`. Note that empty label_names list will be used instead. |
|
|
|
[INFO|2025-03-07 10:09:56] logging.py:157 >> trainable params: 828,375,040 || all params: 276,735,205,376 || trainable%: 0.2993 |
|
|
|
[INFO|2025-03-07 10:09:56] trainer.py:746 >> Using auto half precision backend |
|
|
|
[WARNING|2025-03-07 10:09:56] trainer.py:781 >> No label_names provided for model class `PeftModelForCausalLM`. Since `PeftModel` hides base models input arguments, if label_names is not given, label_names can't be set automatically within `Trainer`. Note that empty label_names list will be used instead. |
|
|
|
[INFO|2025-03-07 10:09:56] deepspeed.py:334 >> Detected ZeRO Offload and non-DeepSpeed optimizers: This combination should work as long as the custom optimizer has both CPU and GPU implementation (except LAMB) |
|
|
|
|